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Abstract. Similarity search is a difficult problem and various indexing schemas

have been defined to process similarity queries efficiently in many applications,

including multimedia databases and other repositories handling complex objects.

Metric indices support efficient similarity searches, but most of them are designed

for main memory. Thus, they can handle only small datasets, suffering serious

performance degradations when the objects reside on disk. Most real-life database

applications require indices able to work on secondary memory.

Among a plethora of indices, the List of Clustered Permutations (LCP) has shown

to be competitive in main memory, since groups the permutations and establishes

a criterion to discard whole clusters according the permutation of their centers.

We introduce a secondary-memory variant of the LCP, which maintains the low

number of distance evaluations when comparing the permutations themselves,

and also needs a low number of I/O operations at construction and searching.

Keywords: metric spaces, permutation-based algorithm, secondary memory

1 Introduction

“Proximity” or “similarity” searching is the problem of looking for objects in a dataset,

that are “close” or “similar enough” to a given query object, under a certain (expensive

to compute) distance. Similarity search has become a very important operation in ap-

plications that deal with unstructured data sources. For example, multimedia databases

that manage objects without any kind of structure, such as images, fingerprints or au-

dio clips. This approximation has applications in a vast number of fields. Some ex-

amples are non–traditional databases, text searching, information retrieval, machine

learning and classification, image quantization and compression, computational biol-

ogy, and function prediction. These problems can be mapped into a metric space model

[3]. That is, there is a universe X of objects, and a non negative real valued distance

function d : X× X −→ R
+ ∪ {0} defined among them. This distance satisfies the

three axioms that make the set a metric space: strict positiveness (d(x, y) ≥ 0 and

d(x, y) = 0 ⇔ x = y), symmetry (d(x, y) = d(y, x)), and triangle inequality

(d(x, z) ≤ d(x, y) + d(y, z)).

⋆ Partially funded by Fondecyt grant 1131044, Chile.
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The smaller the distance between two objects, the more “similar” they are. We have

a finite database U ⊆ X, |U| = n, which is a subset of the universe and can be prepro-

cessed to build an index. Later, given a new object from the universe (a query q ∈ X),

we must retrieve all similar elements found in the database. There are two typical simi-

larity queries:

– Range query (q, r): retrieve all elements within distance r to q in U.

– k-Nearest neighbor query (k-NN): retrieve the k closest elements to q in U.

Our focus is on approximate proximity searching, where accuracy can be traded

off for efficiency, as opposed to exact similarity search algorithms. However, there are

generic techniques to convert any exact algorithm into approximate by using a form of

aggressive pruning, as described for example, in [6].

For general metric spaces, there exist a number of methods to preprocess the database

in order to reduce the number of distance evaluations [3, 14, 13]. In general metric

spaces, the (black-box) distance function is the only way to distinguish between ob-

jects, and usually, the function of distance is expensive to calculate (in time and/or

resources), compared to the CPU time to traverse the index and decide which elements

are relevant. However, when the index is located in secondary memory the I/O opera-

tions are also very significant [12]. Therefore, the goal of similarity search algorithms

for metric spaces in secondary memory is to solve queries using the minimum number

of distances computations and I/O operations.

Since this kind of datasets lacks of total order to avoid a full linear scan, it is neces-

sary to preprocess the database to build an index which allows answering queries with

less effort. The List of Clusters (LC) [2] is one of the most efficient algorithms in high

dimensional spaces (difficult spaces), however it takes O(n2) distance calculations to

build the index. In other hand, the Permutation Based Algorithm (PBA) [4, 5, 9] is an

approximate method that has been showed unbeatable in practice, but it only works well

in high dimensions, as the authors claim. Once the index is built by calculating the “per-

mutation” of each database object, during searches we have to calculate the permutation

of the query object q and compare it with all permutations of database objects, to com-

pute the order to review permutations. This takes at least O(|P|) distance calculations,

where |P| is the permutation size, and O(n) evaluations of the “permutation distance”.

There have been several proposals to avoid the sequential scan in PBA, however all

of them lost accuracy regarding the original technique [7, 10]. In [9], a combination of

the main ideas of LC and PBA is presented, designing a new metric index to answer

approximate similarity search. This new index, called as List of Clustered Permutations

(LCP), achieves a good search performance and beats both LC and PBA.

However, when we want to answer approximate similarity queries on large volumes

of data, working in secondary memory and considering distance and I/O costs is neces-

sary. The I/O time is composed of the number of disk pages read and written; we call

B the size of the disk page in bytes. Given a dataset of |U| = n objects of total size N
bytes and disk page size B, queries can be trivially answered by performing n distance

evaluations and N/B I/Os. The goal of a secondary-memory index is to preprocess the

dataset so as to answer queries with as few distance evaluations and I/Os as possible.

Therefore, in this article we use the idea of LCP [9], built on LC and PBA, but

considering the index have to be located in secondary memory. So, the idea is to keep



each cluster of the list on a disk page in secondary memory. Hence, the cluster size must

consider the disk page size. Besides, in order to accelerate searches the information of

centers (permutants) and some few more data are also maintained in main memory.

The rest of this paper is organized as follows. In Section 2 we describe the previous

works and some basic concepts. Next, in Section 3 we detail the List of Clustered Per-

mutations (LCP) and in Section 4 we present our secondary-memory variant of LCP. In

Section 5 we show the experimental evaluation of our proposal. Finally, we draw some

conclusions and future work directions in Section 6.

2 Previous Works

In order to introduce our secondary-memory index, we describe briefly the main aspects

of the previous works used as basis.

2.1 Permutation-Based Algorithm

In [4, 5] the authors introduce the permutation based algorithm (PBA), a novel tech-

nique that shows a different way to sort the space. At preprocessing time, a subset of

objects P = {p1, p2, .., pkPk} ⊆ U is selected out of the database, which are called

the permutants. Each object u ∈ U, computes its distance to all the permutants (i.e.,

computes d(u, p) for all p ∈ P) and sorts them increasingly by distance. Then, for each

object u ∈ U, just the order of the permutants (not the distances) is stored in the index.

If we define Πu as the permutation of (1, . . . ,P) for the object u, so Πu(i) is the

i-th cell in the u’s permutation and pΠu(i) denotes the i-th permutant. For example, if

Πu(i) = (5, 2, 1, 3, 4) then pΠu(2) = p2. Within the permutation, for all 1 ≤ i < kPk
it holds either d(pΠu(i), u) < d(pΠu(i+1), u) or, if there is a tie (d(pΠu(i), u) =
d(pΠu(i+1), u)), then the permutant with the lowest index appears first in Πu. We call

the i-th permutant Πu(i), the inverse permutation Π−1
u , and the position of i-th per-

mutant Π−1
u (pi). The set of all the permutations stored in the index needs just O(n|P|)

memory cells.

During searches, we compute the distance from the query q ∈ X to all the per-

mutants in P and obtain the query permutation Πq . Next, Πq is compared with all the

permutations stored in the index, which takes O(n) permutation distances.

Authors in [4] claim that the order induced by the permutation of the query object q
(Πq) is extremely promising and reviewing a small fraction of the dataset is enough to

get a good answer.

The permutation distance is calculated as follows: let Πu and Πq permutations

of (1, . . . , |P|). We compute how different is a permutation from the other one using

Spearman Rho (Sρ) metric. In [8] the Sρ distance is defined as:

Sρ(Πu, Πq) =

s

X

1≤i≤P

(Π−1
u (i)−Π−1

q (i))2

The main disadvantage of the PBA is that its memory requirement could be pro-

hibitive in some scenarios, especially where n is actually huge. Also, like other indices,

the dimension of the space impacts on its performance; particularly, it has an effect on

how long is the fraction to consider when solving the approximate similarity query.



2.2 List of Clusters

There are many indices for metric spaces [3, 14, 13, 1]. One of the most economical

in space used and rather efficient is the List of Clusters (LC) [2], because it needs

O(n) space and has an excellent search performance in high dimension. Regretably,

its construction requires O(n2) distance evaluations, which is very expensive. The LC

index is built recursively. The LC has two variants, one with a fixed cluster size and the

other with a fixed cluster radius. We describe here the variant of fixed cluster size that

sets the maximum number of elements that fits in a disk page included into a cluster,

because the LCP is based on it [9], has better search performance [2], and it is more

convenient to secondary memory.

Firstly, a center c is selected from the database and a bucket size b is given. c chooses

its b-closest elements of the database and build the subset I , which is the answer of a

b-nearest neighbor query of c in U. Let crc be the distance from c to its farthest neighbor

in I . The tuple (c, I, crc) is called a cluster. This process is recursively repeated with

the rest of the non-clustered objects; in this case with U \ (I ∪ {c}). Finally, we have a

set of centers C with their cluster elements and their covering radii, organized as a list.

To answer queries, the query object q is compared with all the cluster centers C.

During a range search (q, r), for each cluster with center ci, if the distance from its ci to

the query q is larger than its covering radius crci plus the query radius r we can discard

its whole bucket, otherwise we review it exhaustively. Formally, if d(q, ci) > crci + r
the cluster of ci can be completely discarded.

3 List of Clustered Permutations

As it is aforementioned, LC is a good search index but is costly to build and PBA gives

a way to answer approximate similarity queries, while trades accuracy or determinism

for faster searches. The simplest way to reduce the construction time of LC is to avoid

distance computations. For this sake, we have two possibilities: a bigger bucket size,

or using another, cheaper, way to build the index. Follow the second possibility, in [9],

we propose to combine the PBA with the LC. We choose a set of permutants, where

each one within this set has a double role, as permutant and as a cluster center. Besides,

only the cluster centers store their permutation. This index is called List of Clustered

Permutations (LCP) [9].

As we mention previously, when we solve a similarity query q with the standard

PBA, we need to spend |P| evaluations of the distance d to compute the query permuta-

tion Πq , n evaluations of the permutation distance Sρ to compute the order induced by

Πq on U, and O(fn) distance evaluations (of d) to compare q with the fraction f of the

dataset objects that are the most promising to be relevant for the query. With the LCP

index, only |P| (≪ n) evaluations of the permutation distance Sρ are needed to com-

pare Πq with the permutation of each cluster center. Then, some distances evaluations

are needed to review non-discarded clusters. In [9] the authors shown experiments that

verify the improvement of LCP over the traditional LC.

The building process of the index is done as follows: a set P = {c1, . . . , c|P|}
of centers (permutants) is randomly selected, and for each database object u ∈ U,



d(u, ci), ∀ci ∈ P is calculated. Hence, we can compute the permutations for all the ob-

jects u in the dataset U. Then, the first center is chosen and grouped its b = n
|P| −1 most

similar objects according to the permutation distance Sρ (excluding all the cluster cen-

ters, so that no center can be inside the bucket of another center). The process continues

iteratively with the rest of elements in P until every element in U \P is clustered. Every

center ci maintains its covering radius crci (that is, the distance to the farthest object in

its bucket), its bucket (its subset of elements) and its permutation. All the permutations

of elements in U \ P are discarded; that is, the permutations of all the objects within a

bucket will not be stored.

Figure 1 shows an example of LCP index for a little set of points in R
2, where the

set P = {c1, c2, c3, c4} of centers (permutants) is selected and b = 2 (only two points

belong to each cluster). We also show the covering radii and the permutations of centers.
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Fig. 1. An example of LCP.

Therefore, the space used for the index is n + P
2 cells, and the construction time

is O(n|P|) evaluations of both the space distance d and the permutation distance Sρ. It

can be noticed that the whole LCP index can be packed using only (n+P
2)log2|P| bits.

As it is mentioned, the standard LC discards clusters during a range search (q, r) by

using the covering radii criterion. Let d(q, c) be the distance between the query q and

the center of the cluster c and crc the covering radius of center c. So, if d(q, c) > r+crc
the cluster whose center is c can be discarded.

Since the centers of LCP have permutations, a heuristic method can be introduced

to discard clusters, modifying the criteria explained in [2]. In [9] authors mention that

their preliminary experimental results have shown that if an object (for instance, a clus-

ter center), and its permutation have (just) one permutant that moved far away with

respect to its position inside query permutation, then this object is not relevant, so it

can be discarded (and also its bucket). For example, if the permutation of the query is

(1, 2, 3, 4) and the permutation of the center is (4, 1, 2, 3), even though most of both

permutations are similar, the position shifting of permutant 4 suggests that the object

can be discarded.



Basically, it is necessary to know how much could a permutant move away inside

the permutation of an object. So, by using the query permutation Πq and the range query

radius r, it can be estimated how far a permutant could shift. To do that, for a pair of

permutants ci, cj , where ci is closer to the query q than cj , and d(cj , q)− d(ci, q) ≤ r,

the method does not discard an object whose permutation has an inversion of these

permutants; this is, it does not discard an object that is closer to cj than to ci. But, if

the distance difference is larger, although permutant inversion is possible there as a big

chance that the object were irrelevant, so the object can be discarded. During query

process, a cluster center (and its bucket) is discarded when a permutant shifts more than

tolerated.

4 List of Clustered Permutations in Secondary Memory

In order to obtain an efficient variant of LCP for secondary memory, we have to consider

some important aspects of using a disk as storage. An I/O operation on disk involves

three main times: the time of head positioning, lattency, and transfer time. The transfer

unit of a disk is called a disk page. Therefore, a way of reducing times is to read/write

few disk pages. One key aspect for this objective is to use as few disk pages as possible,

and other is to read/write disk pages when it is strictly necessary.

Therefore, our proposal consider the design of a secondary-memory variant of LCP

[9] that occupies the smallest possible amount of disk pages and it only reads/writes a

disk page when it is actually necessary. Hence, we take advantage of main memory to

store some information of the index and we set the size of the clusters as how many

database elements fits in a disk page of size B. We called our variant as LCP*.

The build process of LCP* is almost the same used for LCP. As we mentioned, we

set the cluster size as a function of disk page size and the size of the representation of

an object. Therefore, at this point LCP* is different from LCP, because b is a fixed value

defined mainly by B and not as a function of the number of centers selected. On the

other hand, the number of centers needed is determined as a function of the resulting

size b of a cluster; that is, |P| = n
b+1 . Thereby, we force that each cluster fits completely

in a disk page and, because of that, when we need to review the elements of a cluster

we only have to read only one disk page. In each cluster only the real objects are stored.

As LCP does, all the permutations of elements in U \ P are discarded. Furthermore,

taking advantage of main memory storage, we replicate some information of LCP* in

main memory, in order to avoid reading unnecessarily a page (cluster) only to compare

the query object q with the center c of a cluster and then determine its cluster is non

relevant. Hence, we maintain in main memory the list of selected centers P. For each

center c ∈ P we store its covering radius, its permutation, the actual number of elements

in its cluster, and the number of disk page where is stored its cluster.

Then, when we process a range query (q, r), we can determine without reading any

disk page the set of candidate clusters that can be relevant to the query. This stage needs

|P| distance computations to obtain the permutation Πq in addition to |P| calculations

of Sρ distance to compare Πq with the permutation of each center and determine which

clusters have to be reviewed. Next, in order to optimize the necessary time to retrieve

all the candidate clusters, we sort the number of disk pages that will be read, because it



c2
c3

4c3c1c 2c

c4

Secondary Memory

Clusters / Disk Pages

Main Memory

Πc1
=(1,2,3,4) Πc2

=(2,3,1,4) Πc3
=(3,2,4,1) Πc4

=(4,3,2,1)

c

LCP

1

Fig. 2. A simplified example of LCP*.

is cheaper to read disk pages in a sequential way. Then, we order the elements retrieved

from the clusters read and we compare q with the ordered set of elements as LCP does.

Figure 2 depicts the same example of Figure 1, but simplified because we want to

show mainly the two parts of our index. As in LCP, we can use the parameter f to limit

the fraction of more promising database objects that will be compared, via d, with the

query q. Besides, if it appears as necessary we can add another parameter s to LCP*

that limits the number of disk pages that we will read. In this case, among the list of

candidate clusters we select the s more promising. Therefore, it is possible to trade

accuracy with distance evaluations and I/O operations as we need, and limit to f the

number of distance evaluations and/or to s the number of I/O operations.

5 Experimental Results

In order to evaluate the performance of our LCP*, we select a sample of different metric

spaces from SISAP [11]: sets of synthetic vectors on the unitary cube and a real-life

database. For lack of space, we only show the results obtained with the synthetic metric

spaces. Since our LCP* is an approximated method, we can relax the discarding criteria

by accepting bigger shifts. We tabulate these results.

Synthetic Databases: In these experiments we used synthetic databases with vectors

uniformly distributed on the unitary cube. We use 100,000 points in different dimen-

sions (5, 10, 15, and 20) under Euclidean distance. As we can precisely control the



dimensionality of the space, we use these experiments to show how much the predic-

tive power of our technique varies with the dimensionality. We call these spaces as C5,

C10, C15, and C20, considering its dimension.

In all cases, we build the index with the 90% of the database elements and we use the

remaining 10%, randomly selected, as queries. So, the elements used as query objetcs

are not in the index. We average the search costs of all these queries. We also evaluate

the effect of using different page sizes of 4KB and 8KB, that produce different clusters

sizes and number of centers.

Figure 3 illustrates the search costs of query for the synthetic spaces, measured in

distance evaluations (left) and number of pages read (right), as the shifting criterion

is relaxed. We also evaluate the effect of page sizes for the search performance: 4KB

(up) and 8KB (down). As it can be noticed, the number of distance evaluations grows

as dimension increases, but sublinearly. Besides, the number of pages read is very low,

between 1 an 5 for all cases. Surprisingly, the number of pages read does not decrease

as page size increases. This odd behavior can be because as page size increases cluster

sizes grows, but the clusters are so big that they can not be discarded easily. As it is
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Fig. 3. LCP* Search costs for the synthetic spaces, considering page sizes of 4KB and 8KB.

aforementioned, an approximate similarity searching can obtain an inexact answer. That

is, if a 1-NN query of an element q ∈ U is posed to the index, it answers with the closest

element from U between only the elements that are actually compared with q. However,

as we want to save as many distance calculations as we can, q will not be compared



against many potentially relevant elements. If the exact answer of 1-NN(q) = {x1},

it determines the radius r1 = d(x1, q) needed to enclose x1 from q. An approximate

answer of 1-NN(q) could obtain an element z whose d(q, z) > r1.

Recall is a measure commonly used to evaluate the retrieval effectiveness of a

method. It is defined as the ratio of relevant elements retrieved for a given query over

the number of relevant elements for that query in the database. This measure take on

values between 0 and 1. So, for each query element q the exact 1-NN(q) = Rel(q)
is determined with traditional LC. The approximate-1-NN(q) = Retr(q) is answered

with LCP* index, let be the set Retr(q) = {y1}. It can be noticed that the approxi-

mate search will also return one element in this case, so |Retr(q)| = |Rel(q)| = 1.

Thus, we determine the number of elements obtained which are relevant by verifying

if d(q, y1) = r1. We use recall in order to analyze the retrieval effectiveness of our

proposal in 1-NN queries.

Figure 4 illustrates the recall obtained for the synthetic spaces, as the shifting cri-

terion is relaxed. We evaluate the effect of page sizes for this measure: 4KB (left) and

8KB (right). For this matter, better results are obtained with 8KB than with 4KB. For the

other hand, recall decreases as dimension grows with both sizes. For example, for C5

space and 8KB of disk page size, we can obtain a recall of almost 80% only evaluating

approximately 1600 distances and just reading 3.5 disk pages.
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6 Conclusions

We have presented a new index for approximate similarity search in secondary memory.

The LCP* structure extend an in-memory approximate data structure LCP [9], that

offers a good balance between construction and search time. The secondary-memory

version also supports approximate searches by calculating few distances and reading

very few disk pages. So, we have obtained a more practical index, because it maintain

the good characteristics of LCP, but it can be applicated on massive datasets that require

secondary memory storage.

As future works we have to analyze if there is a best disk page size for each metric

space and to validate our results over larger real-life databases. We also have to check



how the performance is affected when we limit the number of disk pages read and the

number of distance calculations, by using the parameters f and s. As it is mentioned

in [9], we also want to explore the possibility of using short permutations for objects

inside the clusters. This is supported by the facts that the beginning of the permutation

is the most important data portion to process and that we can trade space in order to

improve the recall results.
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