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Abstract. Similarity search consists on retrieving objects within a database that 

are similar or relevant to a particular query. It is a topic of great interest to 

scientific community because of its many fields of application, such as 

searching for words and images on the World Wide Web, pattern recognition, 

detection of plagiarism, multimedia databases, among others. It is modeled 

through metric spaces, in which objects are represented in a black-box that 

contains only the distance between objects; calculating the distance function is 

costly and search systems operate at a high query rate. Metrical structures have 

been developed to optimize this process; such structures work as indexes and 

preprocess data to decrease the distance evaluations during the search. 

Processing large volumes of data makes unfeasible the use of such structures 

without using parallel processing environments. Technologies based on multi-

CPU and GPU architectures are among the most force due to its costs and 

performance.  

Keywords: Similarity search, metric spaces, metric structures parallel 

processing, GPU. 

1   Introduction 

The search of similar objects in a large collection of stored objects in a metric 

database has become a most interesting problem. This kind of search can be found in 

different applications such as voice and image recognition, data mining, plagiarism 

and many others. 

In general, various data structures are used in order to improve efficiency in terms 

of distance calculations, compared with the sequential search in the database (known 

as a brute force algorithm). On the other hand, parallel processing seeks to reduce 

costs in terms of time of processing large data volumes [1]. 

There are a number of technologies for parallel processing implementations. 

Technologies based on multi-CPU architectures, GPU and multi-GPU are among the 

most current. In this sense, the application of these new technologies on similarity 

searches in metric spaces [2][3] allow a high level of parallelism at a very low cost. 

This paper focuses on similarity search and implementation of metric structures on 

parallel environments. Section 2 presents the state of the art on issues related to search 

by similarity metric structures and parallelization technologies. Comparative analysis 

of experiments are proposed section 3, seeking to identify the behavior of a set of 
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metric spaces and metric structures on processing platforms based on multicore and 

GPU. Finally, conclusions and suggestions for future works are in section 4. 

1.1. Similarity Search in Metric Spaces 

Similarity is modeled in many interesting cases through metric spaces, and the search 

of similar objects through range search or nearest neighbors. a metric space is a set Χ 

and a distance functiond:X2→R, so that Xzyx  ,, , fulfills the properties of 

positiveness(d(x,y)>=0 and d(x,y)=0 iff x=y), simetry(d(x,y)=d(y,x))and triangle 

inequality(d(x,y)+d(y,z)>=d(x,z)).  

In a given metric space (X, d) and a finite data set Y   X, a series of queries can 

be made. The basic query is the range query, a query being an object x   X and a 

range r   R. The query range around x with range r is the set of objects y   Y so 

that d(x,y)<= r. A second type of query that can be built using the range query is k 

nearest neighbors, a query being an object x   X and an object k. The k nearest 

neighbors to x are a subset A of objects Y, such that if |A|=k and there is no object 

yA such that d(y,x) is lower than the distance of some object of A to x. 

The aim of search algorithms is to minimize the number of distance evaluations 

performed to resolve a query. The methods for searching in metric spaces are mainly 

based on dividing the space using the distance to one or more selected objects. Not 

working with the particular characteristics of each application has the advantage of 

being more general, because the algorithms work with any type of object [4]. 

1.2. Metric data structures 

There are different structures for searching metric spaces, which can use discrete or 

continuous distance functions. Metric space data structures can be grouped into two 

classes, clustering-based and pivots-based methods. 

The clustering-based structures divide the space into areas, where each area has a 

so-called center. Some data is stored in each area, which allows easy discarding the 

whole area by just comparing the query with its center. Algorithms based on 

clustering are better suited for high-dimensional metric spaces, which is the most 

difficult problem in practice. Some clustering-based indexes are GNAT [5], M-Tree 

[6], SAT [7], Slim-Tree [8], EGNAT [9] and others [4]. 

In the pivots-based methods, a set of pivots are selected and the distances between 

the pivots and database elements are pre-calculated. When a query is made, the query 

distance to each pivot is calculated and the triangle inequality is used to discard the 

candidates. Its objective is to filter objects during a request through the use of a 

triangular inequality without really measuring the distance between the object under 

request and the discarded objects. Some pivots-based indexes are: LAESA [10], FQT 

and its variants [11], Spaghettis and its variants [12][13], FQA [14], SSS-Index [15] 

and many others [16]. 

A Generic Metric Structure (GMS) is an array-type structure based on pivots, 

which are obtained randomly. It contains the set of distances between the pivots and 



the database objects. Each cell stores the distance d(yi, pj) being a database object yi. 

The algorithm for range search on this structure, given a query q and a range r is: 

Figure 1 represents a GMS built with 4 pivots. For each query q being the distances 

to pivots d(q,pi) = {8, 7, 4, 6} and the search range r = 2, intervals {(6, 10), (5, 9), (2, 

6), (4, 8)} are defined. Cells marked in dark gray are within the search range. The 

strikethrough cells are the candidate objects (2, 13 and 15), which will be evaluated 

directly with the query. 

 

Figure 1. Search over a generic metric structure. 

1.3. Parallel Processing Platforms 

Currently, there is a wide variety of parallel platforms on which metric structures can 

be implemented. In this context, many studies have initially focused on distributed 

memory platforms using high level libraries such as MPI [MPI94] or PVM [PVM94] 

and shared memory using OpenMP [OMP07] [GKKG03] directives. In this sense, 

[GBMB10] proposes a strategy for organizing query processing on metric spaces in 

multi-core nodes. Finally, recent work has dealt newer shared memory technologies, 

including GPU-based platforms [16] [17] [18]. 

OpenMP is an application programming interface (API) for shared memory 

multiprocessing programming on multiple platforms. It is a specification of a set of 

compiler directives, library routines and environment variables that can be used for 

high-level parallelism in programs written in C, C ++ and Fortran, based on the fork-

join execution model. It is available in many architectures, including Unix and 

Microsoft Windows platforms, and distributes processing to the microprocessor cores. 

On the other hand, graphical processing units (GPU) have a high number of cores 

with high bandwidth. These devices can increase processing capacity with respect to 

CPU [19]. A trend called General Purpose Computing on GPU or GPGPU has guided 

the use of GPU on new types of applications. In this sense, the manufacturers of GPU 

devices have proposed new languages or extensions for high level languages. An 

example is CUDA, which is a software platform that allows use GPU devices for 

general purpose applications, with the ability to handle a large number of threads. 



Finally, an application built with a hybrid parallel programming model can run on 

a cluster of computers using OpenMP and other technologies such as GPU or MPI, or 

through OpenMP extensions for distributed memory systems. 

1.4. Parallelism on Metric Spaces 

Metric structures have some unusual features that make it difficult to its direct 

implementation in real applications. The first is related to dynamic capabilities: most 

of these structures must be rebuilt if there are new items to index or if it is needed to 

remove objects from the database. Another feature, even rarer, is related with 

structures that enable an efficient data handling in secondary memory, which should 

be considered additional cost parameters such as the number of disk accesses and the 

index size, among others. Finally, metric structures generally do not consider the 

memory hierarchy; therefore, it is important to consider this aspect in order to achieve 

greater performance and efficiency with the ability to use technologies such as GPU, 

which have different memory levels in its system. 

It is impractical to use metric structures in real applications if it does not consider 

its implementation in parallel environments. To parallelize metric structures it must 

be considered, among other criteria: the proper distribution of the database on the 

environment, eg. in a cluster of PCs; the parallelization of search methods; the 

efficiency in communication between processors; etc. 

According to available data and previous work, it has been raised to implement 

different solutions on disparate spaces, such as color histograms, databases of words, 

coordinate vectors, Gauss vectors, NASA images and other data, in order to identify 

the optimal distribution of data in such spaces, both the database and the structures, 

under GPU and / or Multi-GPU environments, on memory managed by the CPUs and 

GPU dedicated memories. Finally, it aims is to assess the scalability of 

implementations according to the database size, and consequently the storage and 

processing of the Databases, and running queries on secondary memory. The 

following shows case studies, results and conclusions. 

2. Analysis, Discussion and Results 

Parallelizing metric structures on GPU and multicore clusters are little explored 

research areas. In this context, two research groups are developing works around 

metric structures on GPU-based platforms. The first group of the Complutense 

University of Madrid has focused his studies over two metrics tructures, List of 

Clusters and SSS-Index, and has submitted various proposals for kNN and queries by 

range¡Error! No se encuentra el origen de la referencia.¡Error! No se encuentra 

el origen de la referencia.. In the second group, of the University of Castilla La 

Mancha, Professor Roberto Uribe-Paredes is involved. The lines of research 

addressed by this group are aimed at developing and strengthening the generic 

structure presented above on a hybrid environment [16] [17] [20]. Finally, metric 

structures on a GPU are used in [2], and their results are compared with sequential 

versions; a metric structure is used and the results are compared with sequential and 



multicore-CPU versions, showing a noticeable improvement when using this new 

platform. 

Based on the experiences of the research group members, it has proposed to 

confirm or refute the convenience of using generic metric structures based on pivots 

in GPU environments. To do this, initially it is proposed: 

 On one hand, it aims to evaluate the search performance on GMS structures 

compared to brute force search. 

 Furthermore, the GPU performance is compared with other processing 

options. It seeks to determine spaces and dimensions in which is really 

convenient to use metric structures on GPU-based platforms. 

The analysis has carried out an exhaustive set of laboratory tests on a wide range of 

parallel environments and metric spaces. 

2.1. Study Cases 

Different representative metric spaces have been selected in the experiments 

conducted by the research group. In order to classify those spaces, the distance 

function for similarity search is used. Thus, it is possible to identify two groups of 

metric spaces. 

The first set of areas corresponds to different language dictionaries. The distance 

function used is the edit distance, which corresponds to the minimum number of 

insertions, deletions or substitutions needed for a word equal to another. Similarity 

ranges applied in the search vary from 1 to 4. 

The second group of metric spaces contains databases vectors of different sizes, 

which represent different objects; they are predominantly colored histograms of 

different images (photos of faces, satellite images, diagrams), wherein such 

histograms are represented as vectors. For this second group, the Euclidean distance 

has been chosen as the distance, and ranges recovered 0.01%, 0.1% and 1% of 

similarity from the dataset used. 

To perform the experiments, both databases are divided into two random sets; The 

first one contains 90% of the database objects, and it is used to build the metric 

structures; the remaining 10% is used as a set of query objects. 

As a platform for experimental evaluation, the mentioned metric spaces have been 

used under multicore and GPU environments using the GMS structure based on 

different numbers of pivots and using also the brute force search algorithm. For each 

routine, the application runs 4 times and an average is obtained. The experiments 

generated for each metric space consist of a Cartesian product of the variables 

described below: 

 Index / Structures / Algorithm: Brute Force and pivots-based GMS. 

 Number of Pivots (for GMS): 1, 2, 4, 8, 16, 32, 64, 128, 256, 512 y 1024. 

 Processors: 1 CPU (secuential), 4 CPU (multi-core), 8 CPU (multi-core with 

hyper-threading) and GPU (using GPU global and shared memory). 

To quantify the experiments, a summary of the variables considered and 

experiments realized is shown in Table 3. 
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Gauss Diagrams 5 5 12 3 4 3600 

Other Vectors 3 5 12 3 4 2160 

Dictionaries 10 5 12 4 4 9600 

TOTAL 15360 

Table 1. Summary of  experiments realized. 

Finally, the hardware used corresponds to an Intel® Core™ i7-2600 CPU @ 

3.40GHz 4-core and Hyper-Threading support, 12GB of main memory and two 

EVGA Nvidia cards DDR5 384 CUDA cores and 1 GB of global memory each one. 

The codification of the metric structures and search algorithms has been performed 

using the C language (gcc 4.3.4), executed on Ubuntu Linux 12.04 LTS (Precise 

Pangolin); CUDA SDK v3.2 has been adopted for parallelizing GPU applications, and 

OpenMP library has been used for multi-CPU parallelization. 

2.2. Results 

Next, results of experimental evaluation are detailed. It should be noted that the 

experiments were performed so that it is possible make the following comparisons: 

 

1. Efficiency of different processing options: experiments with codes designed 

for different processing options: 

a. Sequential: using 1 core in its maximum capacity. 

b. Multi-core: using a 4 cores processor at its maximum capacity with 

OpenMP. 

c. Hyper-Threading(TM): using a 4 cores processor with Hyper-

Threading at its maximum capacity with OpenMP. 

d. GPU using its global memory. 

e. GPU using its shared memory. 

2. GMS vs. Brute Force algorithm: first. Experiments using the brute force 

algorithm and GMS with different numbers of pivots (1, 2, 4, 8, 16, 32, 64, 

128, 256, 512and1024) where performed in order to identify the most 

efficient number of pivots in each experiment. 

 

Tests were performed over the different databases specified in the previous 

paragraph. Here is a selection of relevant results that guide the analysis. 

2.2.1. Sequential Processing vs. Parallel Processing 

This first block analysis includes the various processing options (sequential, 

multicore, GPU using its global memory, GPU using its shared memory) on the Brute 



Force algorithm; This allows us to visualize the performance level of processing the 

entire database without using indexes or metric structures. A metric space of vectors 

(histograms with absolute size 112) and words in Spanish dictionary were used as 

case studies, which where adopted initially to show in a general way the performance 

of applications over the different distance functions described herein selection. 

In order to quantify the results, processing times (in seconds) are used as a 

measurement unit. Then, the ratio is calculated between two results A and B, giving 

rise to the latency speed-up. In this first analysis, we can observe a significant 

difference between sequential processing and parallel processing. Upcoming it shows 

the processing times achieved and the corresponding speedup values. 

 

Option Time (s.) SpeedUp 

GPU GPU SM MC SEC 

GPU 647,30 -- 0,09 0,86 5,25 

GPU SM 56,48 11,46 ---- 9,83 60,20 

MC 555,09 1,17 0,10 -- 6,13 

SEC 3400,15 0,19 0,02 0,16 -- 

Table 2. Speedup values on a search of rank 1 in a metric space of words. 

The higher difference is observed with the use of shared memory (SM GPU) 

compared to sequential processing, which results in a speedup of 60.2, 56.2, 54.21 

and 52.89 for ranks 1, 2, 3 and 4 respectively.It should be noted that those results are 

not enough to corroborate the efficiency of GPU processing, so more experiments 

were performed over different metric spaces. The results obtained in experiments on a 

vectors metric space are shown below. 

 

Option Time 
SpeedUp (Range 0.01) 

GPU GPUSM MC SEC 

GPU 144,16 -- 0,97 0,99 3,76 

GPU SM 139,84 1,03 -- 1,02 3,88 

MC 143,22 1,01 0,98 -- 3,79 

SEC 542,26 0,27 0,26 0,26 -- 

Option Time 
SpeedUp (Range 0.1) 

GPU GPUSM MC SEC 

GPU 144,17 -- 0,97 0,99 3,74 

GPU SM 139,77 1,3  1,02 3,88 

MC 143,16 1,01 0,98 -- 3,76 

SEC 538,92 0,27 0,26 0,27 -- 

Option Time 
SpeedUp (Range 1) 

GPU GPUSM MC SEC 

GPU 144,26 -- 0,97 0,99 3,72 

GPU SM 139,82 1,03 -- 1,03 3,83 

MC 143,39 1,01 0,98 -- 3,74 

SEC 535,99 0,27 0,26 0,27 -- 

Table 3. Speedup obtained in the search for a metric space of vectors. 

 As shown, the speedup obtained in shared memory processing compared to 

sequential processing were 3.88, 3.86 and 3.83 for the search ranges 0.01%, 0.1% and 

1%, respectively. In this sense, this second experiment shows more equity in 

processing times compared to the metric space previously used in regard to the 

performance of the various options for parallelism. In the former case, it is possible to 



see speedup values near 11.4 (GPU shared memory vs. GPU global memory) and 9.8 

(GPU shared memory vs. multicore with Hyper-Threading). In the last example, the 

speedup values obtained were respectively of 1.03 / 1.02, 1.03 / 1.02 and 1.03 / 1.03. 

2.2.2. Metric structures vs. Brute force under GPU 

The above analysis shows that parallel processing using the shared memory of the 

GPU has a substantially superior yield to the other techniques used under Brute Force 

algorithm. However, the analysis with metric structures must be made considering the 

costs of processing and storage of such structures in the hierarchy of memory devices, 

so it is necessary to make different assessments as to the size of the database metric 

and respective data structures, and their behavior in different amounts as to pivot and 

thus to structures of different sizes. 

To assess the performance of metric structures under different techniques of 

parallelism, some experiments have been performed using structures with different 

numbers of pivots (1, 2, 4, 8, 16, 32, 64, 128, 256, 512 and 1024 pivots) on metric 

spaces with different properties. The results of experiments show that the search times 

on the GMS have been predominantly better than brute force processing different 

metric spaces using the shared memory of the GPU. 

2.2.3. Impact of search range and the number of pivots on the performance of 

Metric Structures 

The experiments reveal a variation in processing times according to the search range 

applied in routines that use the GMS structures, contrary to the brute force algorithm 

(in which processing times are uniforms for different search ranges). In this sense, it 

has also been possible to confirm that the processing time on metric structures tends 

to increase as the search range increases, as it tends to make more distance 

evaluations extent that the search range is increased. 

In addition, experiments were performed using the GPU's shared memory on 

metric structures with 1, 2, 4, 8, 16, 32, 64, 128, 256, 512 and 1024 pivots, in order to 

visualize the behavior of the structures with different numbers of pivots. Two trends 

were identified: on the one hand, the decrease in performance as the search range is 

increased in structures with high amounts of pivots. Furthermore, the performance of 

structures with few pivots is better as that the search range increases. 

2.2.4. Parallelism on GMS Structures 

The last analysis proposed in this paper aims to evaluate the most efficient method of 

parallelism on generic metric structures in different metric spaces, in order to verify 

the convenience of using GPU metric structures. To do this, experiments on different 

metric spaces under various forms of parallel processing described in this paper 

(OpenMP, GPU GPU global memory and shared memory) and different amounts of 

pivots were made. 



The results revealed two trends in the behavior of structures: first, search times 

with the generic metric structure increases as long as the search ranges increases 

under all parallel environments and any number of pivots. On the other hand, can be 

observed that the performance of shared memory processing with GPU is convenient 

as the search range increases (consequently the number of assessments carried away). 

3. Conclusions and Future Work 

The need to process large volumes of data requires to increase processing capacity 

and to reduce search times. In this context, it is relevant to study parallelization 

algorithms and the distribution of the databases. On the other hand, the increased size 

of the databases and the emergence of new types of data on which there’s no interest 

in performing searches with exact matches create the need to establish new structures 

for similarity search. 

This paper has presented the main features of the so-called metric spaces and the 

generic metric structure used to perform similarity searches in such spaces. It has 

deepened the discussion on those experiments based on the use of generic structures 

based on pivots, compared with linear or sequential processing known as brute force. 

It also has shows results of experiments using different strategies for parallel 

processing, analyzing the search performance in environments with GPU (CUDA) 

and multi-core (OpenMP). 

As future work, it is suggested to discuss the scalability of the use of those 

platforms, as currently proposed experiments on individual computers. Hybrid aims to 

reach solutions to the distribution of metric spaces and their structures, so that it is 

possible to make applications on data volumes in production scale. Finally, another 

line of great interest to be addressed is related to the energy efficiency of various 

devices and technologies for parallel processing of large volumes of data with regard 

to the similarity search of metric spaces. 
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