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Degrading performance of indexing schemes for exact similarity search in high dimensions
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functions getting concentrated. We discuss this observation in the framework of the
phenomenon of concentration of measure on the structures of high dimension and the
Vapnik–Chervonenkis theory of statistical learning.
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1. Introduction

At an intuitive level, at least for a limited class of indexing schemes the geometric and probabilistic origin of the curse
of dimensionality is quite transparent. Let W = (Ω,ρ, X) denote a similarity workload, where ρ is a metric on a domain
Ω and X is a finite subset of Ω (dataset). Let us say we are interested in indexing into W for deterministic, exact range
queries. A traditional “distance-based” indexing scheme, stripped down to the bone, consists of a family of real-valued
functions f i , i ∈ I on Ω , either fully or partially defined, which satisfy the 1-Lipschitz property:

∣∣ f i(x) − f i(y)
∣∣ � ρ(x, y). (1)

(For example, a pivot-based indexing scheme will be using distance functions ρ(pi,−) to the pivots pi ∈ Ω .) Given a
range query (q, ε), where q ∈ Ω and ε > 0, the algorithm chooses recursively a sequence of indices in , where each in+1 is
determined by the values f ik (q), k � n. The functions f i serve to discard those datapoints which cannot possibly answer
the query. Namely, if | f i(q) − f i(x)| � ε, then, by the 1-Lipschitz property of f i , one has ρ(q, x) � ε, and so the point x is
irrelevant and need not be considered (Fig. 1).

After the calculation terminates, the algorithm returns all points which cannot be discarded, and checks each one of
them against the condition ρ(x,q) < ε.

Next come two standard observations about high-dimensional data. The first one, known as the “empty space paradox,”
asserts that the average distance E(εN N ) to the nearest neighbour approaches the average distance E(ρ) between two
datapoints as the dimension d goes to infinity, provided the number of datapoints, n, grows subexponentially in d. Cf. Fig. 2,
where we illustrate the point with a constant number of points (n = 103 and n = 105), and the distances are normalized so
that the characteristic size of the gaussian space (Rn, γ n),
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Fig. 1. The datapoint x can be discarded.
Fig. 2. The normalized average distance to the nearest neighbour in
a dataset of n points randomly drawn from a gaussian distribution in R

d .

Fig. 3. Histogram of distances to a randomly chosen pivot in a dataset X of n = 105 points drawn from a gaussian distribution in R
14. The vertical lines

mark the mean normalized distance 1 ± εNN .

CharSize(X) = Eμ⊗μ

(
ρ(x, y)

)
, (2)

is one.
The second observation is that the histograms of values of common 1-Lipschitz functions on high-dimensional data are

concentrated near their mean (or median) values. This effect is already pronounced in moderate dimensions such as d = 14
in Fig. 3. Here the function is a distance to a randomly chosen pivot p, and assuming the query point q is at a distance ≈ 1
from p, only the points outside of the region marked by vertical bars can be discarded.

The two properties combined imply that as d → ∞, fewer and fewer datapoints can be discarded for an average range
query, and the performance of an indexing scheme degrades rapidly. This mechanism has been discussed repeatedly, e.g.
[8], pp. 35–37, [36,46], p. 487, to mention just a few sources.

To make this idea yield rigorous lower performance bounds, one needs to guarantee first that every histogram of distances
of 1-Lipschitz functions used to build an indexing scheme for a given domain Ω is highly concentrated. In other words, if
F denotes a class of 1-Lipschitz functions from which we can choose the f i , then we want a low uniform upper bound
on the variances of f ∈ F . Results of this type are indeed well-known for a variety of geometric objects and are referred
jointly as the phenomenon of concentration of measure [20,34,29].

Next problem is, how to link the concentration of functions f with regard to the presumed underlying distribution μ on
the domain Ω to concentration with regard to the empirical measure μn supported on the dataset X (this was essentially
a criticism of [41] made in [47])? Here one needs the machinery of statistical learning theory of Vapnik and Chervonenkis
[52,2,14,56], which can guarantee such results provided the class F has low combinatorial complexity (e.g., a finite VC
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Fig. 4. To the concept of the concentration function αΩ(ε).
Fig. 5. Concentration function of the Hamming cube of dimension d = 100
vs Chernoff bound.

dimension). This way, one obtains Ω(n/d lg n) lower bounds for the pivot table expected average performance [57], as well
as superpolynomial in d lower bounds for metric trees [44].

Approximate NN queries [23,39] seem to be in some sense free from the curse of dimensionality. In fact, the concentration
of measure becomes a positive force here, and we will try to explain why, using the example of random projections in
the Hamming cube (the approach of Kushilevitz, Ostrovsky and Rabani [28]), as well as the Euclidean space (the Johnson–
Lindenstrauss lemma [24]).

Getting back to exact search, the Curse of Dimensionality Conjecture [22] calls for a general statement about lower bounds,
which would apply across the entire range of all possible indexing schemes. The conjecture is still open even for the
Hamming cube {0,1}n , and we discuss it briefly.

We conclude the article with a few remarks on the notion of intrinsic dimensionality of data, on a black-box search
model of Krauthgamer and Lee [27], as well as on a spatial approximation algorithm based on Delaunay graphs [36].

2. Concentration

2.1. The concentration of measure phenomenon

Informally, the phenomenon can be stated as follows:

On a typical “high-dimensional” structure Ω , every 1-Lipschitz function f :Ω → [0,1] has small variation.

Usually, however, concentration is being dealt with using a different dispersion parameter. We proceed to precise defini-
tions.

Let a metric space (Ω,ρ) carry a probability measure μ. Such an object is called a metric space with measure. One defines
the concentration function αΩ of Ω by setting αΩ(0) = 1/2 and, for ε > 0,

αΩ(ε) = 1 − inf
A⊆Ω

{
μ(Aε): μ(A) � 1

2

}
.

The value αΩ(ε) gives a uniform upper bound on the measure of the complement to the ε-neighbourhood Aε of every
subset A of measure � 1/2, cf. Fig. 4.

On a typical high-dimensional geometric object Ω the function α(ε) drops off steeply near zero. For regular geometric
objects such as Hamming cubes, Euclidean unit spheres and so on, one can usually derive gaussian upper bounds of the
form

α(ε) � exp
(−Θ

(
ε2d

))
,

where d is the dimension parameter.
For example, the Hamming cube {0,1}d with the normalized Hamming metric and uniform measure satisfies a Chernoff

bound α(ε) � exp(−2ε2d) (obtained by combining Harper’s isoperimetric inequality, see e.g. [16], with the classical Chernoff
bound, cf. [56], 2.2.1). See Fig. 5.
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Fig. 6. Orthogonal projection of a unit Euclidean d-cube and of 1000 random points inside the cube on a random 2-subspace, d = 3 (top left), d = 10 (top
right), d = 100 (bottom left), d = 1000 (bottom right). right). (For interpretation of the references to color in this figure, the reader is referred to the web
version of this article.)

It follows easily that for every real-valued 1-Lipschitz function f on Ω and for each ε > 0 one has

μ
{

x ∈ Ω:
∣∣ f (x) − M f

∣∣ > ε
}

� 2αΩ(ε), (3)

where M f is the median value of f , that is, a (generally non-unique) real number with the property that for a randomly
drawn x ∈ Ω the probabilities of the events [ f (x) � M] and [ f (x) � M] are at least 1/2 each. One can further derive uniform
upper bounds in terms of αΩ on the variances of 1-Lipschitz functions on Ω with values in a bounded interval.

The concentration phenomenon admits the following illustration. Draw 1000 points randomly from a high-dimensional
geometric object such as the unit cube I

d centred at the origin, choose a random orthogonal projection onto a two-
dimensional subspace, and project both the cube and the chosen points on this subspace. The points will concentrate
near the centre, the more so the higher the dimension d is, as seen in Fig. 6 for the values of dimension d = 3, 10, 100 and
1000. The red outline is the two-dimensional projection of the cube.

Another noteworthy consequence of concentration is that the shape of the random projection of the cube is getting ever
more similar to a disk as d → ∞. In fact, for d = 1000 the only visual difference one can spot between a random projection
of a unit cube and that of a unit sphere, is the scale of the two projections: the diameter of a unit d-cube is O (

√
d).

This illustrates an interesting feature of geometry of high dimensions: many high-dimensional objects look essentially
the same to a low-dimensional observer. For instance, a certain precise version of this statement holds true for all convex
bodies, as recently proved by Klartag [26]. For this reason, for an asymptotic study of performance of indexing schemes
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when d → ∞ the choice of a particular family of domains (Euclidean spheres, balls, cubes, Hamming cubes) does not
matter that much.

Among the books treating the concentration phenomenon, [34] is the most reader-friendly, [29] most comprehensive,
and [19] contains a wealth of ideas. See also a survey [33].

2.2. Asymptotic assumptions on the similarity workload

Let us agree on the following four assumptions on the similarity workload:

2.2.1. Domain as a metric space with measure
The metric domain (Ω,ρ) is equipped with a probability measure μ, and datapoints are drawn from Ω in an i.i.d.

fashion following the distribution μ.
(This is the model used in [10], which of course agrees with the traditional statistical approach to data modelling.)

2.2.2. Normalization of the distance
The distance ρ on the domain is normalized so that the characteristic size of Ω is constant:

CharSize(Ω) = Eμ⊗μ(ρ) = O (1).

(Every domain can be renormalized in the above fashion unless the expected distance between the two points is infinite,
which does not appear to be a realistic assumption anyway.)

2.2.3. Growing intrinsic dimension
Ω has “intrinsic dimension d” in the sense that the concentration function of the metric space with measure (Ω,ρ,μ)

admits a gaussian upper bound

αΩ(ε) = exp
(−Ω

(
ε2d

))
.

(Such an approach to intrinsic dimensionality is developed in [42,43].)

2.2.4. Size of a dataset
The number n of datapoints grows faster than any polynomial function in d, but slower than any exponential function

in d:

n = dω(1), d = ω(log n). (4)

(This is a standard assumption in the asymptotic analysis of indexing schemes for similarity search, cf. [22]. An example of
such a rate of growth is n = 2

√
d .)

Note that randomly drawing a single dataset X ⊆ Ω with n points amounts to randomly drawing a single point in the
nth power of the domain, Ωn , equipped with the product probability measure μ⊗n . In order to perform asymptotic analysis
of indexing scheme performance, we will in fact be choosing an infinite sequence of datasets Xd ⊆ Ωd , d = 1,2, . . . . This is
equivalent to drawing a single point x̄ (sample path) in the infinite product

Ω
n1
1 × Ω

d2
2 × · · · × Ω

nd
d × · · · ,

with regard to the corresponding infinite product of probability measures:

X̄ ∼ μ
⊗n1
1 ⊗ μ

⊗d2
2 ⊗ · · · ⊗ μ

⊗nd
d ⊗ · · · .

When talking about confidence, we will mean the product probability in the above infinite product space. Specifically, a state-
ment Q (d, x̄) parametrized by the dimension d and taking as a variable the sample path x̄ occurs with (asymptotically) high
confidence if for every δ > 0 there is D so that

P
[

Q (d, X̄) is true
]
> 1 − δ

whenever d � D .
At the same time, in order to keep the notation simple, we will suppress the dimension index d and talk just of a single

domain Ω and a dataset X ⊆ Ω .

2.3. Empty space paradox

Denote by εNN the nearest neighbour distance function on Ω , given by εNN(ω) = ρ(ω, X).

Theorem 2.1. Under our standing assumptions on the workload, for every ε > 0 one has with asymptotically high confidence that for
all points ω ∈ Ω except for a set of measure exp(−Ω(ε2d))∣∣εNN(ω) − CharSize(Ω)

∣∣ < ε.
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Fig. 7. To the concept of a set A shattered by a class C .

The result applies to the Hamming cube, the Euclidean cube, the Euclidean space with gaussian measure, the Euclidean
ball, etc.

As a byproduct of the technique, one obtains:

Proposition 2.2. Under the same assumptions, for every ε > 0 the pairwise distances between datapoints of X are all in the range
CharSize(Ω) ± ε with asymptotically high confidence.

For constant n = |X | and the case of a Euclidean domain the result was established in [21].
Our proofs can be found in Appendix A.

3. VC theory

3.1. VC dimension

Let C denote a collection of subsets of the domain Ω . The VC dimension is an important measure of combinatorial
complexity of C . A finite set A ⊆ Ω is shattered by C (Fig. 7) if every subset B ⊆ A can be “carved out” of A with the help
of a suitable element C of C:

B = A ∩ C .

The VC dimension of C , denoted VC(C), is the supremum of cardinalities of all finite subsets of the domain which are
shattered by C . Here are some classical examples.

Family of sets VC dimension

Intervals in R 2
Half-spaces in R

d d + 1
Euclidean balls in R

d d + 1
Parallelepipeds in R

d 2d + 2
Convex polygons in R

d ∞
Any family with n sets � lg2 n
Hamming balls in {0,1}d � d + lg2 d

If VC(C) = c, VC(D) = d:

{Ω \ C : C ∈ C} c
C ∪ D � c + d + 1
k-fold intersections of members of C � 2k lg(ek)c

Proofs can be found e.g. in [56], Ch. 4.
Estimating the VC dimension of a particular family of sets is often a non-trivial task. For example, the value of this

parameter does not seem to be known for the collection of all cubes in R
d with sides parallel to the coordinate hyperplanes.

More generally, it is tempting to conjecture that the VC dimension of the family of all balls (either open or closed) in a
Banach space of finite dimension d equals d + 1, but the author is unaware of any results beyond the Euclidean case.

3.2. Uniform convergence of empirical measures

Recall that the Borel sigma-algebra of subsets of a separable metric space Ω is the smallest family closed under count-
able intersections and complements and containing all open balls. Elements of the Borel sigma-algebra are called simply
Borel subsets. We will restrict our attention to those families C whose elements are Borel subsets of Ω . This assumption
guarantees that the value μ(C) is well-defined for every probability measure μ on Ω .
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The empirical measure of C ∈ C with regard to a finite sample X = {x1, . . . , xn} is just the normalized counting measure

μn(C) = 1

n

∣∣{i: xi ∈ C}∣∣.
The VC dimension of C is finite if and only if, with high confidence, the empirical measures of every C ∈ C converge
uniformly to the true value μ(C) as the sample size n goes to infinity, no matter what the underlying measure μ is.

Here is a more exact formulation. A class C has the property of uniform convergence of empirical measures, or is a uniform
Glivenko–Cantelli class, if there is a function s(δ, ε) (sample complexity of the class) so that, given a desired precision value
ε > 0 and a risk level δ > 0, whenever n � s(δ, ε), one has

sup
μ∈P (Ω)

P
{

sup
C∈C

∣∣μ(C) − μn(C)
∣∣ � ε

}
< δ.

Here P (Ω) denotes the family of all probability measures on Ω . We quote the following as stated in [56], Theorem 7.8.

Theorem 3.1 (Uniform Glivenko–Cantelli theorem). A concept class C is uniform Glivenko–Cantelli if and only if d = VC(C) < ∞, in
which case

s(δ, ε) � max

{
8d

ε
lg

8e

ε
,

4

ε
lg

2

δ

}
.

One of the components of the proof is the concentration of measure in the Hamming cube {0,1}n .
Let us remark that similar results can be stated and proved for function classes, that is, collections F of functions from

the domain Ω to the interval [0,1]. The role of VC dimension is taken over by other combinatorial parameters, such as the
fat shattering dimension. We will not enter into details.

Among a great selection of books treating VC theory, let us mention encyclopaedic sources [56] and [14], a classical
monograph [52], and a lighter, but very well-written [2].

4. The curse of dimensionality

4.1. Pivot tables

4.1.1. Reduction and access overhead
Let (Ω,ρ, X) be a similarity workload, Υ a metric space, and f :Ω → Υ a 1-Lipschitz function. If queries in Υ are

easier to process than in Ω , then it makes sense, given a range query (q, ε) in (Ω, X), to run an ( f (q), ε) range query in
(Υ, f (X)), retrieving all datapoints x with f (x) within the distance of ε of f (q), and then check them against the condition
ρΩ(q, x) < ε. The 1-Lipschitz property of f guarantees that no true hits will be missed.

In this way, the function f can be viewed as a projective reduction of the exact similarity search problem to the new
workload (Υ, f (X)). This viewpoint is developed in some detail e.g. in [45]. The access overhead of the reduction f is
defined as

acc f (q) = ∣∣X ∩ f −1(Bε

(
f (q)

))∣∣ − ∣∣X ∩ Bε(q)
∣∣.

This simple and well-known idea on its own can be surprisingly efficient, cf. [49].

4.1.2. Pivot-based reduction to �∞(k)

Every finite collection f1, f2, . . . , fk of 1-Lipschitz functions on (Ω,ρ) defines a 1-Lipschitz mapping f = �k
i=1 f i from

Ω to �∞(k) via the formula

f (x) = (
f1(x), f2(x), . . . , fk(x)

)
.

Here �∞(k) is the vector space R
k equipped with the norm ‖x‖∞ = maxk

i=1 |xi |. If the f i are distance functions from pivot
points pi ∈ Ω , the resulting mapping f is of the form

f (x) = (
d(x, p1), . . . ,d(x, pk)

) ∈ �∞(k). (5)

In [55], it was suggested to use a reduction of this form in case where the distance computations in Ω are so expensive
that even a simple sequential scan of the image f (X) in �∞(m) is computationally cheaper. This idea was analyzed for more
general similarity measures than metrics in [15]. By combining it with other access methods on the space �∞(m), further
new indexing methods have been developed, see e.g. [7].

An m-NN similarity query is processed in (Ω,d, X) in time

k + � + (
acc f (q) + m

)
.
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Fig. 8. An intersection of spherical shells.

Here the first term stands for the calculation of k distances from a query point q to the pivots and � is the processing
time of a rectangular query in �∞(k), while the latter expression lists the number of distance computations in Ω needed to
separate false hits from k true positives. A classical paper on optimizing the pivot selection is [5].

4.1.3. Lower query time bounds for pivot tables
Our next result (a slightly corrected version of the main theorem in [57]) is valid not only for the Hamming cube which

is a testbed for asymptotic analysis of performance of indexing schemes, but also for the Euclidean space R
d with the

gaussian measure, the cube [0,1]d , and so forth.

Theorem 4.1. In addition to the assumptions of Section 2.2, suppose also that the VC dimension of the family of all balls in Ω is O (d).
Any pivot table with k = o(n/d log n) pivots will return an expected average number of Ω(n) datapoints. Consequently, the average
total complexity of the performance of any pivot table for the resulting workload is Ω(n/d log n).

Proof. Assume the number of pivots k is o(n/d log n). Let εM denote the median value of the function εNN , so that for at
least half query points q the distance to the NN in X is � εM . For each pivot pi , i = 1,2, . . . ,k, denote by ρM

i the median
value of the distance function ρ(pi,−). Because of concentration, the measure of the spherical shell

Si = {
q: ρM

i − εM/2 < ρ(pi,q) < ρM
i + εM/2

}
is 1 − exp(−Ω(ε2

Md)), and the complement to the intersection, S = ⋂
i Si , of all k shells has measure

o(n/d)exp
(−Ω

(
ε2

Md
)) = exp

(−Ω
(
ε2

Md
))

,

since n is subexponential in d. Thus, among all k-fold intersections of spherical shells (Fig. 8), we have found a giant one,
whose μ-measure is nearly one.

To assure that this intersection contains an accordingly high proportion of datapoints, consult the table in Section 3.1 to
deduce that the family of all k-fold intersections of spherical shells in Ω has VC dimension not exceeding 2k lg(ek)O (d) =
o(n). By Theorem 3.1, the empirical measure μn(S) approaches μ(S) and therefore 1 with high confidence as d → ∞.

The measure of the set Q of query points q ∈ S whose distance to the nearest neighbour in X is greater than or equal to
εM is at least 1/2 − exp(−O (d)ε2). For every non-empty range query (q, ε) where q ∈ Q , all datapoints belonging to S , that
is, most datapoints of X , have to be returned. This gives an expected average total complexity Ω(n) under our assumption
on the number of pivots. �

Notice that we allow the pivots pi to be arbitrary points of the domain Ω . If we require that pivots be chosen from
the dataset X , then the set S in the above proof will with high confidence contain n − k datapoints by Theorem 2.1 and
Proposition 2.2, and we obtain (without using VC theory):

Corollary 4.2. Under the assumptions of Section 2.2, if all pivots pi belong to the dataset X , then the expected total complexity of the
performance of the resulting pivot table is n(1 − o(n)).

4.1.4. A remark on results of [15]
The above lower bounds agree with an exponential in d upper bound of k + cd derived in the influential paper [15],

Theorem 3 within a similar model, with no restriction on a number n of datapoints, and with d a dimension parameter
defined by a certain measure distribution density condition verified, e.g. by the Hamming cube {0,1}d or the Euclidean
sphere S

d . Here c is a constant depending on Ω , the smallest distortion parameter of a 1-Lipschitz embedding f :Ω →
�∞(k):

∀x, y ∈ X,
∥∥ f (x) − f (y)

∥∥ � ρ(x, y) � c
∥∥ f (x) − f (y)

∥∥ .
∞ ∞
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However, the usefulness of the result is limited because of an imprecise claim ([15], Example 1) that for a bounded subset
X of �2(d) there always exists a 1-Lipschitz function f : X → �∞(d + 2) having distortion c � 2. In fact, an optimal constant
here is on the order Ω(

√
d) (see Appendix B). As a result, the query performance estimate for the Euclidean domains made

in Remark after the main Theorem 3, [15], becomes superexponential in d and thus meaningless.
This misconception has led to some further confusion, cf. remarks made in [5] (p. 2358, end of first paragraph on the

r.h.s., and at the beginning of Section 5).

4.2. Hierarchical metric tree schemes

4.2.1. Metric trees
For a finite rooted tree T we denote by L(T ) the set of leaves of T and I(T ) the set of inner nodes. The symbol ∗ will

denote the root node of T .
Let F be a class of 1-Lipschitz functions on Ω (possibly partially defined). A metric tree (of type F ) for a workload

(Ω,ρ, X) is a hierarchical indexing structure consisting of

• a finite binary rooted tree T ,
• an assignment of a function ft ∈ F (a pruning, or decision function) to every inner node t ∈ I(T ), and
• a collection of subsets Bt ⊆ Ω , t ∈ L(T ) (bins), covering the dataset: X ⊆ ⋃

t∈L(T ) Bt .

Since we assume that the tree T is binary, it can be identified with a sub-tree of the prefix tree, that is, a subset of
binary strings ε1ε2 . . . εk , 0 � k � n, where εi = ±1 for all i.

At each inner node t = ε1ε2 . . . εl the value of the pruning function ft at the query center q is evaluated. The condition
ft(q) > ε guarantees that the child node t(−1) = ε1ε2 . . . εl(−1) need not be visited, because all elements x of the bins
indexed with the descendants of t(−1) are at a distance > ε from q. Indeed, assuming x ∈ Bε(q), one has

∣∣ ft(x) − f1(q)
∣∣ � d(x,q) � ε.

Similarly, if ft(q) < −ε, then the node t1 = ε1ε2 . . . εk1 can be pruned, because no bin labelled with descendants of t1 can
possibly contain a point within the range ε from q.

However, if ft(q) ∈ [−ε, ε], then no pruning is possible and both children nodes of t have to be visited. The search
branches out. In the presence of concentration, the amount of branching is considerable, and results in dimensionality
curse.

The M-tree [9] is by now a classical example of a metric tree. However, metric tree-type indexing schemes are very
numerous, cf. Sections 2.1–2.4 in [58] or Section 4.5 in [46].

4.2.2. Lower bounds for metric trees
For a function f and a real number t , denote 1 f �1 = {x ∈ dom( f ): f (x) � t}.

Theorem 4.3. In addition to the assumptions of Section 2.2, let F be a class of 1-Lipschitz functions on the domain Ω such that the VC
dimension of the family of sets 1 f �t , f ∈ F , t ∈ R, is poly(d). Then the expected average performance of every metric tree indexing
structure of type F is superpolynomial in d.

That the above combinatorial assumption on the class F is sensible, follows from a theorem of Goldberg and Jerrum [18].
Consider a parametrized class

F = {
x �→ f (θ, x): θ ∈ R

s}
for some {0,1}-valued function f . Suppose that, for each input x ∈ R

s , there is an algorithm that computes f (θ, x), and this
computation takes no more than t operations of the following types:

• the arithmetic operations +, −, × and / on real numbers,
• jumps conditioned on >, �, <, �, =, and �= comparisons of real numbers, and
• output 0 or 1.

Then VC(F ) � 4s(t + 2).
Essentially, the above result states that a class of binary functions that can be computed in polynomial time taking a

parameter value of polynomial length will have a polynomial VC dimension.

On the proof of Theorem 4.3. (For details, see [44].) Suppose the conclusion is false, and fix a particular poly(d) rate, f (d),
bounding from above the performance of a metric tree on any sample path. As the total content of bins Bt indexed with
strings t of length exceeding the rate f (d) has to be asymptotically negligible, we can assume without loss in generality
that the indexing tree has depth f (d).
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Without loss in generality every bin can be replaced with an intersection of a family of sets of the form 1 f �t , f ∈ F ,
and their complements. This provides a poly(d) upper bound on the VC dimension on the family of all possible bins.

With high confidence, a bin of a large measure will contain many data points, contradicting the poly(d) performance
bound. This leads to conclude that measures of bins cannot be too skewed. Now concentration of measure is used to prove
that at least poly(d) bins Bt have size so large that the εM -neighbourhood of Bt has almost full measure. One deduces
further that query centres q whose εNN-neighbourhood meets at least dω(1) bins have measure � 1/2 − o(1). Processing a
nearest neighbour query with such a centre q requires accessing all of these bins, let even to verify that some of them are
empty. This leads to a contradiction with the assumed uniform performance bound on the algorithm. �
4.3. The curse of dimensionality conjecture

4.3.1. The problem
Of course the above are just particular results only applicable to specific indexing schemes. If one wants to validate the

curse of dimensionality once and for all, here is an interesting open problem.

Conjecture 4.4. (Cf. [22].) Let X be a dataset with n points in the Hamming cube {0,1}d. Suppose d = no(1) and d = ω(log n). Then
any data structure for exact nearest neighbour search in X, with dO (1) query time, must use nω(1) space.

The data structure and algorithm are understood in the sense of the cell probe model of computation (cf. [35,4]).

4.3.2. Cell probe model
In the context of similarity search, the model can be described as follows. An abstract indexing structure for a domain Ω

consists of

• a collection of cells Ci , indexed with a set I ,
• a dictionary T = W ∗ over an alphabet W = {0,1}b , viewed as a rooted prefix tree,
• a computable mapping t �→ i(t) from T to I (cell selector), and
• a computable function f = ft(σ ;q) (either partially or fully) defined on T × {0,1}b × Ω and taking values in W .

For a t ∈ T , one can think of each ft as a function defined on a subset of Ω and taking a b-bit string σ as a parameter,
except if t = ∗ is the root. A value ft(σ ;q) is a child s of the node t .

For every i, the cell Ci can hold a b-bit string. Sometimes b is regarded as constant, but often it is assumed that
b = Θ(lg n), so that a cell corresponding to a leaf node can store a pointer to a datapoint x ∈ X . Occasionally the nearest
neighbour problem is replaced with a weaker decision version (known as near neighbour problem), whereby a range parameter
ε0 > 0 is fixed and the algorithm is expected to tell whether there is an x ∈ X at a distance < ε0 from the query point. In
such a case, a leaf node cell Ci will hold a single bit (a “yes” or “no” answer).

Building the data structure at the preprocessing stage, given a dataset X , consists in storing in every node cell a b-bit
string.

A memory image of the indexing structure Ci , i ∈ I , is created when the algorithm is initialized. Given a query point
q ∈ Ω , the prefix tree T = W ∗ is traversed down to the leaf level beginning with the root. At the inner node t , the content σ
of the cell Ci(t) is read and passed on to the function ft as a parameter. The computed value ft(σ ;q) = s ∈ W = {0,1}b

indicates a child of t to follow at the next step. When a leaf l is reached, the algorithm halts and returns the contents
of Ci(l) . The query time is the length of the branch traversed, or equivalently the number of cell probes during the execution
of the algorithm. The space requirement of the model is the total number of cells, |I|.

The cell probe model is very liberal, as the cost of computing the values of f is disregarded. For this reason, any lower
bound obtained under the cell probe will likely hold under any other model of computation.

4.3.3. Current state of the problem
The best lower bound currently known is O (d/ log sd

n ), where s is the number of cells used by the data structure [40].
In particular, this implies the earlier bound Ω(d/ log n) for polynomial space data structures [3], as well as the bound
Ω(d/ log d) for near linear space (namely n logO (1) n).

5. Approximate NN search and dimensionality reduction

Approximate nearest neighbour search [39] is often said to be free from the curse of dimensionality, and the reason is
that the (dimensionality) reduction maps f used in indexing are no longer 1-Lipschitz. Rather, they are what may be called
“probably approximately 1-Lipschitz”, and sometimes only on a certain distance scale. Such maps no longer exhibit a strong
concentration around their means. The price to pay is that we may lose some relevant datapoints, as some distances are
typically getting distorted, and so such maps cannot be used for exact NN search.
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Fig. 9. Histogram of distortions of all pairwise distances in a random
dataset of n = 3000 points in the d = 500 Hamming cube under a pro-
jection to a Hamming cube on randomly chosen k = 25 bits.

Fig. 10. The expected distortion of one-dimensional projection of
the d-dimensional sphere S

d−1 over all pairs of points.

5.1. Random projections in the Hamming cube

Think of the Hamming cube {0,1}d as the set of all binary functions in the space �1(d) = L1([d]), where [d] = {1,2, . . . ,d}
supports a uniform measure. In other words, we normalize the Hamming distance d(x, y) = �{i: xi �= yi} by multiplying it
by 1/d. Of course such a normalization has no effect on similarity search. If the dataset X ⊆ {0,1}d contains n points, then
the VC dimension of X , viewed as a concept class on {1,2, . . . ,d}, does not exceed lg2 n. According to the uniform Glivenko–
Cantelli Theorem 3.1, if O (ε−2 lg2 n) coordinates of the Hamming cube are chosen at random, then with high confidence the
restriction mapping from X to the Hamming cube {0,1}O (ε−2 lg2 n) (under its own normalized Hamming distance) preserves
the pairwise distances to within ±ε. Cf. Fig. 9.

The error of ±ε is additive rather than multiplicative, so the random sampling of the coordinates is only appropriate for
ANN search in the range on the order of d/2. The construction has to be generalized for all possible ranges � = 1,2, . . . ,d.
Such a generalization was developed in [28].

Projecting on a randomly sampled subset of k coordinates of the Hamming cube essentially amounts to a linear trans-
formation x �→ xA, where A is a d × k matrix with i.i.d. Bernoulli entries assuming values 1 and 0 with probabilities 1/d
and 1 − 1/d, respectively. (The operations are carried mod 2.) One of the key observations of [28] — in the form given to it
in [53], 7.2 — is that if the probability 1/d is replaced with 1/�, then a random linear transformation x �→ xA mod 2, under
a suitable normalization, preserves distances on the scale �/2, � = 1,2, . . . ,d, to within an additive error �ε, and on a larger
scale — away from it. Since the new cube only contains 2O (ε−2 lg2 n) points, a hash table storing nearest neighbours, together
with the reduction map f , produces an indexing scheme for �-range search taking space polynomial in n and answering
(1 + ε)-approximate queries in time O (ε−2 lg2 n).

Another discovery of [28] is that if on every scale � one employs a sufficiently large series of independent projections
onto k-cubes, then with high confidence one can assure that every ANN query — as opposed to most ANN queries — will be
answered correctly. Finally, a separate indexing scheme is constructed for every range �. The overall space requirement is
still polynomial in n, and the running time of the algorithm is O (d polylog(dn)).

5.2. Random projections in the Euclidean space

Let S
d−1 denote the Euclidean sphere of unit radius in the space R

d . The projection π1 on the first coordinate is a
1-Lipschitz function. For all pairs of points x, y ∈ S

d−1, one has |π1(x) − π1(y)| � ‖x − y‖, and for exactly one pair of
antipodal points the equality is achieved. Now let x, y ∈ S

d−1 be drawn at random. What is the expected value of the
distortion of distances |π1(x) − π1(y)|/‖x − y‖?

Fig. 10 shows that for a vast majority of pairs of points, the projection distorts distances by the factor Θ(1/
√

d). A ge-
ometric explanation, at least at an intuitive level, is simple. Two randomly chosen points on the high-dimensional sphere,
because of concentration of measure, are at a distance ≈ √

2 from each other. At the same time, half of the points of the
sphere project on the interval of length O (1/

√
d), and so are contained in the equatorial region (Fig. 11).

It follows that the expected absolute value of the norm of a projection of a given point x in a random direction is of the
order Θ(1/

√
d). Now let X = {x1, . . . , xn} be a finite subset of points of the sphere. Denote by Y the set of all vectors of the

form xi − x j whose length is normalized to one. Each y ∈ Y can be identified with the function ỹ : z �→ |〈y, z〉| on the unit
sphere. If we now think of S

d as the domain (consisting of one-dimensional projections), then Y plays the role of a finite
function class. Just like for finite concept classes, the combinatorial dimension of Y is of the order O (log n), and so, by VC
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Fig. 11. To the geometry of random projections.

Fig. 12. Empirical density histogram of distances from a pivot having
the highest found value of dissipation for the NASA dataset. Vertical
lines mark the mean ± tolerance range ε = 0.275. The ε-dissipation
(0.747) is the area outside of extreme lines.

theory, the empirical mean on a random sample of Θ(ε−1 logn) directions will estimate the expectations of all ỹ, y ∈ Y to
within a factor of ε with high confidence. A small number of randomly chosen directions are likely to be nearly pairwise
orthogonal because of concentration, so we can instead choose an orthogonal projection to a randomly chosen space of
dimension Θ(ε−1 lg n). Since the projection is a linear map, we get the same estimate, but with a multiplicative error ε, for
all pairwise distances between the points of X . It remains to work out the meaning of the empirical mean in the above
setting in order to obtain the following famous result.

Theorem 5.1 (Johnson–Lindenstrauss lemma). (See [24].) Let ε ∈ (0,1/2) be a real number, and X = {x1, x2, . . . , xn} be a set of
n points in R

n. Let k be an integer with k � Cε−2 log n, where C is a sufficiently large absolute constant. Then there is a mapping
f : R

n → R
k such that

(1 − ε)
∥∥ f (xi) − f (x j)

∥∥ � ‖xi − x j‖ � (1 + ε)
∥∥ f (xi) − f (x j)

∥∥
for all i, j = 1,2, . . . ,n. Moreover, as f , one can with high confidence choose a suitably renormalized random projection from R

n to a
k-dimensional Euclidean subspace.

An even simpler proof using concentration can be found in [30], Section 15.2, and an up-to-date survey of the lemma,
in [31].

The normalized projection is not quite as good as a genuine 1-Lipschitz map, because the distortion of a distance can
exceed one, and on rare occasions very considerably. Yet, as a reduction mapping for approximate NN search, the projection
map is quite OK. And its histogram is concentrated no more. This explains the efficiency of the random projection method for
approximate NN search. Combined with a suitable indexing scheme in a lower-dimensional space R

k , or rather a collection
of such schemes, the random projection method leads to an efficient indexing scheme for a (1 + ε)-approximate NN search
(Indyk and Motwani [23]).

The articles [28] and [23] have appeared independently and at about the same time, and afterwards the dimensionality
reduction methods have been shown [1] to be near optimal in the cell probe model.

6. Concluding remarks

6.1. Intrinsic dimensionality

Merits of asymptotic analysis of indexing algorithms using artificial datasets sampled from theoretical high-dimensional
distributions should be clear from [37]. At the same time, it is an often held belief that the real data does not have very
high intrinsic dimension. This corresponds to the existence of 1-Lipschitz functions that are highly dissipating. Fig. 12 shows
the distance distribution to the points of the SISAP benchmark dataset of NASA images X ⊆ �2(20) of 40,149 vectors in a 20-
dimensional Euclidean space [5,48] from a highly dissipating pivot, selected from a gaussian cloud around X with standard
deviation on the order of the tolerance range ε = 0.275 retrieving on average 0.1% of data. This has to be compared to
Fig. 3.

Of a great variety of approaches to intrinsic dimension [12], at least two specifically measure the amount of concentration
in data. The first one is the intrinsic dimension by Chávez et al. [8]
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dimdist(X) = 1

2var(d)
. (6)

The second is the concentration dimension, studied within an axiomatic approach of [42,43]:

dimα(X) = 1

[2 ∫ 1
0 αX (ε)dε]2

. (7)

(In both cases we assume that CharSize(X) = 1.) The value (7) is convenient for asymptotic analysis in the spirit of this
paper, but is nearly impossible to estimate for a given dataset. On the other hand, (6) is readily calculated by sampling (e.g.
dimdist(X) = 5.18 for NASA images) and forms a good statistical estimator for the dimension of the hypothetical underlying
measure μ in the most (only?) interesting case where metric balls have low VC dimension. The shortcoming of (6) is
that the parameter estimates the concentration/dissipation behaviour of a typical pivot distance function, while it is a few
most dissipating pivots that really matter for indexing. One may envisage the emergence of further concepts of intrinsic
dimension in the same spirit, such as the local dimension of Ollivier [38], Definition 3.

6.2. Black box search model and Urysohn space

The black box model of similarity search was studied by Krauthgamer and Lee [27]. Given a metric space (instance) (X,d),
a query is a one-point metric space extension X ∪ {q}, where the distances d(q, x), x ∈ X , are accessible via the distance
oracle. Each d(q, x) can be evaluated in constant (unit) time. A preprocessing phase is allowed, under the condition that
an indexing scheme occupies poly(n) space. The efficiency of an algorithm for (exact or approximate) similarity search is
estimated as a number of calls to the distance oracle necessary to answer a query.

This is a “black-box model” in the sense that, formally speaking, there is no obvious domain (though we will see shortly
that the domain is a well-defined separable metric case, and the setting is, in fact, classical). A remarkable feature of the
model is that the problem of characterizing workloads admitting approximate NN queries in terms of an intrinsic dimension
parameter receives a complete answer.

Recall that the Assouad (or doubling) dimension of a metric space (X,d) is the minimum value ρ � 0 such that every set
A in X can be covered by 2ρ balls of half the diameter of A. (The diameter of a set A is the supremum of d(x, y), x, y ∈ A.)
Denote this parameter by dimdbl(X).

Theorem 6.1. (See Krauthgamer and Lee [27].) A metric space (X,d) admits an algorithm requiring poly(n) space and taking
polylog(n) time to answer a (1 + ε)-approximate nearest neighbour query, where ε < 2/5, if and only if

dimdbl(X,d) = O (log logn).

Here we will show that, on the contrary, an exact NN search in this context exhibits the curse of dimensionality even if
the metric space (X,d) is contained in the unit interval [0,1] with the usual distance. With this purpose, we first convert
the black box model into a conventional setting of searching in a metric domain.

The universal Urysohn metric space, U, [19,32] is a complete separable metric space uniquely defined by the one-point
extension property: suppose X is a finite subset of U and q a one-point metric space extension of X . Then U contains a point
q′ so that the distances from q and from q′ to any point x ∈ X are the same. See Fig. 13.

An equivalent definition is that if X ⊆ U is finite and f : X → R satisfies

∣∣ f (x) − f (y)
∣∣ � dX (x, y) � f (x) + f (y) (8)

for all x, y ∈ X , then there is q ∈ U with f (x) = d(q, x) for all x ∈ X . (The functions satisfying (8) are called Katětov functions.)
This remarkable object has recently received plenty of attention in metric geometry. It is a random, or generic, metric

space, in a sense that by equipping the integers with a randomly chosen metric ρ and taking a completion, one obtains U

almost surely [54]. The space U contains an isometric copy of every separable metric space Ω . For this reason, one can use
U as a “universal domain,” and the black-box model can be restated as a classical similarity search problem in the domain
Ω = U.

Theorem 6.2. Let X be a finite metric space. Denote n = |X |. Then any deterministic algorithm for exact similarity search in X within
the black box model will take the worst case time n.

The result is true for simple information-theoretic reasons. We will produce for every k < n a query q′′ with a uniquely
defined nearest neighbour in X which cannot be answered in time k.

Without loss in generality, we can assume that diam(X) = 1. Let initially q be a query having the property that d(q, x) = 1
for all x ∈ X . Suppose that the algorithm has made k < n calls to the distance oracle. Denote x1, x2, . . . , xk ∈ X the points
whose distance to q has been accessed. Since d(q, xi) = 1 for all i � k, the algorithm clearly cannot halt at this stage. Let Q
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Fig. 13. One-point extension property. Fig. 14. NN search using Delaunay graph.

be the set of all q′ ∈ U with 1 = d(q′, xi) for all i = 1,2, . . . ,k. Since the algorithm is deterministic, we can replace q with
any q′ ∈ Q , and the sequence of executed calls to the oracle up until the step k will be the same.

Now denote Y = {x1, x2, . . . , xk} and fix an x0 ∈ X \ Y . The function

f (x) = max
{

1 − d(x, Y ),d(x0, Y ) − d(x, x0)
}

is Katětov, and thus it is the distance function from some q′′ . Clearly, q′′ ∈ Q , and q′′ admits a unique nearest neighbour in
X , namely x0. Thus, the search cannot be concluded in k steps even if it started with the well-defined query q′′ .

If one requires the queries to follow the same underlying distribution as datapoints, the problem becomes more subtle,
and we do not know the answer.

6.3. Indexing via Delaunay graph

Here is an example of an indexing scheme for exact similarity search which is still “distance-based” but of a rather
different type from either pivots or metric trees.

The Voronoi cell V (x) of a datapoint x ∈ X in a metric domain Ω consists of all points q ∈ Ω having x as the nearest
neighbour. The Delaunay graph has X as the set of vertices, with x, y being adjacent if their Voronoi cells intersect. Suppose
the domain has the property that every two points x, y ∈ Ω can be joined by a shortest geodesic path, not necessarily
unique. (All the domains previously considered in this article are such, including even the Urysohn space.) Then for any
q ∈ Ω and x ∈ X , either x is the nearest neighbour to q, or else one of the datapoints y Delaunay-adjacent to x is strictly
closer to q than x is. (Proof: start moving along a shortest geodesic from x towards q, cf. Fig. 14, and use the triangle
inequality.)

This observation turns the Delaunay graph of X in Ω into an indexing scheme for exact nearest neighbour search. Denote
Sx the list of points adjacent to each x ∈ X . Given a query q, start with an arbitrary x0 ∈ X , and find

x1 = arg min
y∈Sx

d(q, y).

If x1 �= x0, move to x1 and repeat the procedure. Once xi+1 = xi , the algorithm halts and returns xi . This algorithm, already
mentioned in [11], was studied for general metric spaces by Navarro [36]. See also [46], 4.1.6.

In order for the algorithm to be efficient, the average vertex degree of the Delaunay graph has to be small. Navarro had
observed ([36], Theorem 1) that this is not the case in general metric spaces. Specifically, he proved that for every two
elements a,b ∈ X there exists a finite metric space Y = Ya,b containing X as a subspace in which a,b ∈ X are connected in
the Delaunay graph of X . The result by Navarro translates immediately into:

Theorem 6.3. Let X be a finite metric subspace of the universal Urysohn space U. Then every two elements a,b ∈ X are adjacent in
the Delaunay graph of X in U.

In fact, the same remains true in less exotic situations, as one can deduce from Proposition 2.2 that if Ω be either R
n ,

or the sphere S
n , or the Hamming cube, then under the assumptions of Section 2.2 the Delaunay graph of X is, with high

confidence, a complete graph on n vertices.
Thus, the indexing scheme in question still suffers from the curse of dimensionality because of concentration of measure

considerations, but the argument seems to be of a different nature from that either for pivots or for trees. What would a
common proof for all three types of schemes look like? This highlights the difficulty of obtaining in a uniform way lower
bounds for all possible “distance-based” indexing schemes (after they are formalized in a suitable way), not to mention an
even more general setting of the cell probe model for all possible indexing schemes.

This having said, for real data the complexity of the Delaunay graph is lower than in an artificial asymptotic setting, and
Voronoi diagrams are being successfully used for data mining algorithms in high dimensions, cf. [50].

In fact, it would be interesting to investigate the performance of the spatial approximation algorithm in hyperbolic metric
spaces. Recall that a metric space X in which every two points x, y can be joined by a geodesic segment [x, y] is hyperbolic
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Fig. 15. A δ-thin geodesic triangle.

(in the sense of Rips) [51] if there exists a δ > 0 so that every geodesic triangle is δ-thin: each side [x, y] is contained in
the δ-neighbourhood of the two other sides, [x, z] and [y, z] (Fig. 15).

Alain Connes has conjectured in [6], pp. 138–141 that a long-term human memory is organized as a hyperbolic simplicial
complex, where a search is performed in a manner similar to the above.

Appendix A. Proof of the empty space paradox (Theorem 2.1 and Proposition 2.2)

Without loss in generality, normalize the observable diameter of Ω to one. Let ω ∈ Ω . The distance function ρ(ω,−)

is 1-Lipschitz and so concentrates around its median value, R(ω). The resulting function R :Ω → R, ω �→ R(ω) is also 1-
Lipschitz, and concentrates around its median, R M . It is easy to check that under our assumptions, the difference between
the mean and the median of every 1-Lipschitz function f on Ω converges to zero as O (

√
d) (uniformly in f ). Thus, without

loss in generality, we can assume that, with high confidence, RM → 1 as d → ∞. Notice that the above argument concerns
the domain and not a particular dataset.

To prove Proposition 2.2, fix ε > 0 and sample an instance of data, X . With confidence 1 − n exp(−O (d)ε2), one has
|R(x) − 1| < ε/2 for all x ∈ X . Moreover, since the datapoints are sampled in an i.i.d. fashion, by the union bound one has
with confidence 1 − n2 exp(−O (d)ε2) that |ρ(x, y) − R(x)| < ε/2 for every pair x, y ∈ X . Since n = |X | is subexponential
in d, the statement follows.

To prove Theorem 2.1, again fix ε > 0. Denote εM the median value of the function εNN . Suppose lim infd→∞ εM < 1.
Proceed to a subsequence of domains and find γ > 0 with εM � RM − γ for all d. The probability that R(ω) deviates
from RM by more than γ /2 is exponentially small in d. Since n = |X | only grows subexponentially in d, with confidence
1 − exp(−O (ε2d)) one has for every x ∈ X :

R(x) − εM � γ

2
.

Now we use a technical observation from [20]: if A ⊆ Ω is such that μ(A) > αΩ(γ ) for some γ > 0, then μ(Aγ ) > 1/2. It
follows that

μ
(

BεM (x)
)
� α(γ /2) = exp

(−O
(
ε2d

))
,

and therefore

μ(XεM ) � n exp
(−O

(
ε2d

)) = exp
(−O

(
ε2d

))
,

which contradicts the definition of εM . This implies: lim infd→∞ εM � 1.
To establish the converse inequality lim supd→∞ εM � 1, recall that a ball of radius R(ω) centred at ω has measure

� 1/2, and so we have an obvious estimate εM � minx∈X R(x). The rest follows from concentration of the function R around
one.

Appendix B. Distortion of Lipschitz embeddings �2(d) ↪→ �∞(d + k)

Lemma B.1. Fix k. Let c > 0 be a constant having the property that for every d and each bounded subset X of �2(d) there exists a
1-Lipschitz function f : X → �∞(d + k) having distortion c: for all x, y ∈ X,

∥∥ f (x) − f (y)
∥∥∞ � ‖x − y‖2 � c

∥∥ f (x) − f (y)
∥∥∞. (B.1)

Then c = Ω(
√

d + k/
√

k), that is, Ω(
√

d) with a constant depending on k.

The proof consists of a series of statements.
1. There exists a 1-Lipschitz function f :�2(d) → �∞(d + k) with the property (B.1).
For every n ∈ N, choose a function fn from the closed n-ball Bn(0) in �2(d) to the n-ball in �∞(d + k) with distor-

tion c. The Banach space ultrapowers of both participating spaces formed with regard to a non-principal ultrafilter on the
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integers (see e.g. p. 55 in [25]) are isometric, respectively, to �2(d) and �∞(d + k), because the spaces in question are finite-
dimensional. The family of 1-Lipschitz functions ( fn) determines in a standard way a 1-Lipschitz function, f , from �2(d) to
�∞(d + 2), with the property (B.1) being preserved.

2. There exists a linear function f with the property (B.1).
Choose f as in 1. According to the Rademacher theorem (cf. a discussion and references on p. 42 in [25]), f is differen-

tiable almost everywhere with regard to the Lebesgue measure. The differential of f at any point, which we denote T , is a
linear operator of norm one having property (B.1). In particular it is injective (though of course not onto), and the inverse
has norm � c.

Recall that the multiplicative Banach–Mazur distance between two normed spaces E and F of the same dimension is the
infimum of all numbers ‖T ‖ · ‖T ‖−1, where T ranges over all isomorphisms between E and F . (See [25], p. 3, and [17], 7.2.)
From the previous observation, we conclude:

3. The Banach–Mazur distance between �2(d) and some d-dimensional subspace of �∞(d + k) is � c.
4. The Banach–Mazur distance between �2(d + k) and �∞(d + k) is O (

√
kc).

There is a projection p from �∞(d + k) having T (�2(d)) as its kernel and such that ‖p‖ �
√

k and ‖1 − p‖ �
√

k (com-
bine [13], Corollary on p. 209, with a classical result of Kadec and Snobar on projection constants, cf. [25], p. 71). The
Banach–Mazur distance between �2(k) and any other k-dimensional normed space, including the kernel of p, is O (

√
k).

Choose an isomorphism S realizing this distance, then it is easy to verify that T ⊕ S realizes the distance O (
√

kc) between
�2(d + k) and �∞(d + k).

Finally, the Banach–Mazur distance between �2(d + k) and �∞(d + k) is
√

d + k (cf. [17], p. 766).
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[40] M. Pǎtrascu, M. Thorup, Higher lower bounds for near-neighbor and further rich problems, in: Proc. 47th IEEE Symp. on Foundations of Computer

Science, 2006, pp. 646–654.
[41] V. Pestov, On the geometry of similarity search: dimensionality curse and concentration of measure, Inform. Process. Lett. 73 (2000) 47–51.
[42] V. Pestov, Intrinsic dimension of a dataset: what properties does one expect? in: Proc. of the 22nd Int. Joint Conf. on Neural Networks (IJCNN’07),

Orlando, FL., 2007, pp. 1775–1780.
[43] V. Pestov, An axiomatic approach to intrinsic dimension of a dataset, Neural Networks 21 (2008) 204–213.
[44] V. Pestov, Lower bounds on performance of metric tree indexing schemes for exact similarity search in high dimensions, in: Alfredo Ferro (Ed.),

Proceedings of the 4th International Conference on Similarity Search and Applications (SISAP 2011), 30 June–1 July 2011, Lipari, Sicily, Italy, ACM, New
York, NY, 2011, pp. 25–32.
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