80 research outputs found

    On Evaluating Commercial Cloud Services: A Systematic Review

    Full text link
    Background: Cloud Computing is increasingly booming in industry with many competing providers and services. Accordingly, evaluation of commercial Cloud services is necessary. However, the existing evaluation studies are relatively chaotic. There exists tremendous confusion and gap between practices and theory about Cloud services evaluation. Aim: To facilitate relieving the aforementioned chaos, this work aims to synthesize the existing evaluation implementations to outline the state-of-the-practice and also identify research opportunities in Cloud services evaluation. Method: Based on a conceptual evaluation model comprising six steps, the Systematic Literature Review (SLR) method was employed to collect relevant evidence to investigate the Cloud services evaluation step by step. Results: This SLR identified 82 relevant evaluation studies. The overall data collected from these studies essentially represent the current practical landscape of implementing Cloud services evaluation, and in turn can be reused to facilitate future evaluation work. Conclusions: Evaluation of commercial Cloud services has become a world-wide research topic. Some of the findings of this SLR identify several research gaps in the area of Cloud services evaluation (e.g., the Elasticity and Security evaluation of commercial Cloud services could be a long-term challenge), while some other findings suggest the trend of applying commercial Cloud services (e.g., compared with PaaS, IaaS seems more suitable for customers and is particularly important in industry). This SLR study itself also confirms some previous experiences and reveals new Evidence-Based Software Engineering (EBSE) lessons

    Pairwise Element Computation with MapReduce

    Get PDF
    In this paper, we present a parallel method to evaluate functions on pairs of elements. It is a challenge to partition the Cartesian product of a set with itself in order to parallelize the function evaluation on all pairs. Our solution uses (a) replication of set elements to allow for partitioning and (b) aggregation of the results gathered for different copies of an element. Based on an execution model with nodes that execute tasks on local data without online communication, we present a generic algorithm and show how it can be implemented with MapReduce. Three different distribution schemes that define the partitioning of the Cartesian product are introduced, compared, and evaluated. Any one of the distribution schemes can be used to derive and implement a specific algorithm for parallel pairwise element computation

    Active Data : Un modèle pour représenter et programmer le cycle de vie des données distribuées

    Get PDF
    National audienceAlors que la science génère et traite des ensembles de données toujours plus grands et dynamiques, un nombre croissant de scientifiques doit faire face à des défis pour permettre leur exploitation. La gestion de données par les applications scientifiques de traitement intensif des données requière le support de cycles de vie très complexes, la coordination de nombreux sites, de la tolérance aux pannes et de passer à l'échelle sur des dizaines de sites avec plusieurs péta-octets de données. Dans cet article, nous proposons un modèle pour représenter formellement les cycles de vie des applications de traitement de données et un modèle de programmation pour y réagir dynamiquement. Nous discutons du prototype d'implémentation et présentons différents cas d'études d'applications qui démontrent la pertinence de notre approche

    BlobCR: Virtual Disk Based Checkpoint-Restart for HPC Applications on IaaS Clouds

    Get PDF
    International audienceInfrastructure-as-a-Service (IaaS) cloud computing is gaining significant interest in industry and academia as an alternative platform for running HPC applications. Given the need to provide fault tolerance, support for suspend-resume and offline migration, an efficient Checkpoint-Restart mechanism becomes paramount in this context. We propose BlobCR, a dedicated checkpoint repository that is able to take live incremental snapshots of the whole disk attached to the virtual machine (VM) instances. BlobCR aims to minimize the performance overhead of checkpointing by persisting VM disk snapshots asynchronously in the background using a low overhead technique we call selective copy-on-write. It includes support for both application-level and process-level checkpointing, as well as support to roll back file system changes. Experiments at large scale demonstrate the benefits of our proposal both in synthetic settings and for a real-life HPC application

    Many-task computing on many-core architectures

    Get PDF
    Many-Task Computing (MTC) is a common scenario for multiple parallel systems, such as cluster, grids, cloud and supercomputers, but it is not so popular in shared memory parallel processors. In this sense and given the spectacular growth in performance and in number of cores integrated in many-core architectures, the study of MTC on such architectures is becoming more and more relevant. In this paper, authors present what are those programming mechanisms to take advantages of such massively parallel features for the particular target of MTC. Also, the hardware features of the two dominant many-core platforms (NVIDIA's GPUs and Intel Xeon Phi) are also analyzed for our specific framework. Given the important differences in terms of hardware and software in our two many-core platforms, we have considered different strategies based on CUDA (for GPUs) and OpenMP (for Intel Xeon Phi). We carried out several test cases based on an appropriate and widely studied problem for benchmarking as matrix multiplication. Essentially, this study consisted of comparing the time consumed for computing in parallel several tasks one by one (the whole computational resources are used just to compute one task at a time) with the time consumed for computing in parallel the same set of tasks simultaneously (the whole computational resources are used for computing the set of tasks at very same time). Finally, we compared both software-hardware scenarios to identify the most relevant computer features in each of our many-core architectures

    BioWorkbench: A High-Performance Framework for Managing and Analyzing Bioinformatics Experiments

    Get PDF
    Advances in sequencing techniques have led to exponential growth in biological data, demanding the development of large-scale bioinformatics experiments. Because these experiments are computation- and data-intensive, they require high-performance computing (HPC) techniques and can benefit from specialized technologies such as Scientific Workflow Management Systems (SWfMS) and databases. In this work, we present BioWorkbench, a framework for managing and analyzing bioinformatics experiments. This framework automatically collects provenance data, including both performance data from workflow execution and data from the scientific domain of the workflow application. Provenance data can be analyzed through a web application that abstracts a set of queries to the provenance database, simplifying access to provenance information. We evaluate BioWorkbench using three case studies: SwiftPhylo, a phylogenetic tree assembly workflow; SwiftGECKO, a comparative genomics workflow; and RASflow, a RASopathy analysis workflow. We analyze each workflow from both computational and scientific domain perspectives, by using queries to a provenance and annotation database. Some of these queries are available as a pre-built feature of the BioWorkbench web application. Through the provenance data, we show that the framework is scalable and achieves high-performance, reducing up to 98% of the case studies execution time. We also show how the application of machine learning techniques can enrich the analysis process

    Towards an Environment for doing Data Science that runs in Browsers

    Get PDF
    International audience—This article proposes a path for doing Data Science using browsers as computing and data nodes. This novel idea is motivated by the cross-fertilized fields of desktop grid computing, data management in grids and clouds, Web technologies such as Nosql tools, models of interactions and programming models in grids, cloud and Web technologies. We propose a methodology for the modeling, analyzing, implemention and simulation of a prototype able to run a MapReduce job in browsers. This work allows to better understand how to envision the big picture of Data Science in the context of the Javascript language for programming the middleware, the interactions between components and browsers as the operating system. We explain what types of applications may be impacted by this novel approach and, from a general point of view how a formal modeling of the interactions serves as a general guidelines for the implementation. Formal modeling in our methodology is a necessary condition but it is not sufficient. We also make round-trips between the modeling and the Javascript or used tools to enrich the interaction model that is the key point, or to put more details into the implementation. It is the first time to the best of our knowledge that Data Science is operating in the context of browsers that exchange codes and data for solving computational and data intensive programs. Computational and data intensive terms should be understand according to the context of applications that we think to be suitable for our system

    BlobCR: Efficient Checkpoint-Restart for HPC Applications on IaaS Clouds using Virtual Disk Image Snapshots

    Get PDF
    International audienceInfrastructure-as-a-Service (IaaS) cloud computing is gaining significant interest in industry and academia as an alternative platform for running scientific applications. Given the dynamic nature of IaaS clouds and the long runtime and resource utilization of such applications, an efficient checkpoint-restart mechanism becomes paramount in this context. This paper proposes a solution to the aforementioned challenge that aims at minimizing the storage space performance overhead of checkpoint-restart. We introduce a framework that combines checkpoint-restart protocols at guest level with virtual machine (VM) disk-image multi-snapshotting and multi-deployment at host level in order to efficiently capture and potentially roll back the complete state of the application, including file system modifications. Experiments on the G5K testbed show substantial improvement for MPI applications over existing approaches, both for the case when customized checkpointing is available at application level and the case when it needs to be handled at process level

    RFaaS: RDMA-Enabled FaaS Platform for Serverless High-Performance Computing

    Full text link
    The rigid MPI programming model and batch scheduling dominate high-performance computing. While clouds brought new levels of elasticity into the world of computing, supercomputers still suffer from low resource utilization rates. To enhance supercomputing clusters with the benefits of serverless computing, a modern cloud programming paradigm for pay-as-you-go execution of stateless functions, we present rFaaS, the first RDMA-aware Function-as-a-Service (FaaS) platform. With hot invocations and decentralized function placement, we overcome the major performance limitations of FaaS systems and provide low-latency remote invocations in multi-tenant environments. We evaluate the new serverless system through a series of microbenchmarks and show that remote functions execute with negligible performance overheads. We demonstrate how serverless computing can bring elastic resource management into MPI-based high-performance applications. Overall, our results show that MPI applications can benefit from modern cloud programming paradigms to guarantee high performance at lower resource costs
    corecore