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ABSTRACT
In this paper, we present a parallel method to evaluate functions on
pairs of elements. It is a challenge to partition the Cartesian prod-
uct of a set with itself in order to parallelize the function evaluation
on all pairs. Our solution uses (a) replication of set elements to al-
low for partitioning and (b) aggregation of the results gathered for
different copies of an element. Based on an execution model with
nodes that execute tasks on local data without online communica-
tion, we present a generic algorithm and show how it can be im-
plemented with MapReduce. Three different distribution schemes
that define the partitioning of the Cartesian product are introduced,
compared, and evaluated. Any one of the distribution schemes can
be used to derive and implement a specific algorithm for parallel
pairwise element computation.

Categories and Subject Descriptors
D.1 [Programming Techniques]: General; F.2 [Analysis of Algo-
rithms and Problem Complexity]: General

General Terms
Algorithms

Keywords
MapReduce, parallel pairwise computation, Cartesian product par-
titioning, distribution scheme

1. INTRODUCTION
To compute a function on all pairs of elements in a given set, as
it is shown in Figure 1 for the function comp(–ute), is a famil-
iar task. It is a basic building block in many algorithms through-
out a wide range of applications. For example, clustering algo-
rithms like DBSCAN [8] group elements based on their similarity.
A distance computed between any two elements is used to decide
whether a pair of elements is similar. Likewise, cross-document
co-referencing of websites or documents tries to determine whether
two mentions of entities refer to the same person [9]. Complex op-
erations on pairs of documents are required to compute a complete

cross-reference in a set of documents. In bioinformatics, compar-
ing the mutual information of all pairs of genes from gene expres-
sion micro-arrays is a necessary first step for reconstructing gene
regulatory networks [5, 11]. At last, the computation of the co-
variance matrix of a matrix A requires to compute A × AT . This
multiplication is a pairwise inner product on all rows of A. The co-
variance matrix is computed, e.g., for principal component analysis
[12, 13].
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Figure 1: Pairwise element computation

The challenges of pairwise element computation rise with the com-
plexity of the computed function or the size of the dataset, be it its
cardinality or its physical size. In all cases, execution on a single
machine is prohibited due to computation or memory limitations.
Consequently, algorithms that leverage parallel infrastructures are
needed for pairwise element computation. It is not obvious how
this task, where each element needs to be processed with all other
elements, can be parallelized. One way to implement such an al-
gorithm is to use the MapReduce (MR) programming model. To-
gether with a corresponding framework implementation, MR was
introduced in 2004 [6]. The ease of programming parallel tasks of-
fered by MR (as compared to other parallel programming models,
e.g., message-based models built on MPI) and the fact that cloud
infrastructures, e.g., provided by Amazon AWS [1] as Elastic Com-
pute Cloud (EC2) or Elastic MapReduce, are available for any sin-
gle user or business make the use of MR appealing.

The contribution of our work comprises two parts. First, an abstract
algorithm is presented based on the underlying execution model.
The algorithm outlines how pairwise element computation can be
performed in parallel. We will show how all steps that need to
be performed can be implemented with two consecutive MR jobs.
Second, we present, discuss, and evaluate the broadcast, block, and
design distribution scheme, which can be used to specify the parti-
tioning of the Cartesian product of elements.

Throughout the paper, we assume that an appropriate function is
evaluated on all pairs of elements of one set. Although it is possi-
ble to generalize some of the approaches such that elements of one
set can be paired with elements of another set, we will not consider
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this case. We also assume that any pairwise evaluation is sym-
metric, i.e., comp(si, sj) returns the same result as comp(sj , si).
Only marginal modifications of the proposed methods are needed
to allow non-symmetric evaluations as well. We implemented and
tested all methods based on the Hadoop MR framework, at this time
available in version 0.20.1 [2].

The remainder of this paper is organized as follows. First, we dis-
cuss related work in Section 2. Then, in Section 3, we introduce
the execution model that we base our algorithms on. In Section 4
our parallel solution for pairwise element computation is shown to-
gether with a possible implementation using MR. In Section 5, we
present and compare the distribution schemes that define the parti-
tioning of the Cartesian product. An evaluation of these methods
based on existing cloud infrastructures follows in Section 6. We
conclude our work in Section 7.

2. RELATED WORK
Elsayed et al. propose a method to compute pairwise document
similarity using MR [7]. Their method first builds a reverse index
from terms to documents. As a result, the set for pairwise com-
parison shrinks to the set of documents that contain a certain term
(which usually is smaller than the initial set of documents). It is
then possible to evaluate the Cartesian product of this set locally
in just one mapper (per term) and to aggregate the result over mul-
tiple terms. In the given application it is possible to reduce the
problem’s complexity. In contrast, our work concentrates on appli-
cations where the quadratic complexity of the pairwise comparison
cannot be reduced.

Some I/O optimization techniques have been proposed to work with
datasets that do not fit in memory. For example, block matrix multi-
plication [4] allows to process datasets beyond the size of the main
memory. These techniques can be used to ease the challenge of
large datasets. Our work aims at datasets that exceed the limit
of reasonable local processing, either by size or by computational
costs.

We are not aware of any further algorithms for parallel pairwise
element computation or related work dealing with the same.

3. EXECUTION MODEL
To provide premises for the execution environment and corner-
stones for our algorithm, we first introduce the execution model
that we base our work on. We assume a number of nodes that are
connected by a (possibly slow) network. All nodes can execute
tasks in parallel whereas each task processes local data. There is
no online communication possible between different nodes and no
shared memory can be accessed quickly by different tasks. Stored
data can be transmitted via the network from one node to another
node.

Furthermore, we make the following assumptions on the data that
are processed. The input dataset is stored as files, distributed on
the participating nodes. Random access to single elements may not
be possible, as we understand our algorithm as a building block
in a row of, e.g., MR jobs. Consequently, the preceding job may
have written the dataset to files, where each file contains multiple
records. With the same reasoning, we write the results of the com-
putation in a distributed fashion spread among all nodes. Based on
the step or application following our algorithm, the results may be
aggregated. We will describe this optional aggregation in the next
section.

We assume any single element to have a unique identifier. Hence,
the result of a pairwise computation of elements s1 and s2 can be
stored as the identifier of element s2 together with the function re-
sult as shown in Figure 2. It follows that, although the results of all
computations are stored together with the respective elements, the
storage requirements are usually less than quadratic in the size of
the input dataset. Consider the following example for clarification.
Assume a dataset of 10,000 elements, 500KB each. This results in a
dataset size of 5GB. Furthermore, assume an element’s identifier to
be 8B and the result of the computed function also to be 8B in size.
It follows that after the computation, each element is about 650KB;
500KB for the element data itself and 9, 999 ∗ 16B ≈ 150KB for
the evaluation results with all other elements. The resulting dataset
is about 6.5GB (instead of 50TB that would result from quadratic
expansion). Some applications (like DBSCAN) may also allow to
prune some results because function evaluations are only interest-
ing if they fulfill certain requirements, e.g., a distance to be less
than a threshold.

s1 xxxxxxxxxxxxxxxxxxxxxxx (s2, comp(s1,s2); s3, comp(s1, s3); …)
s2 xxxxxxxxxxxxxxxxxxxxxxx (s1, comp(s2,s1); s3, comp(s2, s3); …)
s3 xxxxxxxxxxxxxxxxxxxxxxx (s1, comp(s3,s1); s2, comp(s3, s2); …)

Figure 2: Element storage organization

4. ABSTRACT SOLUTION
The challenge of parallel pairwise element computation is how the
Cartesian product of the dataset with itself can be partitioned. Based
on the execution model introduced before, an algorithm comprises
the following steps:

Step 1: Build subsets of the dataset and ship them to the nodes.
This step defines the set of elements that a certain node works with
(working set). Independent tasks (parallel computation) can only
be achieved if elements can be replicated and are therefore allowed
to be in different subsets. (If an element can only be in one subset,
then all other elements need to be in the same subset and all com-
putations that involve this element need to be done by one node.
As soon as a second node is supposed to work at the same time, it
needs at least two elements (or copies of elements) that are in the
first subset already.)

Step 2: Perform pairwise element computation on all subsets in
parallel. Here, each node evaluates some (or all) pairs of elements
in its subset.

Step 3: Aggregate results of the comparisons per element. Based
on the application, it may be necessary to collect the various copies
of each element and to aggregate the results of the pairwise com-
putations.

For a concrete solution, it needs to be decided how working sets
are built and which pairs of elements of the given working set are
evaluated.

Implementing the Solution with MR
The algorithm for pairwise element computation can be implemented
with two MR jobs. Algorithm 1 shows the functions for distribu-
tion and pairwise computation while Algorithm 2 shows the op-

Final edited form was published in "HPDC '10: The 19th International Symposium on High Performance Distributed Computing. Chicago Illinois, 2010". 
S. 826-833. ISBN 978-1-60558-942-8 

https://doi.org/10.1145/1851476.1851595

2 

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden



s4 ( … )s4  ( … )

s3 ( … )s3  ( … )

s2 ( … )s2  ( … )

s3 s4 s3 (s4 … )

s3

s3 (s1 … )

s4

(s4 … ) s2 (s1 …, s4 … , … )

s3 ( … )s3  ( … )

s2 ( … )s2  ( … )

s2 (s4 … )

s2

s2

s1

s1
s1

s2 (s1 … )

map sort/
shuffle reduce map sort/

shuffle reduce

D1

D2

D3

D1

D2

s1 (s2 …, s3 … )

s4 (s2 …, s3 … )

s1 ( … )s1  ( … ) (s2 …, s3 … )

…
…

s1 (s2 …, s3 … , … )

(s1 … )

… … … …

Job 1 Job 2

s2 s2

s3

Figure 3: Flow of elements through MR jobs

tional aggregation of the results. Additionally, Figure 3 visualizes
the flow of elements through both MR jobs.

The map function of the first job fulfills the first of our three steps,
i.e., subsets of the dataset are built and distributed. The getSub-
sets function determines a number of working sets based on an ele-
ment’s identifier. In the example in Figure 3, calling getSubsets on
s2 returns D1, D2, and D3. For each of these subsets, a key/value
pair is emitted with the subset(-identifier) as key and the element
itself as value. The sort/shuffle phase of this first MR job ensures
that all elements of a certain subset are processed by one reducer. In
the example, one reducer processes subset D1 containing elements
s1, s2, and s3. Based on the subset(-identifier) and the elements,
a list of pairs is determined in the getPairs function. All returned
pairs of elements are evaluated and the results are stored together
with the involved element. In Figure 3, in subset D1, pairs (s1, s2)
and (s1, s3) are evaluated. Although both elements, s2 and s3, are
in subset D1, the evaluation of this pair takes place in a different
subset. The output of the reduce phase contains each element (in-
cluding all copies of the element) together with the results of all
pairwise computations performed in the various subsets.

The second MR job can be used to aggregate the results of various
copies of an element. Since elements have been emitted with their
identifiers as keys by the first job, nothing needs to be done in the
map function of the second job. The grouping of elements with
the same identifier happens in the sort/shuffle phase, which ensures
that all copies of a certain element are processed by one reducer.
Figure 3 shows how all copies of the elements s1 are processed by
one reducer. The reduce function aggregates the partial results from
all copies in a way that is defined by the application (realized in the
aggregateResults function). The result is just one element per id
together with the results of all pairwise computations with all other
elements.

To deduce a specific algorithm, the functions getSubsets and getPairs
need to be defined. We will propose different methods in the next
section. Also, depending on the application, the function aggre-
gateResults needs to be specified.

Algorithm 1 Distribution and Pairwise Comparison
begin function map(id(element), element)

[subset]← getSubsets(id(element))
for all D ∈ [subset] do

emit(D, element)
end for

end function map

begin function reduce(D, [element])
[(i, j)] = getPairs(D, [element])
for all (i, j) ∈ [(i, j)] do

r ← evaluate(elementi, elementj)
addResult(elementi, (elementj, r))
addResult(elementj , (elementi, r))

end for
for all s ∈ [element] do

emit(id(s), s)
end for

end function reduce

5. DISTRIBUTION SCHEMES
Formally, the problem of building subsets (step 1) and determining
pairs within these subsets (step 2) can be described as follows.

Problem: Let S = {s1, s2, . . . , sv} be a set of elements and let
D = {D1, . . . , Db} be a collection of distinct subsets of S, called
working sets. Furthermore, let P = {P1, . . . , Pb} be a collection
of relations (pairs), one for each working set inD. For each relation
in P , we have Pl ⊆ (Dl ×Dl) with Dl ∈ D.

How canD and P be constructed, such that (a) work that is done in
parallel is well balanced and (b) each pair of elements is evaluated
exactly once among all nodes?

Both intuitive wishes lead to the formal demands that (a) all work-
ing sets are similar in size and (b) for any two elements si and sj
(i > j) in S, there is exactly one working set Dl with pair relation
Pl to fulfill: si ∈ Dl, sj ∈ Dl, and (si, sj) ∈ Pl.
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Algorithm 2 Aggregation
begin function map(id(element), element)

{do nothing}
end function map

begin function reduce(id(element), [element])
newElement← aggregateResults([element])
emit(id(element), newElement)

end function reduce

The problem can trivially be solved with b = 1, D1 = S and
P1 = {(si, sj) | si, sj ∈ S, i > j}. However, the intention is
to parallelize the evaluation of all pairs of elements. Hence, we
are looking for solutions where b is equal to or greater than the
available number of nodes n.

A non-trivial solution for a set S that contains v = 7 elements is
shown in Figure 4. You can see the system D of b = 7 subsets;
each containing k = 3 elements. Together with the relations P ,
it is ensured that all pairs are evaluated exactly once. The work is
split into 7 independent tasks.

P1
(s1, s2)
(s1, s3)
(s2, s3)

S
s1 s2 s3 s4 s5 s6 s7

D1

s1 s2

s3

D2

s1 s4

s7

D3

s1 s5

s6

D4

s2 s4

s6

D5

s2 s5

s7

D6

s3 s4

s5

D7

s3 s6

s7

P2
(s1, s4)
(s1, s7)
(s4, s7)

P3
(s1, s5)
(s1, s6)
(s5, s6)

P4
(s2, s4)
(s2, s6)
(s4, s6)

P5
(s2, s5)
(s2, s7)
(s5, s7)

P6
(s3, s4)
(s3, s5)
(s4, s5)

P7
(s3, s6)
(s3, s7)
(s6, s7)

D

P

Figure 4: Example solution with systems D and P

In the following subsections, we will introduce the broadcast, block,
and design distribution schemes that provide constructions for D
and P . Afterwards, a comparison of all schemes will be given in
the last subsection.

5.1 Broadcast Approach
The broadcast approach is based on the assumption that the dataset
size is moderate but the function to evaluate is expensive. Then,
the whole dataset can be distributed to all nodes. Hence, in the first
step, each element is replicated as often as there are nodes and each
subset contains all elements of the dataset; D1 = . . . = Db = S.
Depending on the application preceding our algorithm, a dataset
of moderate size may already be stored redundantly on all nodes.
Such a precondition can be leveraged.

To ensure that each pair of elements is evaluated only once, the con-
struction of P is crucial. All pairs are enumerated as shown in Fig-
ure 5. The upper right triangle of the matrix (dataset times dataset)
is labeled, starting at p = 1. Depending on the number of nodes,
the first one evaluates all pairs from 1 to h = �v(v − 1)/2n�,
where v is the cardinality of the dataset and n is the number of
nodes. The second node computes the following h pairs, and so on.

This ensures that all pairs are evaluated and that each node has to
do approximately the same amount of work.

To derive the indexes i and j based on the label p, the following
equation needs to be resolved:

p(i, j) =
(i− 1)(i− 2)

2
+ j.

The relation Pl can then be constructed as follows:

Pl = {(i(p), j(p)) | (l − 1)h+ 1 ≤ p ≤ min(lh, v)}.

i
j 1 2 3 4 5 6 7 …

1 p=1 2 4 7 11 16 …
2 3 5 8 12 17 …
3 6 9 13 18 …
4 10 14 19 …
5 15 20 …
6 21 …
7 …
…

Figure 5: Enumeration of the distance matrix

Because the construction of D in the broadcast approach is sim-
ple, the MR implementation can be reduced to one job. A feature
of the Hadoop MR implementation, the distributed cache, is used
to broadcast the dataset to all nodes. The evaluation of pairs can
then be done in the map function of the new MR job. The reduce
function aggregates results as shown in Algorithm 2.

5.2 Block Approach
The block approach uses an optimized enumeration of all pairs
to derive a distribution scheme. The idea is to form rectangular
blocks in the upper right triangle of the matrix of pairs (dataset
times dataset). All pairs in one block are evaluated by one node.

Because each node evaluates pairs in a contiguous part of the ma-
trix, the node needs only a subset of all elements.

Each working set in D corresponds to one block. For example the
p-th block equals Dp = Rp ∪ Cp. In the example shown in Figure
6, the second block (p = 2) comprises elements R2 = {sh | 1 ≤
h ≤ 5}, i.e., rows 1 to 5, and elements C2 = {sh | 6 ≤ h ≤ 10}
contributed by columns 6 through 10.

To determine Dp, the position (I(p), J(p)) of the block is derived
from resolving

p(I, J) =
I(I − 1)

2
+ J.

Then, Cp and Rp are given by

Cp = {sh | (I(p)− 1)e+ 1 ≤ h ≤ min(I(p)e, v)} and

Rp = {sh | (J(p)− 1)e+ 1 ≤ h ≤ min(J(p)e, v)},
where e is the edge length of one such block (e = 5 in the example
in Figure 6).

You can see that each element of Rp needs to be evaluated with
each element of Cp. However, if a block lies on the main diagonal
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of the matrix (I(p) = J(p)), then only about half of the pairs need
to be evaluated. It follows that

Pp = {(si, sj) | si ∈ Cp, sj ∈ Rp, i > j}
= {(si, sj) | si, sj ∈ Dp, i > j}.

I 1 2 3

J i
j 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1

1
2
3
4
5

2

6
7
8
9

10

3

11
12
13
14
15

p = 1
(1,1)

p = 2
(1,2)

p = 4
(1,3)

p = 3
(2,2)

p = 5
(2,3)

p = 6
(3,3)

Figure 6: Enumeration of the blocks

The characteristics of the block scheme can be quantified. With
h being the blocking factor and each block being of size e × e
with e = �v/h� (e = 5 and h = 3 in the example in Figure 6),
it follows that each node works with 2e elements and performs at
most e2 evaluations. Each element is used in h different blocks.
The same holds for blocks on the main diagonal of the matrix if
always two such diagonal blocks are processed together.

5.3 Design Approach
The third approach uses techniques common in Algebra, more pre-
cisely the vast research area of combinatorial designs [3], to derive
a distribution scheme. A (v, k, 1)-design is defined as follows.

DEFINITION 1 ((v, k, 1)-DESIGN). LetS = {s1, s2, . . . , sv}.
A collection D of distinct subsets of S is called a (v, k, 1)-design if
2 ≤ k < v, and

1. each set in D contains exactly k elements

2. each 2-element subset of S is contained in exactly one of the
sets in D (this accounts for the 1 in (v, k, 1)-design)

The sets of D are called blocks (|D| = b).

In contrast to our problem, a (v, k, 1)-design requires each block in
D to contain exactly k elements. Our less strict demand is to have
blocks of similar size.

Figure 7 shows a simple (7, 3, 1)-design (vertexes are elements of
S; lines that connect multiple vertexes represent subsets). The de-
sign in Figure 7 actually shows the same system of subsets as is
shown in Figure 4.

v = 7
k = 3  (7,3,1)-design

b = 7

s1

s2

s3

s4

s7

s5

s6

Figure 7: Example showing a (7, 3, 1)-design

There are proven necessary conditions for the existence of designs.
These conditions show that combinations of v and k can be found
such that no (v, k, 1)-design exists. Moreover, it is in most cases
not easily possible to decide whether or not a design with a given set
of parameters exists. There are, however, results for special com-
binations of parameters where (a) it has been proved that a design
exists and (b) the design can be constructed easily. The follow-
ing definition and theorem build the basis for the existence of the
required design [3].

DEFINITION 2 (PROJECTIVE PLANE). An (m2+m+1, m+
1, 1)-design is called a (finite) projective plane of order m.

THEOREM 1. From [3, Theorem 2.32, page 17]: For every prime
power q there exists a projective plane of order q, that is to say, a
(q2 + q + 1, q + 1, 1)-design.

For projective planes, q needs to be a prime power and a given
v = q2 + q + 1 determines k = q + 1. In general, it is not the
case that the number of elements can be written as q̂ = q2 + q + 1
where q is a prime power. However, this can be eased because the
problem at hand is less strict than the formal algebraic problem. A
weaker solution of a design-like collection of distinct subsets can be
constructed where each subset may contain fewer than k elements.
The basis for this solution is the projective plane of the smallest
prime q such that q̂ ≥ v.

An algorithm to construct projective planes was proposed by Lee
et al. [10]. The construction of D can be derived from Theorem 2.

THEOREM 2. Let S be the dataset of v elements and q be a
prime power (v = q2 + q+1). Then, D defined as follows forms a
(q2 + q + 1, q + 1, 1)-design.

1. For i = 1:
Di = {sj | 1 ≤ j ≤ q + 1}

2. For 1 < i ≤ q + 1:
Di = s1 ∪ {sj | q(i− 1) + 2 ≤ j ≤ qi+ 1}

3. For q + 1 < i ≤ q2 + q + 1:

Let h =
⌊

i−2
q

⌋
− 1 and l = (i− 2) mod q

Di = sh+2 ∪ {sq(m+1)+((l−hm)(mod q)+2) |
0 ≤ m ≤ q − 1}

The proof follows immediately from the proof of Theorem 4 in
[10].
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If v < q̂, then the elements sv+1, . . . , sq̂ do not exist. From the
construction rules in Theorem 2 it follows that the number of ele-
ments in the majority of working sets from Dq+2 to Dq̂ still contain
about the same number of elements (with a difference of at most 1).
The working sets D1 to Dq+1 contain either q+1 elements or just
one element (and can therefore be dropped). Because we assume v
to be large, it follows that the main characteristics of this method
are dominated by the majority of working sets that contain about
the same number of elements (≈ √v). If, e.g., v = 10, 000, then
q = 101; hence, the first q + 1 = 102 working sets are dominated
by the following 10, 201 (q + 2, . . . , q̂) working sets.

The pair relation P for the design approach is the full relation of
all elements in each working set with duplicates eliminated that
are introduced by the symmetry of the evaluation. Hence, for all
1 ≤ l ≤ b:

Pl = {(si, sj) | si, sj ∈ Dl, i > j}.

5.4 Comparison of Distribution Schemes
The main characteristics of each distribution scheme depend on
multiple parameters, some of which are fixed by the application
or the environment. The flexible parameters can be used to influ-
ence certain properties of a method. Before we will name the char-
acteristics that we use to compare the methods, we describe their
parameters.

All distribution schemes have the following three parameters in
common:

v number of elements in the dataset;
n number of nodes;
p number of tasks.

The first two parameters are assumed to be fixed. Whether or not
the number of tasks can be influenced depends on the method. The
number of tasks sets the possible degree of parallelism; a task is the
smallest unit of work that can be executed by a node.

For the block approach, a fourth parameter is used. It can be chosen
arbitrarily but needs to be a natural number.

h blocking factor.

To compare the three distribution schemes, the following metrics
are used.

Number of Tasks: The number of tasks is determined by the num-
ber of working sets that the dataset can be split into.

Communication Costs are based on the amount of data that need
to be transmitted via the network. We assume that most of the
input data can be read locally by the nodes and that the output
is written locally, too. Hence, network costs are dominated
by the costs to communicate intermediate data.

Replication Factor: The replication factor is the number of work-
ing sets that a certain element belongs to. Consequently,
it tells how many copies of an element are made and dis-
tributed. The replication factor is used to calculate the size
of intermediate data that is materialized in the system.

Working Set Size is the number of elements that a node processes
per task. Because we want the working set to be kept in mem-
ory, its size may hit a limitation introduced by the amount of
available main memory.

Evaluations per Task describes the number of function evalua-
tions performed by a node in a single task. Ideally, this
should be the total number of evaluations divided by the num-
ber of tasks. Otherwise, the different tasks are unequally ex-
pensive.

Table 1 summarizes all methods with respect to the introduced met-
rics and provides a first hint whether a characteristic is advanta-
geous (checkmark), neutral (tilde), or disadvantageous (cross). The
communication costs for the block approach, e.g., are 2vh because
all v records are replicated h times and sent once for the computa-
tion and once for the optional aggregation (see Algorithms 1 and 2).
All metrics for the design approach use

√
v as an approximation for

the number of elements per block. In a projective plane, i.e., when
v = q̂ = q2 + q + 1, each block contains q+ 1 elements which, is
approximately

√
v. In a design-like structure, i.e., when v < q̂, the

approximation also covers blocks that are slightly smaller because
there are fewer than q̂ elements available.

6. EVALUATION
Evaluating the number of tasks, i.e., the possible degree of par-
allelism, shows that the broadcast approach is most flexible with
respect to this metric. The number of tasks can be any number,
e.g., the number of nodes. The block approach allows to adjust the
number of tasks although it is less flexible (p must be of the form
(h(h+1))/2). The design approach does not allow to influence the
number of tasks. However, because it is the same as the number of
elements, no scalability issues occur. It can be assumed that there
will always be many more tasks than nodes (p ≥ v > n) so that no
node should ever be idle.

Table 1 shows that the communication costs scale with p for the
broadcast approach and with

√
p for the other two approaches.

Since
√
v > n is likely, the communication costs for the design

approach will usually be equal to the upper bound of 2vn (sending
to all nodes).

The row Evaluations per Task in Table 1 underlines that all ap-
proaches are well-balanced. The work is spread evenly among all
nodes.

More crucial metrics (with respect to feasibility) are the replica-
tion factor and the working set size. This observation is based on
two limits introduced by the execution environment: main mem-
ory and storage for intermediate results. First, the available main
memory per node (denoted by maxws) is limited; it can be as
little as 200MB. An analysis of the available Hadoop infrastruc-
tures (Amazon AWS, Google/IBM academic cloud) showed that,
although modern machines usually provide significantly more than
200MB of main memory, the amount available for each node is
small. This is due to the facts that (a) multiple virtual machines
share one physical machine and therefore its main memory and (b)
each virtual machine is configured to host multiple nodes (instances
of mappers and reducer) at the same time. The second limitation
is posed by the available (and reasonable) storage for intermediate
results (denoted by maxis). The storage limitation directly limits
the replication factor.
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Broadcast Approach Block Approach Design Approach

Number of Tasks (p) ✔ arbitrary ∼ h(h+1)
2

✘ q2 + q + 1 ≥ v, q prime

Communication Costs ✘ 2vp ✔ 2vh ✘ ≈ 2v
√
v (max 2vn)

Replication Factor ✔ p ✔ h ✘ ≈ √v
Working Set Size ✘ v ✔ 2

⌈
v
h

⌉
✔ ≈ √v

Evaluations per Task ✔
v(v−1)

2p
✔

⌈
v
h

⌉2
✔ ≈ v−1

2

Table 1: Comparison of distribution schemes
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Figure 8: Limits on (a) working set size for broadcast approach and (b) intermediate storage for design approach

The different distribution schemes tend to violate different limita-
tions. The broadcast approach, where the working set equals the
whole dataset, tends to exceed maxws. The design approach on
the other hand, having small working sets, generates huge amounts
of intermediate data caused by the replication factor being as high
as
√
v. Figure 8(a) shows the maximum number of elements (v) —

based on the size of each element in kilobytes — that can be pro-
cessed before a working set hits maxws (note the logarithmic axes
in the charts). Similarly, Figure 8(b) shows the highest possible
number of elements for the design approach before the intermedi-
ate storage requirements for materialized data exceed maxis.

The block approach is unique as it offers the blocking factor h to
influence both working set size and replication factor. Depending
on the requirements of a certain application and the limitations in-
troduced by the environment, h can be chosen appropriately in a
certain range. For both limitations we have:

2vs

h
≤ maxws and vsh ≤ maxis.

It follows that h can only be chosen in a certain range:

2vs

maxws
≤ h ≤ maxis

vs
.

This implies a necessary condition on the size of the dataset (vs)

for the existence of a valid h:

vs ≤
√

maxwsmaxis

2
.

Figure 9(a) shows the valid range for h for different values of maxws

and maxis. Rising lines are lower bounds for h imposed by maxws

and falling lines are upper bounds introduced by maxis. Conse-
quently, there is no valid h for dataset sizes greater than the one
where both limitations have an intersection. The valid ranges for h
— assuming maxws = 200MB and maxis = 1TB — are shaded
in gray in the chart in Figure 9(a). Having, e.g., a dataset of size
4GB, it follows that h can be chosen arbitrarily between 39 and
263.

Figure 9(b) shows the comparison of all three approaches for fixed
values of maxws = 200MB and maxis = 1TB with respect to
the maximum dataset cardinality for a given element size. The
chart underlines that the broadcast approach is only reasonable for
smaller datasets. It also shows that the design and block approach
have a cross-over point and that for large elements (> 1MB) the
design approach allows a few more elements in the dataset than the
block approach does.

We have implemented all three methods based on the Hadoop MR
framework (version 0.20.1). Using these implementations, we con-
ducted experiments on both, AWS EC2 and the Google/IBM aca-
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Figure 9: (a) Limits on h for block approach and (b) comparison of approaches

demic cloud. The results for replication factor and working set
sizes showed to be close to our theoretic evaluations. However,
we observed that the working set size limit was hit a little earlier
than expected. This can be explained by the fact that, next to the
elements themselves, other variables and data need to be kept in
memory.

7. SUMMARY
In this paper, we showed that computing complex functions on
pairs of elements is an important building block for a number of
algorithms. We proposed a generic algorithm to perform pairwise
element evaluation in parallel. Additionally, we showed that the
MR programming model can be used to implement this algorithm.

We presented and compared three different distribution schemes
that can be used to derive concrete algorithms. The evaluation of
all methods with respect to limitations introduced by available sys-
tems showed that all approaches can be used to partition the Carte-
sian product of elements and therefore distribute the computational
work to evaluate all pairs. However, all approaches hit limitations
on the size of the dataset.

The limitations on the dataset size can be eased by introducing
hierarchical solutions based on the existing distribution schemes.
For the block approach, e.g., it is possible to build coarse-grained
blocks and to process them sequentially. Each of these first level
blocks is processed in parallel by building fine-grained second level
blocks as shown before. Each block is aggregated before the next
one is processed. This method eases both limits: the one on the
working set size and the other one on the intermediate storage. For
the design approach, it is similarly possible to process and aggre-
gate subsets of all blocks sequentially, which reduces the require-
ments for intermediate storage. While the idea and implementation
of these enhancements are clear, more thorough investigations of
their characteristics are subject to future work.
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