83 research outputs found

    Markov model-based clustering for efficient patient care

    Get PDF
    Phase-type distributions were used to carry out model-based clustering of patients using the time spent by the patients in hospital, with maximum likelihood estimation of the model parameters. These parameters were allowed to vary with covariates so that the probability of cluster membership was dependent on these covariates. Expressions for the cluster membership probabilities and corresponding distributions of length of stay in care were found where the membership probabilities can be updated to take account of length of stay to date. The approach was applied to data on geriatric patients from an administrative database of a London hospital. The age of the patients at admission to care and the year of admission were included as covariates. Differential effects of these covariates on the various parameters of the fitted model were demonstrated, and interpretations of these effects made. The clusters here corresponded to patient pathways, with different length of stay distributions, varying care needs and different associated costs. By using the membership probabilities to assign patients to such clusters, care may thus be suited to their predicted pathway. Such an approach might be used in association with healthcare process improvement technologies, such as Lean Thinking or Six Sigm

    Polyp Segmentation with Fully Convolutional Deep Neural Networks—Extended Evaluation Study

    Get PDF
    Analysis of colonoscopy images plays a significant role in early detection of colorectal cancer. Automated tissue segmentation can be useful for two of the most relevant clinical target applications—lesion detection and classification, thereby providing important means to make both processes more accurate and robust. To automate video colonoscopy analysis, computer vision and machine learning methods have been utilized and shown to enhance polyp detectability and segmentation objectivity. This paper describes a polyp segmentation algorithm, developed based on fully convolutional network models, that was originally developed for the Endoscopic Vision Gastrointestinal Image Analysis (GIANA) polyp segmentation challenges. The key contribution of the paper is an extended evaluation of the proposed architecture, by comparing it against established image segmentation benchmarks utilizing several metrics with cross-validation on the GIANA training dataset. Different experiments are described, including examination of various network configurations, values of design parameters, data augmentation approaches, and polyp characteristics. The reported results demonstrate the significance of the data augmentation, and careful selection of the method’s design parameters. The proposed method delivers state-of-the-art results with near real-time performance. The described solution was instrumental in securing the top spot for the polyp segmentation sub-challenge at the 2017 GIANA challenge and second place for the standard image resolution segmentation task at the 2018 GIANA challenge

    Mobile-PolypNet: Lightweight Colon Polyp Segmentation Network for Low-Resource Settings

    Get PDF
    Colon polyps, small clump of cells on the lining of the colon, can lead to colorectal cancer (CRC), one of the leading types of cancer globally. Hence, early detection of these polyps automatically is crucial in the prevention of CRC. The deep learning models proposed for the detection and segmentation of colorectal polyps are resource-consuming. This paper proposes a lightweight deep learning model for colorectal polyp segmentation that achieved state-of-the-art accuracy while significantly reducing the model size and complexity. The proposed deep learning autoencoder model employs a set of state-of-the-art architectural blocks and optimization objective functions to achieve the desired efficiency. The model is trained and tested on five publicly available colorectal polyp segmentation datasets (CVC-ClinicDB, CVC-ColonDB, EndoScene, Kvasir, and ETIS). We also performed ablation testing on the model to test various aspects of the autoencoder architecture. We performed the model evaluation by using most of the common image-segmentation metrics. The backbone model achieved a DICE score of 0.935 on the Kvasir dataset and 0.945 on the CVC-ClinicDB dataset, improving the accuracy by 4.12% and 5.12%, respectively, over the current state-of-the-art network, while using 88 times fewer parameters, 40 times less storage space, and being computationally 17 times more efficient. Our ablation study showed that the addition of ConvSkip in the autoencoder slightly improves the model\u27s performance but it was not significant (-value = 0.815)

    Implementation of ontology for intelligent hospital ward

    Get PDF
    We have developed and implemented an ontology for an intelligent hospital ward. Our aim is to address the pervasiveness of computing applications in healthcare environments, which require: sharing of data across the hospital, including data generated by sensors and embedded in such environments, and dealing with semantic heterogeneity that exists across the hospital's data repositories. Our conceptual ontological model that supports such an environment has been implemented using semantic web tools and tested through the application developed with the J2EE technology

    Clinical evaluation of a wireless ECG sensor system for arrhythmia diagnostic purposes

    Get PDF
    In a clinical study, a novel wireless electrocardiogram (ECG) recorder has been evaluated with regard to its ability to perform arrhythmia diagnostics. As the ECG recorder will detect a "non-standard" ECG signal, it has been necessary to compare those signals to "standard" ECG recording signals in order to evaluate the arrhythmia detection ability of the new system. Simultaneous recording of ECG signals from both the new wireless ECG recorder and a conventional Holter recorder was compared by two independent cardiology specialists with regard to signal quality for performing arrhythmia diagnosis. In addition, calculated R-R intervals from the two systems were correlated. A total number of 16 patients participated in the study. It can be considered that recorded ECG signals obtained from the wireless ECG system had an acceptable quality for arrhythmia diagnosis. Some of the patients used the wireless sensor while doing physical sport activities, and the quality of the recorded ECG signals made it possible to perform arrhythmia diagnostics even under such conditions. Consequently, this makes possible improvements in correlating arrhythmias to physical activities

    Internet of Things-Based ECG and Vitals Healthcare Monitoring System

    Get PDF
    Health monitoring and its associated technologies have gained enormous importance over the past few years. The electrocardiogram (ECG) has long been a popular tool for assessing and diagnosing cardiovascular diseases (CVDs). Since the literature on ECG monitoring devices is growing at an exponential rate, it is becoming difficult for researchers and healthcare professionals to select, compare, and assess the systems that meet their demands while also meeting the monitoring standards. This emphasizes the necessity for a reliable reference to guide the design, categorization, and analysis of ECG monitoring systems, which will benefit both academics and practitioners. We present a complete ECG monitoring system in this work, describing the design stages and implementation of an end-to-end solution for capturing and displaying the patient’s heart signals, heart rate, blood oxygen levels, and body temperature. The data will be presented on an OLED display, a developed Android application as well as in MATLAB via serial communication. The Internet of Things (IoT) approaches have a clear advantage in tackling the problem of heart disease patient care as they can transform the service mode into a widespread one and alert the healthcare services based on the patient’s physical condition. Keeping this in mind, there is also the addition of a web server for monitoring the patient’s status via WiFi. The prototype, which is compliant with the electrical safety regulations and medical equipment design, was further benchmarked against a commercially available off-the-shelf device, and showed an excellent accuracy of 99.56%

    The non-Verbal Structure of Patient Case Discussions in Multidisciplinary Medical Team Meetings

    Get PDF
    Meeting analysis has a long theoretical tradition in social psychology, with established practical rami?cations in computer science, especially in computer supported cooperative work. More recently, a good deal of research has focused on the issues of indexing and browsing multimedia records of meetings. Most research in this area, however, is still based on data collected in laboratories, under somewhat arti?cial conditions. This paper presents an analysis of the discourse structure and spontaneous interactions at real-life multidisciplinary medical team meetings held as part of the work routine in a major hospital. It is hypothesised that the conversational structure of these meetings, as indicated by sequencing and duration of vocalisations, enables segmentation into individual patient case discussions. The task of segmenting audio-visual records of multidisciplinary medical team meetings is described as a topic segmentation task, and a method for automatic segmentation is proposed. An empirical evaluation based on hand labelled data is presented which determines the optimal length of vocalisation sequences for segmentation, and establishes the competitiveness of the method with approaches based on more complex knowledge sources. The effectiveness of Bayesian classi?cation as a segmentation method, and its applicability to meeting segmentation in other domains are discusse

    Exploring Older Adults’ Beliefs About the Use of Intelligent Assistants for Consumer Health Information Management: A Participatory Design Study

    Get PDF
    Background: Intelligent assistants (IAs), also known as intelligent agents, use artificial intelligence to help users achieve a goal or complete a task. IAs represent a potential solution for providing older adults with individualized assistance at home, for example, to reduce social isolation, serve as memory aids, or help with disease management. However, to design IAs for health that are beneficial and accepted by older adults, it is important to understand their beliefs about IAs, how they would like to interact with IAs for consumer health, and how they desire to integrate IAs into their homes. Objective: We explore older adults’ mental models and beliefs about IAs, the tasks they want IAs to support, and how they would like to interact with IAs for consumer health. For the purpose of this study, we focus on IAs in the context of consumer health information management and search. Methods: We present findings from an exploratory, qualitative study that investigated older adults’ perspectives of IAs that aid with consumer health information search and management tasks. Eighteen older adults participated in a multiphase, participatory design workshop in which we engaged them in discussion, brainstorming, and design activities that helped us identify their current challenges managing and finding health information at home. We also explored their beliefs and ideas for an IA to assist them with consumer health tasks. We used participatory design activities to identify areas in which they felt IAs might be useful, but also to uncover the reasoning behind the ideas they presented. Discussions were audio-recorded and later transcribed. We compiled design artifacts collected during the study to supplement researcher transcripts and notes. Thematic analysis was used to analyze data. Results: We found that participants saw IAs as potentially useful for providing recommendations, facilitating collaboration between themselves and other caregivers, and for alerts of serious illness. However, they also desired familiar and natural interactions with IAs (eg, using voice) that could, if need be, provide fluid and unconstrained interactions, reason about their symptoms, and provide information or advice. Other participants discussed the need for flexible IAs that could be used by those with low technical resources or skills. Conclusions: From our findings, we present a discussion of three key components of participants’ mental models, including the people, behaviors, and interactions they described that were important for IAs for consumer health information management and seeking. We then discuss the role of access, transparency, caregivers, and autonomy in design for addressing participants’ concerns about privacy and trust as well as its role in assisting others that may interact with an IA on the older adults’ behalf

    Biomedical image sequence analysis with application to automatic quantitative assessment of facial paralysis

    Get PDF
    Facial paralysis is a condition causing decreased movement on one side of the face. A quantitative, objective, and reliable assessment system would be an invaluable tool for clinicians treating patients with this condition. This paper presents an approach based on the automatic analysis of patient video data. Facial feature localization and facial movement detection methods are discussed. An algorithm is presented to process the optical flow data to obtain the motion features in the relevant facial regions. Three classification methods are applied to provide quantitative evaluations of regional facial nerve function and the overall facial nerve function based on the House-Brackmann scale. Experiments show the radial basis function (RBF) neural network to have superior performance

    Biomedical image sequence analysis with application to automatic quantitative assessment of facial paralysis

    Get PDF
    Facial paralysis is a condition causing decreased movement on one side of the face. A quantitative, objective, and reliable assessment system would be an invaluable tool for clinicians treating patients with this condition. This paper presents an approach based on the automatic analysis of patient video data. Facial feature localization and facial movement detection methods are discussed. An algorithm is presented to process the optical flow data to obtain the motion features in the relevant facial regions. Three classification methods are applied to provide quantitative evaluations of regional facial nerve function and the overall facial nerve function based on the House-Brackmann scale. Experiments show the radial basis function (RBF) neural network to have superior performance
    • …
    corecore