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The non-Verbal Structure of Patient Case Discussions in
Multidisciplinary Medical Team Meetings

Saturnino Luz, Trinity College Dublin

Meeting analysis has a long theoretical tradition in social psychology, with established practical ramifica-
tions in computer science, especially in computer supported cooperative work. More recently, a good deal of
research has focused on the issues of indexing and browsing multimedia records of meetings. Most research
in this area, however, is still based on data collected in laboratories, under somewhat artificial conditions.
This paper presents an analysis of the discourse structure and spontaneous interactions at real-life multi-
disciplinary medical team meetings held as part of the work routine in a major hospital. It is hypothesised
that the conversational structure of these meetings, as indicated by sequencing and duration of vocalisa-
tions, enables segmentation into individual patient case discussions. The task of segmenting audio-visual
records of multidisciplinary medical team meetings is described as a topic segmentation task, and a method
for automatic segmentation is proposed. An empirical evaluation based on hand labelled data is presented
which determines the optimal length of vocalisation sequences for segmentation, and establishes the com-
petitiveness of the method with approaches based on more complex knowledge sources. The effectiveness
of Bayesian classification as a segmentation method, and its applicability to meeting segmentation in other
domains are discussed.

Categories and Subject Descriptors: H.3.1 [Information Storage and Retrieval]: Content Analysis and
Indexing; H.5.1 [Information Interfaces and Presentation]: Multimedia Information Systems; I.5.2
[Pattern Recognition]: Classifier design and evaluation; H.5.3 [Group and Organization Interfaces]:
Computer-supported cooperative work

General Terms: Human Factors

Additional Key Words and Phrases: Search of spontaneous speech, meeting analysis, dialogue segmentation,
multidisciplinary medical team meetings, audio analysis
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1. INTRODUCTION
Group dialogue at meetings has been a topic of systematic study from quantitative
and qualitative perspectives since at least the 50’s, with the works of Bales [1950]
and others. This line of work has investigated issues such as group performance [Mc-
Grath 1991], group cohesiveness, and the process of verbal and non-verbal activi-
ties [Hackman and Morris 1975; Dabbs and Ruback 1987]. Advances in computer
technology have stimulated research on similar topics in the computer science dis-
ciplines of human-computer interaction (HCI) and computer supported cooperative
work (CSCW). This includes studies of video-mediated meetings [Olson et al. 1993;
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19:2 S. Luz

Finn et al. 1997], as well as the development of meeting support systems [Galegher
and Kraut 1994; Olson et al. 1993; Gutwin and Greenberg 1999], and tools to support
the capture of conversations [Hindus et al. 1993] and meeting records [Richter et al.
2001].

Capturing, coding and analysing meetings have formed part of social psychology
and CSCW group interaction research from early days. More recently, as multimedia
recording of face-to-face and remote meetings has become technically and economi-
cally viable, HCI and language technology researchers have argued for the develop-
ment of systems to support indexing, searching and browsing of recorded multime-
dia meeting data [Banerjee et al. 2005; Waibel et al. 2001; Kazman et al. 1996]. The
topic of “meeting browsing” [Bouamrane and Luz 2007; Tucker and Whittaker 2005],
in particular, has received considerable attention from researchers from a variety of
backgrounds. Large research projects, such as the ICSI Meeting Recorder [Janin et al.
2003], AMI/AMIDA [Renals et al. 2007], ISL Meeting Room [Burger et al. 2002], M4
[McCowan et al. 2005], VACE-II [Chen et al. 2006] and the NIST Meeting Corpus
[Garofolo et al. 2004], have helped lay the foundations for automatic analysis of meet-
ing contents by collecting large, extensively annotated corpora of meeting data, which
in turn led to the development of a number of techniques for search and visualisation
of meeting data [Waibel et al. 2001].

However, despite of its eminently practical motivations, research on meeting
browsers shared with its predecessors in social psychology the same reliance on data
obtained under laboratory conditions which has been criticised by McGrath [1991] and
others, in the group research literature. On the one hand, fieldwork and qualitative
research have been carried out on how people create records of real meetings through
minute taking and personal notes [Whittaker et al. 2006] and by technology enhanced
means [Moran et al. 1997]. On the other hand, the most widely used data sets avail-
able to technology developers consist mainly of scenario driven meetings [Renals et al.
2007; McCowan et al. 2003; Bouamrane and Luz 2007] and meetings among the re-
searchers themselves [Janin et al. 2003]. While, as Carletta [2007] argues, the relative
homogeneity of the data obtained in controlled environments facilitates intrinsic eval-
uation of the different machine learning and natural language processing techniques
commonly employed in the analysis of meetings, questions remain as to how effective
these techniques can be in more realistic application scenarios.

These questions can only be answered, of course, on a case by case basis, in the
context of system development. Observation and data collection in real workplace en-
vironments can nevertheless help assess the applicability of these techniques to differ-
ent kinds of meeting data. This paper reports on one such assessment applied to audio
and video data collected as part of a three-year ethnographic study of a multidisci-
plinary medical team and their regular meetings [Kane and Luz 2006; Kane 2008],
and subsequently annotated by the researchers for vocalisation event durations and
speaker identity. Multidisciplinary medical team meetings (MDTMs) are meetings in
which several specialists gather in order to discuss patient cases, agree on a diagnosis,
and make treatment and patient management decisions. The technique in question
is segmentation of conversations into topics, in a broadly defined sense [Galley et al.
2003; Banerjee et al. 2005; Hsueh et al. 2006; Dielmann and Renals 2007].

A typical MDTM lasts over one hour and consists of a sequence of patient case dis-
cussions (PCDs). We identify each of these PCDs with “topics”, in the sense that they
have well defined conceptual boundaries and can be categorised into different types,
such as medical and surgical discussions, local patient and referral patients, co-located
PCDs and remote PCDs, etc [Luz and Kane 2009]. Current approaches to meeting topic
segmentation employ combinations of feature sources, including lexical features (or
“bags of words”) obtained from the output of a speech recogniser, conversational fea-
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tures (lexical cohesion statistics as well as dialogue structure, vocalisation and silence
statistics) [Galley et al. 2003], prosodic features [Shriberg et al. 2000], video features
[Dielmann and Renals 2007; Hsueh and Moore 2007], and other contextual features
such as dialogue type and speaker role [Hsueh and Moore 2007]. Only a few of these in-
formation sources can be reliably extracted from recordings obtained at a real MDTM,
where the fast pace of the dialogue, the large number of participants, the diverse com-
position of the medical teams, and other factors make clean recording of individual
speakers a practical challenge. Very high word error rates for automatic speech recog-
nition, for instance, would preclude the use of dialogue acts, lexical features and lexical
cohesion statistics for our MDTM data (even though some topic segmentation systems
have been shown to be resilient to moderate word error rates [Garofolo et al. 1999;
Hsueh and Moore 2007] in other domains). This is, partly, our motivation for investi-
gating the use of “content-free” features of talk for segmentation1.

However, the investigation is also motivated by theoretical interests. Extending
early work on Markovian models for dyadic interactions and monologues [Jaffe and
Feldstein 1970], Dabbs and Ruback [1987] have argued that such content-free fea-
tures as patterns of turn-taking (vocalisation) and silence can tell an analyst much
about the nature and structure of a meeting. In the case of MDTMs (and patient case
discussions, in particular), despite being fast-paced and apparently chaotic to an out-
side observer, the conversations are highly structured events where the participants
have very well defined roles, according with their medical specialities, which determine
to a great extent their patterns of participation in the meeting.

As a matter of practical relevance to both indexing of meeting content for brows-
ing and information retrieval purposes and the theoretical analysis of meeting pro-
cess, this paper investigates whether segmentation of MDTMs into their constituent
PCDs can be reliably performed based on speaker roles and patterns of vocalisation
and silence. These features form part of what is arguably the simplest account of the
sequential structure of dialogue [Dabbs and Ruback 1987] and therefore seem like a
promising starting point, from which analyses incorporating richer elements (such as
transcription, semantic interpretation and visual modalities) can be further developed.

The paper is structured as follows. The next section outlines the background of this
study, describing the PCD and the MDTM in greater detail, presenting basic descrip-
tive statistics of participant roles and interaction, and motivating the research from a
practical point of view. Section 3 presents a review of related work on topic segmenta-
tion, highlighting the similarities and differences between MDTM segmentation and
meeting topic segmentation in general, and tracing back the origins of many dialogue
segmentation approaches to early work on text segmentation. This is followed by the
presentation of our approach to data representation, the data preparation and anno-
tation procedures adopted for this study. The main segmentation technique is then
introduced, followed by the results of a cross validation experiment performed in order
to assess the effectiveness of combining Naı̈ve Bayes classification and the proposed
content-free representation in detecting PCD boundaries. The analysis of results is
complemented by a baseline analysis, a study of the effect of diarisation errors on seg-
mentation accuracy and an analysis of the effect of redundancy on the Naı̈ve Bayes
classifier. Comparisons with hidden Markov models, decision trees, kernel methods
and nearest neighbour classifiers are presented, along with a discussion of evaluation
issues, and other state of the art approaches to topic segmentation. Conclusions, and
plans for future work close the paper.

1Incidentally, these issues would also motivate the investigation of video features (e.g. communicative ges-
tures, or use of presentation aids) which are not addressed in this paper.
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Fig. 1. A MDTM in a tertiary referral hospital.

2. BACKGROUND
The meetings analysed in this paper take place in a hospital setting and are attended
by a varying number of participants who constitute a multidisciplinary medical team.
Multidisciplinary medical team meetings are an established part of the process of di-
agnosis and treatment of cancer patients, and are a practice recommended by several
national health services [Calman-Hine 1995]. In an MDTM, health professionals of dif-
ferent specialities meet to discuss diagnosis, treatment options and patient manage-
ment. Additionally, these meetings serve educational purposes (training of students
and junior doctors) and broader healthcare management and organisational functions
[Kane 2008].

The MDTM is structured as a sequence of PCDs, where the patient’s medical record
is reviewed, evidence from pathology and radiology is presented, the possibility of
surgery is discussed, and a patient management plan is agreed. In addition to the med-
ical team, the meetings are generally attended by medical students and junior staff,
who do not play an active role in the discussions. The presentations and discussions
make intensive use of visual aids (e.g. display of pathology slides on a large screen, ra-
diology images on high-resolution displays, etc), and are often also attended by remote
participants connected through teleconferencing. Support for collaboration at MDTMs
is a topic that has attracted the interest of the CSCW community lately, and detailed
analyses of organisational processes surrounding the meeting, its different functions
in the hospital environment, and mechanisms that add dependability to their decision
making have been conducted [Robertson et al. 2010; Groth et al. 2009; Kane and Luz
2006].

Figure 1 shows the physical environment in which the MDTMs recorded for the cor-
pus used in this study take place. It is a dedicated teleconferencing room equipped
with projection equipment, a high resolution screen for radiological images, a large
plasma screen, as well as microscopes and document readers which can be connected
to the large display. The recordings were taken from two separate sources: (a) the ex-
isting teleconferencing equipment fitted into the meeting room, which recorded the
audio through a pressure-zone microphone and alternated recording of the video chan-
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Fig. 2. Amount of talk in MDTMs: (a) according to duration of individual vocalisations and (b) distributed
by medical roles.

nel between a view of the participants and views of the different medical images under
discussion, and (b) a high-end camcorder mounted on a tripod which recorded the audio
through a sensitive directional microphone. These two sources were aligned (synchro-
nised) using a multimedia annotation tool. While small and lacking in annotation de-
tail if compared to the major meeting corpora mentioned above (Section 2), the MDTM
corpus is unique in that it was collected in a real-world environment, with the meeting
participants engaged in a complex professional task [Kane 2008].

Over 28 hours of meeting data were collected, in total. For the study reported in
this paper, a data set of 54 PCDs (approximately 220 minutes) were segmented and
annotated using the ELAN Linguistic Annotator [MPI 2005]. The original purpose of
data collection was to investigate the diagnosis and decision making processes of mul-
tidisciplinary medical teams [Kane and Luz 2006; 2009] within an interaction analy-
sis framework [Jordan and Henderson 1995]. This initial work revealed, among other
things, that although the medical team works under severe time constraints and con-
sequently the PCDs need to be well structured, the group managed to balance task and
socio-emotional exchanges, which as McGrath [1991] suggests, is a means of avoiding
tension and negative reactions in group collaboration.

The distribution of talk at MDTMs is very skewed, as evidenced in Figure 2(a), which
shows that the vast majority of vocalisations are of short duration. This is in agreement
with the general pattern in multi-party dialogues [Dabbs and Ruback 1987]. MDTM
vocalisations tend to last longer than those in scenario based meetings such as the ones
recorded for the AMI corpus [Carletta 2007]. The mean duration of an MDTM vocali-
sation is 8.2s (median 3.5s) while the a mean duration of an AMI meeting vocalisation
is 3.9s (median 1.4s) [Luz and Su 2010]. The AVERAGE number of (active) partici-
pants in an MDTM is also greater, as is the number of distinct roles they perform in
meetings. We identified 10 distinct participant roles, whose proportional contributions
(in terms of amount of talk) to the meetings is summarised in Figure 2(b). This again
is in contrast to the AMI data where only 4 roles are defined: user interface designer,
industrial designer, project manager and marketing expert. Unlike the speakers in the
broadcast news data analysed by Vinciarelli [2007], who can play different roles at dif-
ferent times during the broadcast, each speaker in the MDTM corpus has a unique
medical specialist role throughout the PCDs. The mapping from speaker identities to
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19:6 S. Luz

Table I. Descriptive statistics (mean and standard deviation) for patient case
discussions in the MDTM corpus

Description mean SD
Mean vocalisation length (per PCD) 8.55 sec. 4.45
Number of speakers per PCD 8.15 1.8
Vocalisations per PCD 29.6 17.6
Number of vocalisations per speaker (per PCD) 3.507 1.66
Vocalisations per minute 8.76 4.0
Group Vocalisation length 1.74 sec. 1.85
Silence per PCD 4.12% 3.7
Participation ratio 0.39 0.25
Entropy (speaker transitions) 0.78 0.35
Entropy (vocalisations lengths) 2.23 0.46

roles is not one-to-one, however, as more than one speaker can perform the same role
in the same PCD.

A total of 21 different speakers actively participated in the MDTMs. The remaining
time is distributed between pauses (silences, 3.4%) and “group vocalisation” (overlap-
ping speech, 1.2%). Averaged with respect to PCDs (Table I) talk duration is consistent
with the general MDTM figures. Table I also shows the average number of vocalisa-
tions per participant during a PCD, the average number of speakers participating in
each case discussion and the average duration of intervals of silence. The last row con-
tains the mean values for a metric we call participation ratio [Luz and Kane 2009].
The participation ratio of a meeting attendee is defined as the ratio of the number of
PCDs in which the attendee took active part to the total number of cases discussed.
The figures for mean participation ratio (over n speakers) in Table I were calculated
as r =

∑n
i |Ci|/(n|C|), where Ci represent the set of PCDs in which speaker si produced

at least one vocalisation and C is the entire set of PCDs.
Participation ratio figures summarise variability in the composition of the groups

across case discussions. Table I indicates a high degree of variation, showing that a
speaker will on average take part in only around 39% of all PCDs. A different measure
of variability is given by the Entropy (H) for the probability distribution of vocalisa-
tions by n speakers, calculated by averaging over the probabilities pi that speaker si is
speaking at a given time during PCD, in the usual way:H =

∑n
i pi log 1/pi. TheH score

for speaker transitions (H = 0.78, sd = 0.35) reveals a predictable pattern of speaker
transitions while the entropy of the vocalisation length indicates a process that is less
predictable (H = 2.23, sd = 0.46), though the amount of uncertainty in the distribution
of vocalisation length is still quite small considering that the we have on average more
than eight participants in a PCD.

2.1. The practical relevance of MDTM segmentation
It has been acknowledged in group research that descriptive statistics such as the ones
shown in Table I alone do not suffice to characterise a meeting. The interaction pro-
cess that links group task inputs to task outputs also needs to be considered [Hackman
and Morris 1975; Dabbs and Ruback 1987]. The Interaction Process Analysis proposed
by Bales [1950] and related systems provide an account of process which is based on
careful coding of ongoing group interactions. Dabbs and Ruback [1987] argue that, al-
though useful for analysis, the method of coding the content of speech interaction with
reference to a system of categories tends to miss important information found in the
more general paralinguistic features of meetings. From a CSCW perspective, a system
such as the one outlined in this paper, capable of automating the collection of content-
free (paralinguistic) features and segmenting the recorded data into meaningful sub-
units would provide a tool for analysing meetings with respect to their effectiveness,
the impact of new meeting-support technologies on the interaction, etc.
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In terms of meeting indexing, searching and browsing, structuring a multimedia
meeting record by topics of discussion could help users access audio content even in
the absence of speech transcription by providing reference points on the time line
[Bouamrane and Luz 2007; Moran et al. 1997]. While a variety of techniques have
been employed to add structure to different kinds of audio recordings, including role
identification on radio broadcasts [Barzilay et al. 2000], summarisation of broadcast
news based solely on prosodic features [Maskey and Hirschberg 2006] and “rich tran-
scription” of meetings [Fiscus et al. 2008], the approach presented in this paper aims to
identify reference points on meeting recordings based exclusively on the amount and
structure of talk. While it is clear that a complete meeting storage and retrieval sys-
tem will also require modality translation algorithms such as speech to text conversion
and video analysis, as currently pursued by many researchers, we believe that a focus
on content-free features will contribute in its own right to a better understanding of
the organisation of meeting data.

3. BRIEF REVIEW OF DISCOURSE SEGMENTATION AND RELATED WORK
For the purposes of meeting segmentation PCDs can be regarded as sequences of vo-
calisations grouped under a common topic (i.e. the discussion of a particular patient’s
case). In this sense, the task of segmenting MDTMs into PCDs is similar to the topic
segmentation task as defined by Galley et al. [2003] and tackled in recent work on
meeting analysis [Dielmann and Renals 2007; Hsueh 2008; Hsueh and Moore 2007;
Banerjee and Rudnicky 2007].

Meeting segmentation has been influenced by early work on text segmentation
[Hearst 1997; Beeferman et al. 1999], with which it shares evaluation metrics and
methods. Approaches to broadcast news segmentation [Rosenberg et al. 2007; Shriberg
et al. 2000] and lecture segmentation [Malioutov et al. 2007] have also influenced meet-
ing segmentation research. However, it is generally acknowledged that segmentation
of spontaneous speech produced by interacting speakers in a group is more challeng-
ing than text segmentation, where the topic structured is (in most cases) carefully
designed by the writer [Gruenstein et al. 2005], and segmentation of broadcast news
audio and other non-conversational speech, where the production environment and
other contextual factors might provide acoustic clues as to where segment boundaries
lie [Rosenberg et al. 2007; Gruenstein et al. 2005].

Related techniques are the identification and clustering of individual group actions
[Zhang et al. 2006; McCowan et al. 2005; McCowan et al. 2003] and the labelling of top-
ics [Blei and Moreno 2001]. While the present work is not concerned with these tasks,
we acknowledge that they could play an important role in the automatic structuring
of spontaneous speech. We investigated labelling issues (PCD content categorisation)
elsewhere [Luz and Kane 2009]. Here, the meeting is simply treated as a sequence
of vocalisations and pauses, and an attempt is made to mark out those vocalisations
which signal the beginning of a PCD.

Boundary vocalisations are similarly distributed for PCDs in our MDTM corpus,
where only about 3.6% of all vocalisations indicate the start of a PCD, and in the AMI
corpus, where about 3.3% of talk spurts indicate a topic change [Hsueh and Moore
2007]. However, despite these similarities MDTM segmentation differs from meeting
topic segmentation in that the latter seeks to identify segments that are different as
they appear in the vocalisation sequence, whereas the former aims to segment the
stream into essentially similar sub-sequences. Topics in the AMI corpus, for instance,
can be categorised as “top-level” and “functional topics”2 [Hsueh and Moore 2007] de-
noting segments that could also be described as “meeting states” [Banerjee and Rud-

2http://corpus.amiproject.org/documentations/annotations
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nicky 2004], such as “presentation”, “discussion”, “opening”, “closing”, “agenda” etc,
which can then be subdivided into sub-topics, forming a shallow hierarchy which is
usually flattened for the purposes of segmentation. Similarly, Gruenstein et al. [2005]
annotated the ICSI corpus [Janin et al. 2003] hierarchically according to topic, iden-
tifying, in addition, action items and decision points. For some applications, however,
annotation focuses simply on topic changes that produce high inter-annotator agree-
ment scores, with no further specification of topic label or discourse structure [Galley
et al. 2003].

In MDTM segmentation, due to the self-contained nature of PCDs, annotators have
little difficulty in identifying case discussion boundaries. The consistency of the man-
ual segmentation of the MDTM corpus was ensured by the close collaboration between
the researcher who gathered the data and members of the medical team who reviewed
the annotation. It should also be remarked that MDTM segmentation can also be hier-
archical, since PCDs exhibit an identifiable set of internal discussion states, including
presentation of symptoms and clinical findings, questioning and correlation of pathol-
ogy, radiology and examination data, disease stage classification, discussion of patient
management options, and articulation of the decision agreed [Kane and Luz 2009].
However, this level of topic structure has not been fully annotated in the MDTM cor-
pus and is therefore not addressed in this paper.

Different strategies have been employed for conversational topic segmentation. As
mentioned above, Galley et al. [2003] model meeting topic segmentation after a text
segmentation approach (namely, TextTiling [Hearst 1997]), relying on transcribed
speech to compute lexical cohesion probabilities for adjacent analysis windows. Re-
nals and Ellis [2003], on the other hand, consider “non-lexical methods” for segmenta-
tion which bear some similarity with our approach in that their data representation
is based on patterns of talk spurts encoded as transition matrices. However, their seg-
mentation algorithm, which is analogous to acoustic speaker segmentation using the
Bayesian Information Criterion, does not produce satisfactory results, leading the au-
thors to speculate that “turn pattern boundaries are not directly related to discussion
topics” [Renals and Ellis 2003]. The results presented in this paper seem to contradict
that conjecture.

More recent approaches to meeting segmentation have tended to work with richer
data representation schemes. Banerjee and Rudnicky [2004] define their model’s data
instances as short time windows over meeting segments whose features are described
by low-level conversational statistics (number of speakers, number of speaker changes
and speech overlap). They train a decision tree classifier to distinguish between win-
dows that contain topic changes, obtaining an 18% accuracy gain over a baseline (ran-
dom) classifier. In more recent work, implicit supervision in the form of participant
notes has been employed in order to segment meetings into speech intervals which cor-
respond to agenda items [Banerjee and Rudnicky 2007]. Dielmann and Renals [2007]
segmented meetings from the M4 corpus [McCowan et al. 2003] into a pre-defined
set of five basic “group meeting actions”. They used dynamic Bayesian networks to
integrate different feature streams (prosody, turn-taking, lexical and video) into a two-
level model comprising individual and group actions. Hsueh et al. [2007; 2006] used
talk spurts as data instances, assessing the effectiveness of different combinations of
features for topic boundary classification, including the above mentioned features as
well as prosody and motion data extracted from the video source. They tested feature
integration using a C4.5 (decision tree) classifier [Hsueh et al. 2006] and maximum en-
tropy models [Hsueh and Moore 2007]. Although most approaches employ supervised
learning, unsupervised learning has also been attempted [Hsueh 2008] using features
derived from phonotactic models [Schwarz et al. 2004] or regularities in acoustic pat-
terns [Malioutov et al. 2007] with some degree of success.
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The method presented below employs vocalisation matrices as a data representa-
tion mechanism for summarising conversational history. An attractive aspect of this
approach is that it does not rely on transcribed speech, being therefore unaffected by
speech recognition errors. A Naı̈ve Bayes classifier is employed on a combination of
continuous and discrete variables [John and Langley 1995], yielding promising seg-
mentation results. The method is described in detail and evaluated in the following
section.

4. MDTM SEGMENTATION
There is evidence to suggest that paralinguistic, non-lexical features of speech can be
indicative of discourse structure [Grosz and Hirschberg 1992]. Prosodic features, for
instance, have been employed as the exclusive means of segmenting speech data from
the Switchboard and Broadcast News corpora into sentences and topics [Shriberg et al.
2000]. There is also evidence that the durations of pauses and speech overlaps have
predictive value in terms of topic segmentation. Oliveira [2002] notes a correlation be-
tween the duration of pauses and topic boundaries in recordings of spontaneous narra-
tives. Statistical analysis of the MDTM corpus shows that boundary and non-boundary
vocalisations differ in duration by about 3.9s on average (CI = [.01, .68]) (Welch two
sample t-test on log transformed values, t[51.8] = 2.04, p < .05) and that pauses are
also significantly longer at topic boundaries (1.5s, CI = [.02, .38], t[159] = 2.23, p < .05).
Statistically significant differences are also observed in the AMI corpus3 for pauses
(1.2s, CI = [.68, 1.87], t[597] = 4.19, p < .01) and vocalisations (7.2s, CI = [6.4, 8.1],
t[919] = 16.7, p < .01). In terms of the roles performed by the various medical special-
ists, differences have also been observed. Although medical consultants and patholo-
gists tend to speak at the beginning of PCDs more often than their colleagues (over
44% of boundary vocalisations altogether), their boundary vocalisations are about 4s
shorter than their other vocalisations (p < .01). On the other hand, medical regis-
trars who also often open PCD with presentations of symptoms and findings spend
about 8.3s longer in their PCD boundary vocalisations than in their other interven-
tions CI = [3.7, 14.2], t[14] = 3.65, p < .01), in agreement with informal observations
reported by Kane and Luz [2009]. These differences suggest that content-free features,
combined with participant role information can indeed inform segmentation.

Content-free analysis summarises dialogues as “vocalisation matrices” which basi-
cally encode the amount of speech produced by a speaker in a continuous talk spurt,
the duration of speech pauses, and the probabilities that a particular speaker’s vocal-
isation will be followed by another speaker’s vocalisation. In general, a conversation
is modelled as a Markov process with respect to such transition probabilities [Jaffe
and Feldstein 1970]. This assumption has been shown to be effective for classification
of (pre-segmented) PCDs according to the nature of the discussion (medical, surgical,
referral, etc) in [Luz and Kane 2009], where a graph-based representation of the PCD
is adopted. The approach adopted here relaxes this assumption by allowing a number
of preceding vocalisations to be encoded as part of the feature set.

The data set consists of an interval of silences and vocalisations to be classified as
either boundary or non-boundary instances. A boundary instance indicates the begin-
ning of a PCD. The features used to describe an instance are encoded as a vector s
encompassing duration of silences or vocalisations and the roles of the speakers who
uttered the vocalisations, as shown in equation (1).

3More precisely, the sub-corpus corresponding to the “remote control” meeting scenario, with meetings
recorded at Edinburgh
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s = (V0, L0, V−1, L−1 . . . , V−n, L−n, V1, L1 . . . , Vn, Ln) (1)

Vi is a nominal variable denoting the speaker role (or a pause type or group speech,
in the cases of silences and vocalisations by more than one speaker, respectively). The
speaker roles which can instantiate V0, . . . , Vn range over the values shown in Fig-
ure 2(b). Although these roles are specific to MDTMs, other meetings exhibit distinct
speaker roles which influence conversational structure [Laskowski et al. 2003]. Recent
results suggest that more general roles, such as defined in the AMI corpus, for instance,
can be employed for topic segmentation in a similar way as described in this paper [Luz
and Su 2010]. Since medical roles denote specialisms it can be assumed that within a
stable group like the multidisciplinary team instantiation of the role features can be
inferred from speaker identities. Where more than one specialist performed the same
role in a PCD (e.g. more than one radiologist took part in the discussion) they were
represented as a single role feature as a smoothing technique.
Li is a continuous variable for the duration of the speech (or silence) interval, and

the pairs V−i, L−i and Vi, Li refer to the ith roles and durations of vocalisation intervals
preceding and following the vocalisation described by the instance, respectively.

4.1. Data preparation
As mentioned above, a data set consisting of 54 PCDs has been segmented and manu-
ally annotated for speaker identities and roles. In addition to PCDs, the segmentation
involved marking the set of dialogue states specified in Definition 4.1.

DEFINITION 4.1. The following types of dialogue states are distinguished:

. (Individual) Vocalisation: the length of time that a speaker “has the floor”. A
speaker takes the floor when they begin speaking to the exclusion of everyone else
and speak uninterruptedly without pause for at least 1 second. The vocalisation ends
when a silence, another individual vocalisation or a group vocalisation begins. Talk
spurts shorter than 1 second (e.g. back channels) are not annotated and are simply
incorporated into the main speaker’s vocalisation.
. Group vocalisation occurs when an individual has fallen silent and two or more
individuals are speaking together. The group vocalisation ends when any individual
is again speaking alone, or a period of silence begins. Individual speaker identities
are lost when a group vocalisation state is entered.
. Silence represents quiet periods of over 0.9 seconds between vocalisations (includ-
ing group vocalisations). A Silence ends when an individual or group vocalisation
begins. A Silence can be further classified as:

. a pause: a silence between two vocalisations by the same participant,

. a switching pause: a silence between two vocalisations by different partici-
pants,
. a group pause: a silence between two group vocalisations, or
. a group switching pause: a silence between a group vocalisation and an indi-
vidual vocalisation.

Annotation followed the methodology described in the psychology and computer-
supported cooperative work literature [Dabbs and Ruback 1987; Sellen 1995] and
therefore focused mainly on amount and structure of speech activity. The metadata
created for this set of 54 PCDs are in fact much more detailed, containing information
about artifacts employed during the meeting, use of informal language, roles etc. For
the purposes of this paper, however, only speech activity and speaker roles are con-
sidered. The dialogue states specified in Definition 4.1 are similar to the ones used
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by Sellen [1995], with an adjustment to the minimal duration of a vocalisation. Our
definition of silence is similar to the concept of switching pauses [Dabbs and Ruback
1987]. A richer vocalisation event taxonomy could be created through audio sampling
at shorter intervals [Brady 1968] but we decided to keep our definition consistent with
existing work on group interaction. The threshold of 0.9s in the definition of pause
was determined empirically. Sellen [1995], for instance, uses a threshold of 1.5s. How-
ever, her data are recorded in 2-participant remote communication scenarios in which
pauses tend to be longer due to technology mediation. One could also define simplified
notions of turns as sequences of vocalisations and pauses, and analogously group turns
as sequences of group vocalisations and group pauses. However, we chose to avoid the
term “turn” altogether, as it is used in conversation analysis [Sacks et al. 1974] in a
different and more complex sense.

In keeping the basic units of analysis simple, we expect to be able to automate their
extraction from recorded audio through existing signal processing techniques [Fiscus
et al. 2008]. It should be noted, however, that the processing steps necessary to turn the
audio signal into sequences of dialogue states labelled by speaker (or silence) are not
straightforward. This process is called speaker (or audio) diarisation and is usually
performed through change detection with the Bayesian information criterion [Chen
and Gopalakrishnan 1998] followed by clustering of audio feature vectors using, for
instance, Gaussian mixture models as emission probabilities for continuous density
hidden Markov models [Ajmera and Wooters 2003]. Although progress has been made
in this area [Fiscus et al. 2008; Tranter and Reynolds 2006], diarisation can be quite
error prone especially when the input consists of a single audio stream containing all
speaker sources. The method described above can therefore be regarded as operating
under idealised conditions, in this respect. This simplification seems warranted as a
strategy for testing PCD segmentation as an individual module (unit testing). It is also
compatible with the approaches to meeting topic segmentation reviewed in Section 3,
which for the most part are trained on force-aligned transcripts and speaker identi-
fication through individual audio sources (as is the case of the AMI corpus and the
ICSI meeting corpus) and therefore approach the standard used in the tests reported
in this paper. Nevertheless, it would be interesting to test the method on data con-
taining simulated levels of diarisation error in order to assess its performance under
more realistic recording conditions. Asking MDTM participants to wear wireless mi-
crophones may also offer a solution which could be tested with the user group in real
work contexts.

4.2. Boundary detection
The annotation streams were converted from the ELAN annotation format into an R
data frame representing a collection of instances of the form specified in equation (1).
Alternative data sets were generated by varying the size of the window over previous
and next dialogue state (a horizon of size n role-length pairs on each side of the target
dialogue state) and by distinguishing or not between different pause types (see Defini-
tion 4.1), in order to assess the effect that these contextual parameters might have on
segmentation accuracy.

The segmentation method consisted in training a Naı̈ve Bayes classifier to identify
instances marked as boundary dialogue states (i.e. vocalisation that start a new PCD).
The conditional probabilities for the nominal variables (speaker roles) are estimated
on the training set by maximum likelihood and combined into multinomial models
[McCallum and Nigam 1998] while the continuous variables are modelled through
Gaussian kernels [John and Langley 1995], as shown in equation (2), where µb and σ2

b
are the mean and variance of the values taken by the features Li in the data set given
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a PCD boundary, represented here as Boolean variable b.

P (Li = x|b) = g(x;µb, σb)

=
1

σb
√
2π
e
− (x−µb)

2

2σ2
b (2)

For the full model, the probabilities to be estimated are simplified through Bayes’
rule and the conditional independence assumption to:

P (b|S = s) ∝ P (V0 = v0, . . . , Ln = ln|b) (3)

=

n∏
i=1

P (Vi = vi|b)P (Li = li|b) (4)

where S denotes a random variable ranging over the vector representation of vocalisa-
tion events, as defined in equation (1).

Since the feature sets used in our experiments contained relatively few features, no
further pre-processing or feature selection steps were taken during training or classifi-
cation. The number of PCDs in the test MDTM segments was assumed to be unknown.
A maximum a posteriori (MAP) rule [Yang 2001] was adopted for PCD boundary as-
signment. Other strategies such as SCut and proportional thresholding could also be
explored [Luz and Su 2010]. Section 5 discusses thresholding strategies further.

4.3. Evaluation
Although IR metrics such as precision, recall, F scores, and accuracy, have been used
to evaluate applications that combine topic segmentation and detection [Banerjee and
Rudnicky 2004], the usual way to evaluate meeting segmentation is to employ metrics
originally developed for text segmentation. For a segmentation task defined in terms
of classification, as in this paper, accuracy scores are misleadingly high due to the
fact that the data set is highly imbalanced. Since only about 3% of instances are pos-
itive, a trivial classifier assigning non-boundary labels to all instances would predict
accurately about 97% of the time. Precision, recall and F scores are also difficult to
interpret, even if restricted to the positive class, since they penalise near misses (hy-
pothesised boundaries that fall near true boundaries) and predictions that are wide off
the mark equally. Therefore two slightly different error metrics are employed which
originated in text segmentation research but are now widely used in speech topic seg-
mentation: Pk [Beeferman et al. 1999] and WindowDiff (WD) [Pevzner and Hearst
2002].

The Pk metric gives the probability that two vocalisations occurring k vocalisations
apart and picked otherwise randomly from the data set are incorrectly identified by
the algorithm as belonging to the same or to different PCDs. This is formally stated
in equation (5), where r and h denote the reference and hypothesis segmentation, re-
spectively. Dk stands for a distribution with probability fixed at a distance k (chosen to
be half the average segment size, in number of vocalisations), a(i, j) returns 1 if i and
j belong to the same PCD and 0 otherwise, and δ returns 1 if its two arguments are
equal and 0 otherwise (Kronecker delta). This results in an increment if boundaries
are assigned inconsistently within a segment.

Pk(r, h) =
∑

1≤i≤j≤N

Dk(i, j)[1− δ(a(ri, rj), a(hi, hj))] (5)

The WD metric is based on a similar idea. It can also be regarded as an estimate
of inconsistencies between reference and hypothesis, obtained by sliding a window of
length equal k segments over the MDTM and counting disagreements. WD, however,
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Table II. Mean results for cross-validated segmentation experiments for
1 ≤ n ≤ 7 vocalisation horizons, with and without pause type discrimina-
tion. Mean number of boundaries per segment fold is 10 in reference.

Pause types included No pause types
n Pk WD boundaries Pk WD boundaries
1 31.9% 37.0% 6.4 34.6% 39.1% 5.8
2 31.0% 43.0% 14.6 28.4% 44.6% 17.2
3 27.6% 38.8% 15.0 28.8% 42.8% 17.2
4 27.8% 35.7% 12.4 27.6% 36.7% 13.6
5 28.1% 34.7% 11.2 29.2% 39.3% 13.0
6 31.8% 40.0% 13.2 31.7% 41.6% 14.0
7 31.1% 43.4% 12.6 31.7% 42.8% 13.8

takes into account the number of boundaries predicted by the algorithm and the num-
ber actually contained in the reference for the calculation of the error score. The score
is calculated as shown in equation (6). N is the number of sub-segments of size k, as
before, and b(i, j) gives the number of PCD boundaries between segments i and j.

WD(r, h) =

∑N−k
i=1 [1− δ(b(ri, ri+k), b(hi, hi+k))]

N − k
(6)

In addition to Pk and WD, I follow Sherman and Liu [2008] in reporting the mean
number of boundaries actually assigned by the classifier. This is relevant to the in-
terpretation of the results since both segmentation metrics tend to favour hypotheses
with fewer boundaries.

4.4. Results
Table II shows the performance of the segmentation algorithm in a 5-fold cross valida-
tion experiment in which different window sizes and data representations were com-
pared. Two alternative representations were assessed. In one of them the algorithm
distinguished between the various types of pauses specified in Definition 4.1. In the
other, it labelled all types of pauses simply as “silence”. Results showed that discrim-
inating between pause types (switching pauses, group switching pauses, vocalisation
pauses and group pauses) and increasing the vocalisation context horizon both have
a positive effect on segmentation accuracy. As the context horizon is increased past
5 vocalisations on each side of the current segment performance degrades as a con-
sequence of data sparsity. Furthermore, it should be remarked that while the single
context representation (horizon n = 1) results in WD scores close to the best (5-feature
horizon) results, its Pk results are clearly inferior. The apparently good performance of
the single-feature context in terms of WD is explained by the low average number of
PCD boundaries it predicts per segment (see Table II) in conjunction with the fact that
the WD metric tends to favour under-prediction. Under-prediction, as will be seen in
section 4.7, is one of the main challenges in learning from imbalanced data such as the
MDTM corpus. The best performing representations are therefore those which have
low Pk and WD values, and yield a number of boundary predictions close to the num-
ber in the reference. The 5-feature horizon representation met these criteria better
than the alternatives.

A closer analysis of the predictions then reveals that WD scores are considerably
higher than Pk scores due to the fact that the algorithm over-predicts boundaries
around the true boundary (sometimes predicting as many as 4 hypothetical bound-
aries adjacently to the true boundary). This is an interesting phenomenon which fur-
ther supports the hypothesis that the sequential structure of speech exchanges is in-
dicative of higher level (topic) structures. In addition, from a pragmatic perspective,
since adjacent boundaries do not occur in practice, this algorithm’s behaviour offers a
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reference

hypothesis 2
hypothesys

p(b|S)

Fig. 3. Profile for a MDTM interval showing segmentation results before (hypothesis) and after (hypothesis
2) removal of spurious adjacent boundaries, in relation to the gold standard (reference). The probabilities
assigned to each vocalisation event by the classifier, P (b|S), are shown in the series below the horizontal
bars.

straightforward possibility for improvement simply by filtering the excess boundaries
at a post-processing step.

Figure 3 shows the segmentation profile for an interval of an MDTM. The filled
horizontal bars on the line labelled “reference” represent dialogue events (vocalisations
or silences) marked as PCD boundaries in the gold standard annotation. The bars
on the line marked “hypothesis” represent the events marked as boundaries by the
classifier, possibly containing adjacent event clusters, which could not possibly all be
true boundaries. An overview of the probabilities assigned to each dialogue event by
the classifier is shown at the bottom of the chart. The line marked “hypothesis 2” shows
the boundary assignment results after a simple filtering algorithm was applied which
selected among a cluster of adjacent hypothetical boundaries the one with the highest
probability (as assigned by the Naı̈ve Bayes classifier) as the true boundary event.

4.5. Baseline analysis
Having observed that PCD (as well as topic) boundaries coincide with vocalisation
events that are significantly longer on average than non-boundary events (see page 4),
one might wonder whether segmentation based on individual vocalisation events
rather than the horizon representation proposed above might not suffice. One would
also like to be able to quantify the improvement yielded by the vocalisation horizon
representation over reasonable baselines. In this section an analysis of alternative
baselines is presented and compared to the results reported above.

Although random and majority classifiers are often used as baselines in machine
learning research, they are inappropriate for PCD segmentation due to the imbal-
anced nature of the data set. Better informed baselines which have been employed
in the analysis of transcript-based meeting segmentation analysis include random as-
signment to the test set of the same number of boundaries found in the training set
[Sherman and Liu 2008] and Monte Carlo simulated segments [Hsueh et al. 2006]. Em-
ploying a Monte Carlo approach and generating a number of segments proportional to
the number in a hold-out MDTM interval, averaged over 100 iterations, gives mean
PCD segmentation errors of Pk = 45.7% and WD = 50.1%. In terms of this baseline,
therefore, the optimal results of the horizon technique represent an improvement of
about 61.5% for Pk and 69% for WD.

Tests showed that even though vocalisations and pauses tend to be longer at seg-
ment boundaries predicting boundaries simply based on vocalisation event duration
would not necessarily improve upon the Monte Carlo baseline. Predicting a bound-
ary for all vocalisation events that exceed the mean duration by the amount reported
in section 4 would over-predict yielding worse results than the baseline: Pk = 40.8%
and WD = 51.3%. However, a more selective approach, taking only (log-transformed)
segments two standard deviations greater than the mean, would produce an improve-
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ment: Pk = 38.5% and WD = 47%. The latter scores show the predictive potential of
vocalisation length, but fall well short of the results obtained with vocalisation hori-
zons. Including speaker role information and training a Bayesian model based only on
role-duration pairs (i.e. in terms of Table II this would be equivalent to setting n = 0
for the horizon) produces similarly unimpressive results: Pk = 42% and WD = 46%.
This analysis shows that considering even a small context (only the immediately pre-
ceding and following vocalisation event) considerably improves the predictive power of
the representation.

Finally, in attempting to provide a stronger baseline a method was chosen, namely
Hidden Markov Models (HMM), which is commonly used for sequence analysis and
therefore would appear to be a natural choice for topic segmentation. HMM have in
fact been employed for segmentation of telephone and news broadcast speech into sen-
tences [Liu et al. 2006], a task which has some characteristics in common with topic
segmentation. A model was created in which b (boundary) and ¬b (non-boundary) cor-
responded to the model states, speaker roles corresponded to observations, and tran-
sition and emission probabilities were estimated from the vocalisation matrix. A 5-
fold cross validation procedure was employed for evaluation. The best path hypothesis
(Viterbi path) under-predicted yielding Pk = 38.2% and WD = 41%. In order to mitigate
under-prediction, a proportional thresholding strategy [Yang 2001] was applied to the
posterior probabilities for b states so as to select a number of boundary instances pro-
portional to the number found in the training set. This strategy resulted in Pk = 38.7%
and WD = 47.3%. These results are further discussed in section 4.7 with respect to the
class imbalance issue.

4.6. The effect of diarisation errors
The results above were obtained by training the segmentation algorithm on a gold-
standard (i.e. manually annotated and corrected) data set where timing information
and speaker identity are reliable across the sequence of vocalisation events. As noted
in Section 4, the task of segmenting an audio stream into a vocalisation sequence and
assigning these segments speaker labels is known as speaker diarisation. The effec-
tiveness of this task is usually measured in terms of an optimum one-to-one mapping
of reference speaker labels to system output speaker labels. A diarisation error rate
(DER) metric is then computed as a fraction of speaker time that is mislabelled [NIST
2011].

Although turn-taking boundaries, pauses and overlaps can be reliably identified
for dyadic dialogues recorded under favourable conditions (cf. Heldner and Edlund
[2010]), diarisation is very much an active area of research. Progress has been made
in recent years on diarisation of meeting recordings [Fiscus et al. 2008; Tranter and
Reynolds 2006]. The problem, however, is still far from solved, and the speaker diari-
sation results from the latest rich transcription meeting recognition evaluations [NIST
2011] vary depending on the type of meeting and the audio capture source. Data cap-
tured though single distant microphones, for instance, seem harder to process with
error rater ranging from 15 to 30%. Multiple distant microphone data, on the other
hand, can exhibit diarisation error rates as low as 8%.

Unlike other corpora, the MDTM recordings were taken under challenging acoustic
conditions, due to a number of factors. The MDTMs are busy, highly time-constrained
events where participants make extensive use of artifacts such as paper records and
X-ray films which produce considerable noise. In addition, the video recording equip-
ment (from which one of the audio sources was extracted) had to be placed at the back
of the room so as not to interfere with the work of the medical participants. This ad-
versely affected sound quality. In a less exploratory setting where recording would be
part of the MDTM routine, multiple microphones could be placed favourably yielding
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DER levels comparable to those obtained by current diarisation systems. This section
presents an evaluation of the effect of different levels of DER on the PCD segmentation
method presented above.

Diarisation consists of various components, including speech detection, change de-
tection, gender and bandwidth classification, clustering, identity finding etc [Tran-
ter and Reynolds 2006]. From the perspective of PCD segmentation according to the
method proposed in this paper, the relevant steps are speech and change detection
(to determine the duration of vocalisation, pause and overlap events) and cluster-
ing/identity finding (to assign speaker labels). As MDTMs have a stable staff mem-
bership (the multidisciplinary medical team) with well defined roles, speaker iden-
tities map straightforwardly to the role variables (V0, . . . Vn). In order to access the
effects of different levels of DER on segmentation, two types of noise were added to the
MDTM data: change detection errors and speaker labelling errors. These noise types
were added to reflect the most typical errors found in current diarisation systems. The
different errors were assessed both separately and in combination.

Change detection is generally implemented by sliding a window of fixed length over
the audio data and looking for changing points within it by using a penalised likeli-
hood ratio criterion (usually the Bayesian information criterion, BIC). A consequence
of this approach is that the detector tends to miss short vocalisations (less than 2-
5s long) [Tranter and Reynolds 2006]. The distribution of vocalisation lengths in the
MDTM data set is highly skewed towards shorter vocalisations (Figure 2a), with about
44% of vocalisations being shorter than 3s. These facts were taken into account when
adding noise to vocalisation boundaries so that sorter segments will be more likely to
be affected. Thus, vocalisation durations were scaled according to noise drawn from an
exponential distribution to target four different levels of DER: 4%, 10%, 17% and 25%,
by varying the λ parameter of the distribution. The resulting noisy data sets were
tested for actual DER scores using md-eval [NIST 2011] and yielded DER values of
4.1%, 9.9%, 17.6% and 26%, respectively.

Speaker error (i.e. where system assigned speaker label differs from reference
speaker) accounts to by far the majority of diarisation errors [Tranter and Reynolds
2006; Fiscus et al. 2008]. This type of error was modelled on the MDTM data set by ran-
domly reassigning speaker labels to the vocalisations. The target DER levels were the
same as above, and the actual measured scores were: 4.4%, 9.2%, 17.4% and 28%. Fi-
nally, we also generated noisy data sets which combined change detection and speaker
errors in the proportions reported in recent diarisation evaluations, that is, about 70%
of the added noise corresponding to speaker errors and about 30% of noise correspond-
ing to change detection errors. The actual mean DER scores for these data sets were:
5%, 9.2%, 17.5% and 25.8%.

The best performing representation, the 5-vocalisation horizon with pause type dis-
crimination, was chosen as the basis for testing. Data Sets containing diarisation er-
rors in the above defined ranges were converted into that representation and a cross
validation procedure was employed over 10 iterations (i.e. noise set generation and seg-
mentation was performed 10 times for each level) and the (Pk and WD) results were
averaged. This procedure was repeated for each of the three conditions: change detec-
tion errors only, speaker labelling error only, combined change detection and speaker
error, as described above.

The results of this evaluation are shown in Figure 4 in terms of Pk and WD scores.
As expected, diarisation errors have an adverse effect on PCD segmentation accuracy.
However, the technique seems reasonably robust to moderate levels diarisation error
as the deterioration in segmentation accuracy is relatively small (6-9.6% in Pk and
14-17% in WD) for DER scores up to 10%. In terms of the effects of different types of
errors on segmentation accuracy, change detection had a smaller impact than speaker
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Fig. 4. Segmentation results in Pk (left) and WD (right) for data sets containing diarisation errors. The
traced line shows error scores obtained for representation horizon n = 5 built on gold standard data (i.e.
data containing no diarisation errors).

errors. In the combined error condition, which better reflects errors produced by cur-
rent systems, segmentation accuracy was similar to that obtained in data sets con-
taining speaker error only. These results imply that the nominal (role label) features
of the horizon representation are more useful than their continuous (vocalisation event
duration) counterparts.

Despite these encouraging results, a usable system for information access and re-
trieval MDTM will require accurate diarisation (as well as other “rich transcription”
functionality) in addition to robust PCD segmentation. In order to address these needs
in a more comprehensive way, we are currently seeking permission to gather a greater
volume of medical meeting data using individual microphones and well positioned mi-
crophone arrays. These data should enable us to investigate diarisation performance
more realistically.

4.7. Redundancy in data representation and the effectiveness of Naı̈ve Bayes
The pattern of boundaries shown in Figure 3, with placement adjacent or clustered
around the same regions in the hypothesis (generally around a true boundary) is spe-
cific to the use of a Naive Bayes (NB) classifier for the segmentation task. A rerun of
the experiment for the best combination of context size 5 and pause type discrimina-
tion on three different types of classification algorithms, namely, C4.5 [Quinlan 1993],
SVM [Cortes and Vapnik 1995], and nearest neighbour (k-NN) illustrates this point.
Table III shows a summary of results in terms of segmentation metrics and boundary
numbers. The results for HMM segmentation reported in section 4.5 have also been in-
cluded for comparison. As can be seen, NB outperforms all other classification methods
by a large margin. The difference between the mean number of boundaries initially hy-
pothesised by NB and the mean number of boundaries actually placed after adjacent
boundaries were filtered out is particularly noteworthy.

The performance of most classifiers degrades under imbalanced class distributions
[Japkowicz and Stephen 2002], as is the case of PCD boundaries in the MDTM data.
The class imbalance problem was noted in connection with sentence segmentation and
HMM by Liu et al. [2006] who attempted different strategies to mitigate it, including
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Table III. Performance of segmentation based on different types of
classifiers. Data representation set to a context of 5 vocalisations,
including pause type discrimination.

boundaries
classifier Pk WD pre-filtering post-filtering
NB 28.1% 34.7% 20.4 11.2
k-NN 39.4% 46.3% 7.8 7.6
C4.5 41.0% 46.2% 8.4 8.0
SVM 34.0% 39.0% 5.6 5.2
HMM 38.7% 47.3% 6.0 6.0

a variety of sampling methods in combination with the models. Hsueh et al. [2006]
remarked that such strategies appear to be ineffective in meeting topic segmentation
where class imbalance is much more severe. In the tests reported here, the decision
trees generated by the C4.5 algorithm had to be left unpruned in order for the classifier
to avoid trivial classification of all segments as non-boundaries. Similarly the SVM was
set to use a simple polynomial kernel, k(si, sj) = (si · sj)d. Despite these adjustments,
all tested classifiers with the exception of NB generated on average fewer boundary
hypotheses than the reference. As the figures for pre- and post-filtering in Table III
show, the clustered placement of boundary hypotheses only occurs with NB.

A possible explanation for the good performance of NB lies in the redundant nature
of our data representation scheme. Although the original data representation intro-
duced in Section 4 describes a vector of attributes that correspond to a sequence of
vocalisations of a certain length, NB’s independence assumption implies that order in-
formation is lost when the parameters of the model are estimated. This means that
the representations for candidate boundary instances that occur next to each other
actually share all but two features.

Zhang [2004] analysed the conditions under which NB can exhibit optimal perfor-
mance. He concluded that regardless of how strong the dependencies among attributes,
good performance can be attained if the dependencies cancel each other out, or are dis-
tributed evenly within the classes. In the case of our representation scheme, which
always preserves the grouping of roles and vocalisation lengths as it slides a window
of fixed size (with respect to the number of discrete vocalisation events, not time) over
the dialogue sequence to generate candidate boundary instances, most dependencies
will be cancelled out. Furthermore, the similarity among instances in the neighbour-
hood of a true boundary will have the effect of mitigating the effect of class imbalance.
If this is the case, a possibility for improving on the current performance of NB would
be to mark non-boundary vocalisations adjacent to true boundaries in the training set
as boundaries so as to train the classifier to over-predict around the true boundaries
and filter out the excess hypotheses through lower order sequence analysis methods
such as HMM. This seems a promising topic for future research.

5. DISCUSSION AND COMPARISONS
The system presented above attains performance levels comparable to those achieved
by state of the art supervised systems for segmentation of meetings by topic, while us-
ing much simpler content-free features. The decision tree approach presented in [Gal-
ley et al. 2003], which is based on lexical cohesion features (LCSeg) extracted from
hand-transcribed speech from the ICSI corpus, has error rates of 31.9% (Pk) and 35.9%
(WD). The authors report these results to be significantly better than results of other
approaches originally designed for text segmentation [Utiyama and Isahara 2001; Choi
2000], whose error scores on the same corpus range from 37.4% to 58%. Sherman and
Liu [2008] found that hidden Markov models (over sentence sequences) produces better
results than LCSeg on the ICSI corpus, including sub-topics (Pk = 32.7%, WD= 42%).
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Hsueh and Moore [2007] report that a lexical cohesion segmentation approach applied
to topic segmentation of the AMI corpus produces a Pk score of about 40% and a WD
score of 47%. Their improved maximum entropy segmentation algorithm, which com-
bines lexical, conversational, prosody, video and contextual features achieves 34% (Pk)
and 36% (WD). These scores were obtained on the task that includes sub-topics, whose
ratio of boundary segments to total number of segments is similar to the same ratio
observed in the MDTM corpus. The authors also show that moderate levels of word
error rates in speech recognition cause only slight degradation in performance, and
that not all classes of features are equally important. Somewhat in agreement with
the hypothesis investigated in this paper, they find that conversational features are
the most essential non-lexical features for topic segmentation.

Although task and corpus differences do not allow a detailed comparison of our
results with the ones reported for the above mentioned systems, we note that for a
comparable proportion of target boundaries our approach, based solely on amount
of speech, speaker transition and role description features, attains lower error rates
(27.6% and 34.7% for Pk and WD respectively) than those more elaborate approaches.
A similar content-free approach to the one described in this paper, including post-
filtering and different threshold strategies as well as further data representation dis-
tinctions aimed at better characterising overlaps and pause events, has been tested on
the AMI corpus [Luz and Su 2010] yielding relatively good results (Pk = 27.7% and
WD= 36%).

It is likely that PCDs are better structured and homogeneous with respect to turn-
taking than topics in more general meetings (even scenario-based ones) and that this
structure is captured by our model. In this regard, a comparison to other non-lexical
topic segmentation methods which process better structured data such as news broad-
casts [Allan et al. 1998] may be helpful. Shriberg et al. [2000] employed decision trees
to estimate topic boundary probabilities in broadcast news audio based solely on pause
duration, F0 (pitch) range, turn/no turn at boundary, speaker gender and turn dura-
tion. They reported error results of about 17.3% in terms of the TDT segmentation
metric [Allan et al. 1998]. The TDT metric is an adaptation of the Pk metric [Beefer-
man et al. 1999] which penalises false alarms more heavily than misses by assigning
a 0.7 weight to instances of the former and a 0.3 weight to instances of the latter.
This means that in an imbalanced data set the TDT metric is more forgiving than
the Pk metric used in this paper (chance in the TDT weighted metric yields a score
of 30% while chance on the MDTM yields a Pk of about 45%). In spite of these differ-
ences, Shriberg et al’s results are impressive and further corroborate the hypothesis
that non-lexical features can be good indicators of topic structure. Another hindrance
to comparisons between news and MDTM segmentation results is the fact that, even
though in both cases the topics have relatively well defined structure, news data are
characterised by a more marked contrast between very frequent speakers (e.g. the
news anchor) and very rare ones (e.g. interviewees and guests). This kind of contrast
is even more evident in data from lectures, to which non-lexical approaches that have
also been applied. The unsupervised approach based on audio features only and tested
on lecture data by Malioutov et al. [2007] produced a Pk score of 35.8% and a WD of
37%.

From the practical point of view of implementing a searchable multimedia archive
of MDTMs [Luz and Kane 2009] usable in a real-world application, segmentation is a
very initial but important step. Due to their relatively high error rates, it is unlikely
that current segmentation methods could be used for storage of PCD discussion records
as separate units on a database system, in a medical context. Rather, we envision an
interaction mode in which the user, for instance, “browses” time-based media contain-
ing recordings of MDTMs in order to locate the information of interest. The method
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presented above, even though it clearly over-predicts, could usefully support this in-
teraction mode. In browsing, high recall is often favoured over precision [Bouamrane
and Luz 2007; Moran et al. 1997]. When presented with a misidentified PCD bound-
ary (a false positive), the user can usually identify it as such after a few seconds of
listening and skip over to the next boundary. In that regard, it is worth pointing again
to Figure 3 and noting that the profile is dominated by zero or very low probabilities
(representing true negatives), and that for all missed boundaries (false negatives) the
probabilities peak to values greater than those of true negatives. Therefore, if one were
to adjust the classification threshold one could optimise the utility of the classifier (in
a decision-theoretic sense, valuing recall over precision [Lewis 1995]) for this partic-
ular interaction mode. Usability studies to determine and test such parameters are a
promising area for future work.

Although the information generated at MDTMs constitutes an invaluable resource
for a number of processes in healthcare, from patient management to teaching, the in-
corporation of MDTM-generated data into existing patient-centred models is far from
straightforward. Given that MDT meeting participants work under tight time con-
straints, automatic recording seems to be the only viable option for data gathering.
Recording and storage of multimedia meeting data in digital form have become rela-
tively commonplace in recent years. The challenge consists in finding effective ways of
structuring and providing easy access to these data.

6. CONCLUSION AND FUTURE WORK
Collection of meeting data that are representative of the activities of professionals in
the real-world is a basic requirement for the analysis of the effects of meeting sup-
port technologies on group performance and for the development of systems capable
of capturing and indexing of meetings. This paper described a small but, we believe,
representative corpus of speech interaction data generated during multidisciplinary
medical team meetings4. A novel use of a simple data representation technique in-
spired by research on dialogue in the fields of social psychology and computer sup-
ported cooperative work has been presented which produced surprisingly good results
in an automatic topic segmentation task. The combination of nominal and continu-
ous features derived from amount and sequence of speech and speaker roles through
a Naı̈ve Bayes classifier yielded promising results when applied to the segmentation
of MDTMs into patient case discussions, achieving performance levels that compare
favourably to state-of-the-art meeting segmentation techniques.

The work described here forms part of an ongoing study aimed at understanding the
task and process at play in MDTMs with a view to identifying ways in which computer
technology might be deployed in such settings. This includes an investigation into the
possibility of enriching existing electronic health records with automatic segmentation
and indexing of patient case discussions. Such a system would potentially allow users
to easily retrieve PCDs for teaching and healthcare management purposes. In order to
achieve these goals, in addition to segmentation, we are currently tackling issues such
as automatic categorisation PCDs [Luz and Kane 2009] as well as carrying out further
fieldwork studies with the cooperation of the medical teams. In parallel, we are also

4Due to the confidential and sensitive nature of the material gathered the audio and video recordings cannot
be distributed. However, the anonymised vocalisation sequence data sets and the software used for segmen-
tation and evaluations reported in this paper can be made available on request. In future we hope to obtain
approval to gather and distribute privacy-preserving audio features from which content cannot be recovered
but that can be used for segmentation at different levels [Parthasarathi et al. 2009] so as to extend the range
of possible content-free studies based on the data.
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conducting a controlled user study of the usefulness of topic segmentation outputs at
different levels of accuracy on a browsing task using AMI corpus data.

As we reach a better understanding of the information needs of the different people
involved in MDTM work, we plan on extending the evaluation of our segmentation
techniques to encompass the study of empirical correlations between performance at
typical information access tasks by, say, senior consultants reviewing similar cases,
and the existing segmentation metrics. This could help establish utility criteria based
on which parameters such as segmentation thresholds can be tuned. Further work
could also explore the detection of specific salient events related to PCD stages. An
example of a salient event is the TNM (Tumour, Nodes, Metastases) categorisation by
the meeting participants. In addition to MDTM-specific research, we are also carrying
out further evaluations on standard meeting corpora.
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