21 research outputs found

    Community detection applied on big linked data

    Get PDF
    The Linked Open Data (LOD) Cloud has more than tripled its sources in just six years (from 295 sources in 2011 to 1163 datasets in 2017). The actual Web of Data contains more then 150 Billions of triples. We are assisting at a staggering growth in the production and consumption of LOD and the generation of increasingly large datasets. In this scenario, providing researchers, domain experts, but also businessmen and citizens with visual representations and intuitive interactions can significantly aid the exploration and understanding of the domains and knowledge represented by Linked Data. Various tools and web applications have been developed to enable the navigation, and browsing of the Web of Data. However, these tools lack in producing high level representations for large datasets, and in supporting users in the exploration and querying of these big sources. Following this trend, we devised a new method and a tool called H-BOLD (High level visualizations on Big Open Linked Data). H-BOLD enables the exploratory search and multilevel analysis of Linked Open Data. It offers different levels of abstraction on Big Linked Data. Through the user interaction and the dynamic adaptation of the graph representing the dataset, it will be possible to perform an effective exploration of the dataset, starting from a set of few classes and adding new ones. Performance and portability of H-BOLD have been evaluated on the SPARQL endpoint listed on SPARQL ENDPOINT STATUS. The effectiveness of H-BOLD as a visualization tool is described through a user study

    Exploiting general-purpose background knowledge for automated schema matching

    Full text link
    The schema matching task is an integral part of the data integration process. It is usually the first step in integrating data. Schema matching is typically very complex and time-consuming. It is, therefore, to the largest part, carried out by humans. One reason for the low amount of automation is the fact that schemas are often defined with deep background knowledge that is not itself present within the schemas. Overcoming the problem of missing background knowledge is a core challenge in automating the data integration process. In this dissertation, the task of matching semantic models, so-called ontologies, with the help of external background knowledge is investigated in-depth in Part I. Throughout this thesis, the focus lies on large, general-purpose resources since domain-specific resources are rarely available for most domains. Besides new knowledge resources, this thesis also explores new strategies to exploit such resources. A technical base for the development and comparison of matching systems is presented in Part II. The framework introduced here allows for simple and modularized matcher development (with background knowledge sources) and for extensive evaluations of matching systems. One of the largest structured sources for general-purpose background knowledge are knowledge graphs which have grown significantly in size in recent years. However, exploiting such graphs is not trivial. In Part III, knowledge graph em- beddings are explored, analyzed, and compared. Multiple improvements to existing approaches are presented. In Part IV, numerous concrete matching systems which exploit general-purpose background knowledge are presented. Furthermore, exploitation strategies and resources are analyzed and compared. This dissertation closes with a perspective on real-world applications

    A Knowledge Graph Based Integration Approach for Industry 4.0

    Get PDF
    The fourth industrial revolution, Industry 4.0 (I40) aims at creating smart factories employing among others Cyber-Physical Systems (CPS), Internet of Things (IoT) and Artificial Intelligence (AI). Realizing smart factories according to the I40 vision requires intelligent human-to-machine and machine-to-machine communication. To achieve this communication, CPS along with their data need to be described and interoperability conflicts arising from various representations need to be resolved. For establishing interoperability, industry communities have created standards and standardization frameworks. Standards describe main properties of entities, systems, and processes, as well as interactions among them. Standardization frameworks classify, align, and integrate industrial standards according to their purposes and features. Despite being published by official international organizations, different standards may contain divergent definitions for similar entities. Further, when utilizing the same standard for the design of a CPS, different views can generate interoperability conflicts. Albeit expressive, standardization frameworks may represent divergent categorizations of the same standard to some extent, interoperability conflicts need to be resolved to support effective and efficient communication in smart factories. To achieve interoperability, data need to be semantically integrated and existing conflicts conciliated. This problem has been extensively studied in the literature. Obtained results can be applied to general integration problems. However, current approaches fail to consider specific interoperability conflicts that occur between entities in I40 scenarios. In this thesis, we tackle the problem of semantic data integration in I40 scenarios. A knowledge graphbased approach allowing for the integration of entities in I40 while considering their semantics is presented. To achieve this integration, there are challenges to be addressed on different conceptual levels. Firstly, defining mappings between standards and standardization frameworks; secondly, representing knowledge of entities in I40 scenarios described by standards; thirdly, integrating perspectives of CPS design while solving semantic heterogeneity issues; and finally, determining real industry applications for the presented approach. We first devise a knowledge-driven approach allowing for the integration of standards and standardization frameworks into an Industry 4.0 knowledge graph (I40KG). The standards ontology is used for representing the main properties of standards and standardization frameworks, as well as relationships among them. The I40KG permits to integrate standards and standardization frameworks while solving specific semantic heterogeneity conflicts in the domain. Further, we semantically describe standards in knowledge graphs. To this end, standards of core importance for I40 scenarios are considered, i.e., the Reference Architectural Model for I40 (RAMI4.0), AutomationML, and the Supply Chain Operation Reference Model (SCOR). In addition, different perspectives of entities describing CPS are integrated into the knowledge graphs. To evaluate the proposed methods, we rely on empirical evaluations as well as on the development of concrete use cases. The attained results provide evidence that a knowledge graph approach enables the effective data integration of entities in I40 scenarios while solving semantic interoperability conflicts, thus empowering the communication in smart factories

    Short Text Categorization using World Knowledge

    Get PDF
    The content of the World Wide Web is drastically multiplying, and thus the amount of available online text data is increasing every day. Today, many users contribute to this massive global network via online platforms by sharing information in the form of a short text. Such an immense amount of data covers subjects from all the existing domains (e.g., Sports, Economy, Biology, etc.). Further, manually processing such data is beyond human capabilities. As a result, Natural Language Processing (NLP) tasks, which aim to automatically analyze and process natural language documents have gained significant attention. Among these tasks, due to its application in various domains, text categorization has become one of the most fundamental and crucial tasks. However, the standard text categorization models face major challenges while performing short text categorization, due to the unique characteristics of short texts, i.e., insufficient text length, sparsity, ambiguity, etc. In other words, the conventional approaches provide substandard performance, when they are directly applied to the short text categorization task. Furthermore, in the case of short text, the standard feature extraction techniques such as bag-of-words suffer from limited contextual information. Hence, it is essential to enhance the text representations with an external knowledge source. Moreover, the traditional models require a significant amount of manually labeled data and obtaining labeled data is a costly and time-consuming task. Therefore, although recently proposed supervised methods, especially, deep neural network approaches have demonstrated notable performance, the requirement of the labeled data remains the main bottleneck of these approaches. In this thesis, we investigate the main research question of how to perform \textit{short text categorization} effectively \textit{without requiring any labeled data} using knowledge bases as an external source. In this regard, novel short text categorization models, namely, Knowledge-Based Short Text Categorization (KBSTC) and Weakly Supervised Short Text Categorization using World Knowledge (WESSTEC) have been introduced and evaluated in this thesis. The models do not require any hand-labeled data to perform short text categorization, instead, they leverage the semantic similarity between the short texts and the predefined categories. To quantify such semantic similarity, the low dimensional representation of entities and categories have been learned by exploiting a large knowledge base. To achieve that a novel entity and category embedding model has also been proposed in this thesis. The extensive experiments have been conducted to assess the performance of the proposed short text categorization models and the embedding model on several standard benchmark datasets

    OM-2017: Proceedings of the Twelfth International Workshop on Ontology Matching

    Get PDF
    shvaiko2017aInternational audienceOntology matching is a key interoperability enabler for the semantic web, as well as auseful tactic in some classical data integration tasks dealing with the semantic heterogeneityproblem. It takes ontologies as input and determines as output an alignment,that is, a set of correspondences between the semantically related entities of those ontologies.These correspondences can be used for various tasks, such as ontology merging,data translation, query answering or navigation on the web of data. Thus, matchingontologies enables the knowledge and data expressed with the matched ontologies tointeroperate

    Veröffentlichungen und Vorträge 2004 der Mitglieder der Fakultät für Informatik

    Get PDF

    Distributed Semantic Social Networks: Architecture, Protocols and Applications

    Get PDF
    Online social networking has become one of the most popular services on the Web. Especially Facebook with its 845Mio+ monthly active users and 100Mrd+ friendship relations creates a Web inside the Web. Drawing on the metaphor of islands, Facebook is becoming more like a continent. However, users are locked up on this continent with hardly any opportunity to communicate easily with users on other islands and continents or even to relocate trans-continentally. In addition to that, privacy, data ownership and freedom of communication issues are problematically in centralized environments. The idea of distributed social networking enables users to overcome the drawbacks of centralized social networks. The goal of this thesis is to provide an architecture for distributed social networking based on semantic technologies. This architecture consists of semantic artifacts, protocols and services which enable social network applications to work in a distributed environment and with semantic interoperability. Furthermore, this thesis presents applications for distributed semantic social networking and discusses user interfaces, architecture and communication strategies for this application category.Soziale Netzwerke gehören zu den beliebtesten Online Diensten im World Wide Web. Insbesondere Facebook mit seinen mehr als 845 Mio. aktiven Nutzern im Monat und mehr als 100 Mrd. Nutzer- Beziehungen erzeugt ein eigenständiges Web im Web. Den Nutzern dieser Sozialen Netzwerke ist es jedoch schwer möglich mit Nutzern in anderen Sozialen Netzwerken zu kommunizieren oder aber mit ihren Daten in ein anderes Netzwerk zu ziehen. Zusätzlich dazu werden u.a. Privatsphäre, Eigentumsrechte an den eigenen Daten und uneingeschränkte Freiheit in der Kommunikation als problematisch empfunden. Die Idee verteilter Soziale Netzwerke ermöglicht es, diese Probleme zentralisierter Sozialer Netzwerke zu überwinden. Das Ziel dieser Arbeit ist die Darstellung einer Architektur verteilter Soziale Netzwerke welche auf semantischen Technologien basiert. Diese Architektur besteht aus semantischen Artefakten, Protokollen und Diensten und ermöglicht die Kommunikation von Sozialen Anwendungen in einer verteilten Infrastruktur. Darüber hinaus präsentiert diese Arbeit mehrere Applikationen für verteilte semantische Soziale Netzwerke und diskutiert deren Nutzer-Schnittstellen, Architektur und Kommunikationsstrategien. 

    Semantic Systems. In the Era of Knowledge Graphs

    Get PDF
    This open access book constitutes the refereed proceedings of the 16th International Conference on Semantic Systems, SEMANTiCS 2020, held in Amsterdam, The Netherlands, in September 2020. The conference was held virtually due to the COVID-19 pandemic
    corecore