79 research outputs found

    SensX: About Sensing and Assessment of Complex Human Motion

    Full text link
    The great success of wearables and smartphone apps for provision of extensive physical workout instructions boosts a whole industry dealing with consumer oriented sensors and sports equipment. But with these opportunities there are also new challenges emerging. The unregulated distribution of instructions about ambitious exercises enables unexperienced users to undertake demanding workouts without professional supervision which may lead to suboptimal training success or even serious injuries. We believe, that automated supervision and realtime feedback during a workout may help to solve these issues. Therefore we introduce four fundamental steps for complex human motion assessment and present SensX, a sensor-based architecture for monitoring, recording, and analyzing complex and multi-dimensional motion chains. We provide the results of our preliminary study encompassing 8 different body weight exercises, 20 participants, and more than 9,220 recorded exercise repetitions. Furthermore, insights into SensXs classification capabilities and the impact of specific sensor configurations onto the analysis process are given.Comment: Published within the Proceedings of 14th IEEE International Conference on Networking, Sensing and Control (ICNSC), May 16th-18th, 2017, Calabria Italy 6 pages, 5 figure

    System identification of gene regulatory networks for perturbation mitigation via feedback control

    Get PDF
    In Synthetic Biology, the idea of using feedback control for the mitigation of perturbations to gene regulatory networks due to disease and environmental disturbances is gaining popularity. To facilitate the design of such synthetic control circuits, a suitable model that captures the relevant dynamics of the gene regulatory network is essential. Traditionally, Michaelis-Menten models with Hill-type nonlinearities have often been used to model gene regulatory networks. Here, we show that such models are not suitable for the purposes of controller design, and propose an alternative formalism. Using tools from system identification, we show how to build so-called S-System models that capture the key dynamics of the gene regulatory network and are suitable for controller design. Using the identified S-System model, we design a genetic feedback controller for an example gene regulatory network with the objective of rejecting an external perturbation. Using a sine sweeping method, we show how the S-System model can be approximated by a second order linear transfer function and, based on this transfer function, we design our controller. Simulation results using the full nonlinear S-System model of the network show that the designed controller is able to mitigate the effect of external perturbations. Our findings highlight the usefulness of the S-System modelling formalism for the design of synthetic control circuits for gene regulatory networks

    Signals in the Soil: Underground Antennas

    Get PDF
    Antenna is a major design component of Internet of Underground Things (IOUT) communication system. The use of antenna, in IOUT, differs from traditional communication in that it is buried in the soil. Therefore, one of the main challenges, in IOUT applications, is to establish a reliable communication. To that end, there is a need of designing an underground-specific antenna. Three major factors that can impact the performance of a buried antenna are: (1) effect of high soil permittivity changes the wavelength of EM waves, (2) variations in soil moisture with time affecting the permittivity of the soil, and (3) difference in how EM waves propagate during aboveground (AG) and underground (UG) communications. For the third challenge above, it is to be noted that lateral waves are dominant component in EM during UG2UG communication and suffer lowest attenuation as compared to other, direct and reflected, components. Therefore, antennas used for over-the-air (OTA) communication will not be suitable for UG communication because of impedance mismatch. This chapter focuses on developing a theoretical model for understanding the impact of soil on antenna by conducting experiments in different soil types (silty clay loam, sandy, and silt loam soil) and indoor testbed. The purpose of the model is to predict UG antenna resonance for designing efficient communication system for IOUT. Based on the model a wideband planar antenna is designed considering soil dispersion and soil–air interface reflection effect which improves the communication range five times from the antennas designed only for the wavelength change in soil. Furthermore, it also focuses on developing an impedance model to study the effect of changing wavelength in underground communication. It is also discussed how soil–air interface and soil properties effect the return loss of dipole antenna

    Urban Underground Infrastructure Monitoring IoT: The Path Loss Analysis

    Get PDF
    The extra quantities of wastewater entering the pipes can cause backups that result in sanitary sewer overflows. Urban underground infrastructure monitoring is important for controlling the flow of extraneous water into the pipelines. By combining the wireless underground communications and sensor solutions, the urban underground IoT applications such as real time wastewater and storm water overflow monitoring can be developed. In this paper, the path loss analysis of wireless underground communications in urban underground IoT for wastewater monitoring has been presented. It has been shown that the communication range of up to 4 kilometers can be achieved from an underground transmitter when communicating through 10cm thick asphalt layer

    Modeling of IoT devices in Business Processes: A Systematic Mapping Study

    Full text link
    [EN] The Internet of Things (IoT) enables to connect the physical world to digital business processes (BP). By using the IoT, a BP can, e.g.: 1) take into account real-world data to take more informed business decisions, and 2) automate and/or improve BP tasks. To achieve these benefits, the integration of IoT and BPs needs to be successful. The first step to this end is to support the modeling of IoT-enhanced BPs. Although numerous researchers have studied this subject, it is unclear what is the current state of the art in terms of current modeling solutions and gaps. In this work, we carry out a Systematic Mapping Study (SMS) to find out how current solutions are modelling IoT into business processes. After studying 600 papers, we identified and analyzed in depth a total of 36 different solutions. In addition, we report on some important issues that should be addressed in the near future, such as, for instance the lack of standardization.This research has been funded by Internal Funds KU Leuven (Interne Fondsen KU Leuven) and the financial support of the Spanish State Research Agency under the project TIN2017-84094-R and co-financed with ERDF.Torres Bosch, MV.; Serral, E.; Valderas, P.; Pelechano Ferragud, V.; Grefen, P. (2020). Modeling of IoT devices in Business Processes: A Systematic Mapping Study. IEEE. 221-230. https://doi.org/10.1109/CBI49978.2020.00031S22123

    Internet of Things in Water Management and Treatment

    Get PDF
    The goal of the water security IoT chapter is to present a comprehensive and integrated IoT based approach to environmental quality and monitoring by generating new knowledge and innovative approaches that focus on sustainable resource management. Mainly, this chapter focuses on IoT applications in wastewater and stormwater, and the human and environmental consequences of water contaminants and their treatment. The IoT applications using sensors for sewer and stormwater monitoring across networked landscapes, water quality assessment, treatment, and sustainable management are introduced. The studies of rate limitations in biophysical and geochemical processes that support the ecosystem services related to water quality are presented. The applications of IoT solutions based on these discoveries are also discussed

    Internet of Things in Smart Agriculture: Enabling Technologies

    Get PDF
    In this paper, an IoT technology research and innovation roadmap for the field of precision agriculture (PA) is presented. Many recent practical trends and the challenges have been highlighted. Some important objectives for integrated technology research and education in precision agriculture are described. Effective IoT based communications and sensing approaches to mitigate challenges in the area of precision agriculture are presented

    A Low-Cost Portable Health Platform for the Monitoring of Human Physiological Signals

    Get PDF
    This work reports the integration and preliminary testing of a miniature commercial health platform based on the combination of a set of platforms that can be merged in hardware and software to measure and monitor many physiological parameters of the human body. The system is very portable, has a clear economic benefit in terms of cost and it has been well integrated with a customized and intuitive graphical user interface. Detailed about the materials used for preparation of this platform and the methods used for data collection are reported. Preliminary data has been collected and reported. Explanations are shown about the data in relation to the sensors behaviors and performance
    • …
    corecore