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Chapter 6 

Signals in the Soil: Underground Antennas 

Abstract Antenna is a major design component of Internet of Underground Things 
(IOUT) communication system. The use of antenna, in IOUT, di ers from traditional 
communication in that it is buried in the soil. Therefore, one of the main challenges, 
in IOUT applications, is to establish a reliable communication. To that end, there is 
a need of designing an underground-specific antenna. Three major factors that can 
impact the performance of a buried antenna are: 1) e ect of high soil permittivity 
changes the wavelength of EM waves, 2) variations in soil moisture with time 
a ecting the permittivity of the soil, and 3) di erence in how EM waves propagate 
during above-ground (AG) and underground (UG) communications. For the third 
challenge above, it to be noted that lateral waves are dominant component in EM 
during UG2UG communication and su ers lowest attenuation as compared to other, 
direct and reflected, components. Therefore, antennas used for over-the-air (OTA) 
communication will not be suitable for UG communication because of impedance 
mismatch. This chapter focuses on developing a theoretical model for understanding 
the impact of soil on antenna by conducting experiments in di erent soil types (silty 
clay loam, sandy, and silt loam soil) and indoor testbed. The purpose of the model is 
to predict UG antenna resonance for designing e"cient communication system for 
IOUT. Based on the model a wideband planar antenna is designed considering soil 
dispersion and soil-air interface reflection e ect which improves the communication 
range five times from the antennas designed only for the wavelength change in soil. 
Furthermore, it also focuses on developing an impedance model to study the e ect 
of changing wavelength in underground communication. It is also discussed how 
soil-air interface and soil properties e ect the return loss of dipole antenna. 

6.1 Introduction 

Antenna is a major design component of Internet of Underground Things (IOUT) 
communication system. This chapter focuses on developing a theoretical model for 
understanding the impact of soil on antenna by conducting experiments in di erent 
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Fig. 6.1: Organization of the Chapter 

soil types (silty clay loam, sandy, and silt loam soil) and indoor testbed. Fig. 6.1 shows 
the organizational structure of the chapter. The purpose of the model is to predict UG 
antenna resonance for designing e"cient communication system for IOUT. Based on 
the model a wideband planar antenna is designed considering soil dispersion and 
soil-air interface reflection e ect which improves the communication range five times 
from the antennas designed only for the wavelength change in soil [54, 72]. 

IOUT is being used for implementing many applications [1, 12, 37, 52, 62, 74, 145]. 
In all these applications, major challenge is to establish a reliable communication. To 
that end, an underground-specific antenna design challenge is necessary to address. 
Three major factors that can impact the performance of a buried antenna are: 1) e ect 
of high soil permittivity changes the wavelength of EM waves, 2) variations in soil 
moisture with time a ecting the permittivity of the soil, and 3) di erence in how EM 
waves propagate during above-ground (AG) and underground (UG) communications. 

For the third challenge above, it to be noted that lateral waves [20] are dominant 
component in EM [10], [40, 145], [139] during UG2UG communication and su ers 
lowest attenuation as compared to other, direct and reflected, components. Therefore, 
antennas used for over-the-air (OTA) communication will not be suitable for UG 
communication because of impedance mismatch. The chapter also focuses on 
developing an impedance model to study the e ect of changing wavelength in 
underground communication. Furthermore, it is discussed how soil-air interface and 
soil properties e ect the return loss of dipole antenna. 

The use of antenna, in IOUT, di ers form traditional communication in that it is 
buried in the soil. There has been lot of work being done to study electromagnetic 
wave propagation in subsurface stratified media [6], [7], [8], [13], [20], [28, 42], [70], 
[72], [78], [79] . These studies uses fields of horizontal infinitesimal dipole of unit 
electric moment whereas, in practical applications, a finite size antenna is required. 
This section briefly sheds the light on work already done in the field. 

In [28], authors calculates the depth attenuation and ground wave attenuation 
factor using two vector potentials for UG dipole without considering the impact 
of soil-air interface on current reflection. Currently, soil permittivity is calculated 
using soil dielectric model [26, 44, 54] which gives actual wavelength at a given 
frequency for elliptical planar antenna design in [41, 74]. The size of antenna in 
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[74] is determined by wavelength comparison using the same frequency in air and 
soil. However, it does not provide the required impedance match. In [32, 43, 80], 
authors performed experiments for Impulse Radio Ultra-Wide Band (IR-UWB) IOUT 
without considering the impact of soil-air interface. In [11], circularly polarized 
patch antenna is analyzed without considering the interface e ect. In another study 
[24, 33], communication between buried antennas are analyzed, however, the impact 
of orientation is not considered. Similarly, [18, 43] analyzes the performance of four 
buried antennas in refractory concrete without considering the concrete-air e ect. 

To the best of our knowledge, there is no study which consider the impact of 
soil properties while designing the underground antennas. Therefore, rest of the 
discussion in this chapter is focused on developing a resonant frequency model which 
is capable of predicting the resonance at di erent soil moisture levels, soil types and 
depths. This information is useful in determining the transmission loss that may occur 
due to antenna mismatch in IOUT communications.The main focus of the model is 
to predict resonance, hence, impedance matching is ignored. 

6.2 Resonant Frequency Prediction Model 

6.2.1 Terminal Impedance and Soil Properties 

Antenna Impedance Za is defined as a ratio of voltage and current at the input terminal 
of antenna. Complex power that is being radiated from the antenna can be calculated 
as by integrating Poynting’s vector as given in [19, 40] as: 

⁄ ⁄
1 

Za = E ◊ H.da, (6.1)
I2 

where I denotes the antenna current, da is perpendicular in the direction of surface 
of antenna, and E ◊ H is energy per unit time. It can be assumed for perfectly 
conducting antenna that E(x,y,z) © 0, then impedance can be calculated as by 
integrating surface current density Jse and tangential electric field, and equation 6.1 
becomes [19]: 

⁄ ⁄
1 

Za = E ◊ Jse.da, (6.2)
I2 

By using the induced EMF method [12], equation (6.2) can be rewritten as: 

⁄l 
1 

Za = ≠ Ez I(ı) d’ , (6.3)
I(0)2 

≠l 

The electric field Ez is used for calculating the self-impedance of UG dipole 
antenna. Ez is produced by an assumed current distribution I(0) and current and 
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electric field is integrated over the antenna surface. Homogeneous soil is considered 
for the measuring impedance and return loss of the antenna. For a buried dipole 
antenna, current appears in simple sinusoidal waveform given as: 

I0(’) = Im sin[ks(l ≠ |’|)] , (6.4) 

where Im is the current amplitude, ks represent complex wave number of the soil,Ô 
l is the half length of the antenna, and ks = — s + i– s = Ê µ0‘̂s is the wave number 
in soil. Ez is given as: 

⁄l 3 4≠jksr ˆ2
1 e

Ez = ≠ I(’)d’, (6.5)s
4fijÊ‘s R ˆ’2 + k2 

≠l 

By substituting the Ez in equation (6.5) and I(0) from equation (6.4) in equation 
(6.2) we get [23, 44]: 

3 3 4 4
2l 

Za ¥ f1(—l) ≠ i 120 ln ≠ 1 cot(—l) ≠ f2(—l) , (6.6)
d 

where 

f1(— sl) = ≠0.4787 + 7.3246— sl + 0.3963(— sl)2 + 15.6131(— sl)3 (6.7) 

f2(— sl) = ≠0.4456 + 17.0082— sl ≠ 8.6793(— sl)2 + 9.6031(— sl)3 (6.8) 

— s is the real part of the wave number ks, d is the diameter of the dipole, and l is 
half of the length of the dipole. —l is expressed as 

2fil Ô 
— sl = Re { ‘ s} , (6.9)

⁄0 

where ‘ s is the relative permittivity of soil and ⁄0 is the wavelength in air. Since 
the ‘ s is dependent on frequency, —l is not a linear function of l/⁄0. Therefore, when 
the medium is changed from soil to air, both, resonant frequency and impedance at 
the resonant frequency of the antenna, also changes. 

Practical IOUT has motes deployed at 0.3m - 1m [37, 61] and there is high impact 
of soil -air interface at these depths, hence, environment cannot be modeled. Next, the 
environment is modeled to study the impact on antenna return loss and impedance 
due to reflection of waves by soil-air interface. Upon excitement of antenna, a current 
distribution of I0(’) is generated and propagated wave is either reflected or refracted 
form soil-air interface. Er and Ir are the reflected electric field and induced current, 
respectively that reaches the antenna. 

Ir and Zr, resulting impedance are modeled due to field generated from imaginary 
dipole in homogeneous soil. As current distribution (6.4), Er field reflected due to 
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the soil-air interface at the antenna is [12, 38]: 
3 4 

e≠iksr1 e≠iksr2 e≠iksr 
Er = ≠i30Im + ≠ 2 cos ksl ◊ G , (6.10)

r1 r2 r 

where 

2 2 1 2r = [(2 /  h) + ’ ] , (6.11) 
2 2 1  r1 = [(2 /2

 h) + (’ ≠ l) ] , (6.12) 
2 2 1/2 r2 = [(2h) + (’ + l) ] , (6.13) 

h represents the burial depth of the antenna, and reflection coe"cient at the soil-air 
interface G is measured as: 

2 2
G = 

/ks 
≠ 1 = Ò  1 ,  (6.14)

1 + k0 1
1 + 

≠
‘s  

and k0 is the wave number in air. 
The antenna impedance is given as: Zu  I0

a = Za. 2 and from this impedance values 
I

the return loss of the antenna is given as:
r 

 
- -- u --Zs + Za -

RLdB = 20 log10 - - . (6.15)- Z u
s ≠ Z  

a -

The reflection coe"cient
RL

 G is given as: G  = 10 20 . Reflection coe"cient is 
transformed y 1 to impedance b   

|
using: Zu 

|
a =  Z + G 

s 1  G . Standing wave ratio (SWR) is 
1+

≠
expressed |G as: SW R = |

1≠|G| 

6.2.2 Defining Resonant Frequency 

The frequency where the antenna’s input impedance is pure resistance is known as 
resonant frequency fr. i.e., 

Za

u|f =fr = Zr = Ra. (6.16) 

and where return loss is maximum such that: 

fr = max(RLdB ). (6.17) 

A comparative performance analysis is done between this analytical model withÔ
resonant frequency of permittivity-based antenna by using: fr = f0/ ‘ s, where f0 
represents an OTA resonant frequency, and ‘ s is the permittivity of the soil. 
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6.2.3 Bandwidth Expression 

It is very di"cult to find a closed-form bandwidth formula for the UG antenna because 
of involvement of many soil and antenna factors, however, a resonant frequency-based 
bandwidth expression (BW) can be calculated as [62]: 

Y 
_]0 if -RLdB (f) > ”, 

BW = 2(f ≠ fm) if -RLdB (f) Æ ” and f < fr, (6.18) _[
2(fM ≠ f) if -RLdB (f) Æ ” and f Ø fr, 

where fr is the resonant frequency, fm and fM are the lowest and highest frequency 
at which RLdB (f) Æ ”. There is no fixed value of ”, however, value of 10 dB is 
generally used in the literature [9]. 

6.3 Simulations and Experiment Setup 

Following simulation setup was used to analyze the performance of underground 
dipole antenna: CST Microwave Studio Suite (MWS) [1], an indoor testbed without 
changing the soil parameters. Simulations are conducted with antenna buried 20cm 
inside the soil, and distances of 5cm-12m from the first antenna. The results from this 
testbed was compared with outdoor testbed with dipole antenna in silty clay loam 
soil. Vector Network Analyzer (VNA) is used for measuring antenna S11 and channel 
responses to frequency. 

6.4 Model Validations 

6.4.1 Model, Simulation, and Empirical Results 

Figs. 6.2(b), 6.2(a) and 6.2(c) compares theoretical, measure and simulated return 
loss at 20cm of depth in silt loam, sandy and silt clay soil type, respectively. It can 
seen that all three results (measured, theoretical and simulated) confirm each other 
with minor di erences. For example, at resonant frequency, for silt loam soil, the 
measured and model return loss matches whereas simulated return loss di ers by 7% 
and this di erence drops to 1% for sandy soil. This 1% - 7% di erence is because of 
the uncertainties soil simulation software. 

Figs. 6.3 compares the resonant frequency and bandwidth from measured 
experiment and theoretical model for 20% VWC. The results are for sandy (Figs. 
6.3(a) and 6.3(b)) and silt loam soil (Figs. 6.3(c) and 6.3(d)) at varying depths 
ranging from 10cm - 40cm. For sandy soil, both, measured resonant frequency and 
bandwidth, matches the model value with minor di erence of 0.01% - 1.93% in 
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Fig. 6.2: Comparative analysis of return loss estimated from simulated, theoretical, 
measured experiments in [66]: Sandy soil b) Silt Loam soil c) Silty clay loam soil 

resonant frequency and 2.77 MHz - 4 MHz in bandwidth. For silt loam soil, both, 
measured resonant frequency and bandwidth, matching trend between both models is 
same with minor di erence of 1.01% - 3.53% in resonant frequency and 1 MHz - 8 
MHz in bandwidth. These di erences between the models is because of change in 
return loss and resonant frequency at some particular depth which leads to di erence 
in bandwidth. However, these variations do not e ect the UG communication as 
antenna bandwidth is higher than these variations [39, 65, 139]. 

Other reasons for di erences in model could be: 1) abrupt phase changes of waves 
while transition from one depth to other and due to soil-air interface impact, and 
2) theoretical model do not consider the EM waves propagation e ect in coaxial 
cable connected to antenna. Overall the resonant frequency matched with the model 
matched each other and comparing measurements with theoretical model makes it a 
powerful tool to analyze the underground antenna. 
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Fig. 6.3: Comparative analysis of theoretical and measured experiments at di erent 
depths for [66]: a) Resonant frequency (sandy), b) Bandwidth (sandy), c) Resonant 
frequency (silt loam ), and d) Bandwidth (silt loam soil) 

6.4.2 Analysis of Impact of Operation Frequency 

Figs. 6.5 plots the resonant frequency and return loss for 5% - 40% soil moisture 
level. The results are for sandy (Figs. 6.5(a) and 6.5(b)) and silt loam soil (Figs. 6.5(c) 
and 6.5(d)). Resonant frequency decreases 62% (from 369 MHz to 137 MHz) for silt 
loam soil, and decreases 59% (from 357 MHz to 146 MHz) for sandy soil [25, 27]. 

Resonant frequency, of a dipole antenna, in soil and OTA is represented by frs and 
fro, respectively. Figs. 6.4 compares the ratio frs and antenna permittivity 433MHz 

fro
and 915MHz. The results are for sandy (Figs. 6.4(b) and 6.4(d)) and silt loam soil 
(Figs. 6.4(a) and 6.4(c)) at varying depths ranging from 10cm - 40cm. At di erent 
depths, change in resonant frequency di erence is di erent , and ratio is also varying 
as compared to the OTA [35]. 

The di erence is clear in figs. 6.6 where di erence in resonant frequency ” of 
theoretical model and antenna based on soil permittivity only, ”, is shown with 
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Fig. 6.4: E ect of VWC on ratio of resonant frequency in soil and OTA in [66]: (a) 
Silty Clay Loam Soil at 433 MHz, (b) Sandy soil at 433 MHz, (c) Silty Clay Loam 
Soil at 915 MHz, and (d) Sandy Soil at 915 MHz 

varying soil moisture levels at 433MHz and 915MHz. The results are for sandy (Figs. 
6.6(b) and 6.6(d)) and silt loam soil (Figs. 6.6(a) and 6.6(c)) at varying depths ranging 
from 10cm - 40cm. It can be seen that ” is inversely proportional to soil moisture 
level. For example, ” increase by 10 Mhz - 15 MHz when frequency goes from 433 
MHz - 915 MHz which proves that only permittivity-based IOUT system su ers 
performance degradation and highlights the importance of considering impact of 
soil-air interface. Hence, consideration of burial depth is important for e"cient IOUT 
communication system [34, 43]. 
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Fig. 6.5: Theoretical Results [66]: (a) Return Loss in Sandy Soil, (b) Resonant 
Frequency in Sandy soil, (c) Return Loss in Silt Loam Soil, and (d) Resonant 
Frequency in Silt Loam Soil 

6.5 Underground Wideband Antenna Design 

To compensate for the shift of resonant frequency of UG dipole antenna, a wideband 
antennas of di erent sizes and 433MHz frequency are designed and fabricated for 
testing. 

1. Radiation Pattern in UG Communications: The radiation pattern of the antenna 
is an added advantage for using this antenna. Out of three paths [20, 33] (direct 
wave, reflected wave and lateral wave) in UG communication, lateral wave is the 
most dominant in far-field [42, 61], [46, 67]. Therefore, radiation pattern must 
have maximum lateral wave component. [20], [36, 67] shows that lateral wave 
only occur when incident angle is at critical angle ◊c. ◊c changes with the varying 
soil moisture and is less than 15° in all soil moisture settings. The radiation pattern 
is unidirectional towards soil-air interface, thus, desirable radiation pattern can 
be achieved if antennas are placed parallel to soil-air interference. 

2. The Return Loss: Figs. 6.8 and 6.9 shows the return loss and bandwidth at 
varying depths (0.13m, 0.3m, and 0.4m) for three di erent soil moisture values 
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Fig. 6.6: D v/s VWC [66]: (a) Silty Clay Loam Soil at 433 MHz, (b) Sandy soil at 
433 MHz, (c) Silty Clay Loam Soil at 915 MHz, and (d) Sandy Soil at 915 MHz 

(10%, 30% and 40%). The resonant frequency varies in all these scenarios, 
however, return loss remains below 10dB for all depths and moisture levels [28]. 

3. Communication Results: The designed planar antenna is compared with 25mm 
wideband antenna and elliptical antenna in testbed to evaluate the performance 
for underground-aboveground communications. Two motes are used for UG 
and AG with planar and Yagi antenna, respectively to accomplish UG2AG 
and AG2UG channel communication [30]. Fig. 6.10 plots the received signal 
strength (RSS) with changing distance. It shows that although the communication 
range of 200m is achieved but practical multi-hop connectivity is still limited 
in underground communication. For UG2AG channel, the designed antenna 
increases the communication range by 587.5% as compared to elliptical antenna 
(from 8m to 55m) and 223.5% as compared to circular antenna (from 17m to 
55m). For UG2AG channel, the designed antenna increases the communication 
range by 587.5% as compared to elliptical antenna (from 8m to 55m) and 266.7% 
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Fig. 6.7: UG wideband planar antenna [66] 
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as compared to circular antenna (from 15m to 55m) [29]. These results shows that 
designing an antenna specific for UG environment is critical for IOUT system. 

6.6 Underground Antenna in Soil Horizons 

Precision agriculture is the practice of accurately capturing the changing parameters 
of the soil including water infiltration and retention, nutrients supply, acidity, and 
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Fig. 6.9: Bandwidth of wideband planar antenna (100mm) at (a) varying Depths and 
(b) varying soil moisture [66] 
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Fig. 6.10: Path loss with varying distance for di erent communication links [66] 

other time changing phenomena by using the modern technologies. Using precision 
agriculture, fields can be irrigated more e"ciently hence conserving water resources 
and increasing productivity. Wireless underground sensor networks (WUSN) are 
being used to monitor the soil for smart irrigation. Communication in wireless 
underground sensor networks is a ected by soil characteristics such as soil texture, 
volumetric water content (VWC) and bulk density. These soil characteristics vary 
with soil type and soil horizons within the soil. In this section we have investigated the 
e ects of these characteristics by considering Holdrege soil series and homogeneous 
soil. It is shown that consideration of soil characteristics of di erent soil horizons 
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leads to (5-6 dB) improved communication in wireless underground sensor networks 
[26, 53]. 

Horizons are layers of soil which are formed by four soil processes and have unique 
chemical, physical, and visible characteristics. These soil process are additions, losses, 
transformations, and translocation. There are five horizons: O, A, E, B, and C. In soil, 
these horizons can form in any order. Some soils do not contain all horizons and in 
some soils multiple horizons can repeat. Horizons A, B are of most interest because 
of their high impact on plant growth. 

In wireless underground sensor networks sensor nodes are buried in soil. 
Establishment of wireless communication links is important for data communication. 
As each soil horizon have unique soil texture, bulk density and water holding 
capability. Also depth and width of each horizon di ers in di erent type of soils. 
These factors have a significant influence on the performance of a buried antenna and 
communication. In [51], impact of these soil factors on underground communication 
is analyzed and given as follow: 

Soil Moisture 
Soil moisture changes with time due to climate and irrigation, which influence 
the soil permittivity. 

Soil permittivity 
Electromagnetic waves propagation in soil exhibit di erent characteristics in soil 
due to higher permittivity of soil. 

Soil-Air Interface 
Impedance of under ground antenna is changed because of current disturbance at 
antenna due to reflection from soil-air interface [30, 61, 74]. 

In this section, by using our model for underground to underground (UG2UG) 
communications [46], we have analyzed the performance of wireless underground 
channel by using Holdrege soil profile [3] and homogeneous soil. Moreover, we 
provide analytical results for path loss for three di erent scenarios including same 
soil moisture level across all horizons, water infiltration and water retention scenario. 

Based on the analysis it is shown that that antennas buried into soil horizons 
by taking soil characteristics into account experience less path loss as compared to 
antenna buried in homogeneous soil and path loss is decreased from 5-6 dB. It is 
also shown that path loss varies with soil moisture and increase in soil moisture 
also increase the path loss for all type of soils. It is also evident that in underground 
wireless sensor networks path loss increase with frequency therefore low operation 
frequencies are suitable for for wireless underground communication. 

To get a wavelength in soil at a given frequency, soil permittivity is calculated using 
the dielectric model [26, 49, 52, 54]. This wavelength calculated by the dielectric 
gives insight into design of antenna [30, 74]. For underground communications 
antenna are buried in di erent depths in soil. Theoretical analysis EM field of 
antennas in infinite dissipative medium is presented in [19, 24, 32, 55]. Return loss 
of the antenna is not considered in this analysis. Measurements of dipole antennain 
solution are presented in [22]. Because of the di erence in permittivity of soil and 
permittivity solution this work in not applicable to wireless underground sensor 
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Fig. 6.11: Holdredge Soil Profile
Table 6.1: Holdrege Soil - physical characteristics 

Horizon Depth in inches Sand Slit Clay Textual Class 
Ap 0-7 16.6 61.4 22.0 Silt Loam 
A 7-13 12.0 58.4 29.6 Silt Clay Loam 

Bt1 13-16 13.3 55.3 31.4 Silt Clay Loam 
Bt2 16-24 11.2 58.9 29.9 Silt Clay Loam 

networks. Current disturbance at antenna due to reflection from soil-air interface is 
mentioned in [21] but its impact are not analyzed. In [54] we have analyzed these 
impacts on underground antenna using homogeneous soil. We have also developed a 
three wave channel model for wireless underground communications in [9, 27, 61]. 

6.6.1 Holdrege Soil Characteristics 

We have used Holdrege soil and homogeneous soil for our analysis. Table 6.1 shows 
physical properties Holdrege soil. 

We have selected Holdrege series because it is one of the well-drained, highly 
productive and most fertile soil in the Nebraska, United States. It is also o"cial state 
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Fig. 6.12: Return Loss of the Antenna 

soil of Nebraska and almost all the soil is under cultivation. As per United States 
Department of Agriculture [3]: 

Prairie environment has contributed to formation of horizontal layers in profile 
of Holdrege series. Clay and lime particles have moved downward in profile due to 
drainage of water inside the profile. Due to interaction of these processes there is 
thick, dark color topsoil, a clay enriched subsoil and a substratum containing free 
lime. Holderede soil is very well irrigated and is a extensively cultivated soil. Corn 
and soy are the main crops. 

6.6.2 Numerical Analysis 

We have considered three cases for analytical evaluation. First case we have compared 
the two soils under the same soil moisture case for all soil horizons and depths. In 
second case we analyses the the water infiltration scenario in which top soil horizons 
have more water content than the subsoil horizons. Third case compares the water 
retention scenario in which subsoil is more saturated as compared to the topsoil. We 
have used frequency range of 300 MHz to 800. Transmitted power is 15 dBm. Return 
Loss of the antenna used in the evaluation is shown in Figure . Antennas are buried at 
four depths. Four antenna burial depth corresponds to four di erent horizons (Ap, A, 
Bt1, Bt2)of Holdrege soil as shown in Table 1. For homogeneous soil these are 10 Cm, 
20 Cm, 30 Cm and 40 Cm. Horizontal distance distance between transmitter receiver 
is 50 Cm. Bulk density is 1.5 grams/cm3 and particle density is 2.66 grams/cm3. 

6.6.3 Same Soil Moisture Scenario 

Fig. 6.13 shows the path loss for two soil types for Volumetric Water Content 
(VWC) of value of 10%. For all depths and across all frequency range Path loss 
for homogeneous soil is 5 dB to 6 dB higher than as compared to Holdrege soil. 
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Fig. 6.13: Path Loss vs. Frequency - VWC 10% 
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Fig. 6.14: Path Loss vs. Frequency - VWC 20% 

Moreover between 550 MHz to 650 MHz range path loss is low because of the low 
return loss of the antenna. It is also clear that path loss increases with frequency. 

Fig. 6.14 shows the path loss for two soil types for Volumetric Water Content 
(VWC) of value of 20%. For all depths and across all frequency range Path loss for 
homogeneous soil is 5 dB to 6 dB higher than as compared to Holdrege soil. Due to 
10% increase in water content there is an increase of 8 dB for all horizons. 

Fig. 6.15 and Fig. 6.16 shows the path loss for two soil types for Volumetric Water 
Content (VWC) of value of 30% and 40%. For both soil moisture levels, for all 
depths and across all frequency range path loss for homogeneous soil is 5 dB to 6 dB 
increased as compared to Holdrege soil. Path loss for 30% and 40% is considerably 
higher than dry than the 10%. 



 

 60 

50 

40 

P
a
th

 L
o
ss

 (
d
B

)

30 

20 

10 

0 
300 

10 Cm − Ap 
20 Cm − A 
30 Cm − Bt1 
40 Cm − Bt2 
10 Cm −  Homogeneous 
20 Cm −  Homogeneous 
30 Cm −  Homogeneous 
40 Cm −  Homogeneous 

400 500 600 700 800 
Frequency (MHz) 

Fig. 6.15: Path Loss vs. Frequency - VWC 30%

 

 

Fig. 6.16: Path Loss vs. Frequency - VWC 40%
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Fig. 6.17: Path Loss vs. Frequency - Water Infiltration Scenario%

6.6.4 Water Infiltration Scenario

In this case we consider the scenario in which higher horizons have more water
content as compared to lower soil horizons. Fig. 6.17 shows the path loss when Ap
horizon have 40% VWC, A horizon have 30% VWC, Bt1 have 20% VWC and Bt2
have 10% VWC. It is evident that communication performance is best at Bt2 horizon
because of low water content.
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Fig. 6.18: Path Loss vs. Frequency - Drainage Scenario% 

6.6.5 Water Retention Scenario 

In this case we consider the scenario in which lower horizons have more water content 
as compared to higher soil horizons. Fig. 6.18 shows the path loss when Ap horizon 
have 10% VWC, A horizon have 20% VWC, Bt1 have 30% VWC and Bt2 have 40% 
VWC. Antenna buried at the A horizon experience lower path loss because of low 
attenuation due to lower VWC. 

In this section, the impacts of soil texture, soil moisture on burial depth of antenna 
in di erent soil horizons and on path loss are analyzed for underground wireless 
communications in Holdrege soil and homogeneous soil. It is shown that antennas 
buried into soil horizons by taking soil characteristics into account experience less 
path loss as compared to antenna berried in homogeneous soil. It is also shown that 
path loss varies with soil moisture and increase in soil moisture also increase the 
path loss for all type of soils. It is also evident that in underground wireless sensor 
networks path loss increase with frequency therefore low operation frequencies are 
suitable for for wireless underground communication. 

6.7 Path Loss Variations with Planar and Dipole Antennas 

The digital agriculture [38, 48, 62, 68, 75] is the area in which technology is used to 
e ectively manage agriculture by understanding the temporal and spatial changes in 
soil, crop, production, and management through innovative techniques. The analysis 
of the communication path loss is vital for an e"cient communication system 
design in sensor-guided irrigation management system. To investigate propagation 
loss variations, the path loss experiments are conducted in sandy soil testbed, and 
greenhouse outdoor silty clay loam testbed using a wideband planar antenna [50, 54] 
and dipole antennas. 
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6.7.1 Experiment Setup 

In a sandy soil testbed [54, 61], two planar antennas, are buried at 20cm depth at a 
distance of 1m. The return loss and path loss measurements are taken. To analyze 
the e ects of a planar in the middle of two planar, obstructing the communications, 
another planar antenna is buried in the middle at 50cm distance and same depth 
(20cm). Accordingly, the path loss and return loss measurements are taken again for 
50cm distance and 1m distance [20, 48]. 

In the greenhouse, another testbed of planar antennas is commissioned in silty 
clay loam soil. To compare the results of the experiment with sandy soil testbed, 
same empirical parameters are used. First, the path loss and return loss measurements 
are taken for planar buried at 1m distance at 20cm depth. Afterward, another 
planar is installed at 50cm distance and 20cm depth, and return loss and path loss 
measurements are taken, again, first for 1m distance and then for 50cm distance 
[72, 76]. 

To compare the results of planar antennas with dipole antenna, a testbed of dipole 
antennas is developed outside of the greenhouse in silty clay loam soil. In this testbed, 
three dipole antennas are buried in soil at 50cm distance each and burial depth is 
20cm. The physical properties of sandy soil and silty clay loam soil are shown in 
Table 7.3. The results of this empirical campaign are presented in Section 7.4. The 
return loss of dipole and planar antennas are shown in Fig. 6.19. The comparison of 
dipole and planar return loss in same soil is given in Fig. 6.20. 

Table 6.2: Soil used in testbeds - physical characteristics 

Textural Class Sand % Silt % Clay % 
Silty Clay Loam 13 55 32 

Sandy Soil 86 11 3 
Silt Loam 33 51 16 II I I I II 

6.7.2 Results 

The planar antenna path loss at 50cm and 100cm in sandy soil and silty clay loam 
testbed is shown in Fig. 6.21(a) and Fig. 6.21(b), respectively. In sandy soil, there is 
14dB di erence in path loss when communication distance is increased from 50cm 
to 100cm. Similarly, in silty clay loam soil, at frequencies higher than 500MHz path 
loss is increased from 19dB [25, 46]. 

In Fig. 6.20(c), the path loss comparison of dipole and planar antenna is shown 
in sandy soil testbed at 50cm. The variations in path loss with change in frequency, 
present in the case of dipole antenna, are not observed when measurements are taken 
using planar antenna. Similarly in Fig. 6.20(d), the path loss comparison of dipole 
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Fig. 6.19: Return loss: (a) sandy soil with dipole antenna, (b) sandy soil with planar 
antenna, (c) silty clay with dipole antenna, (d) silty clay with loam planar antenna 

and planar antenna is shown in silty clay loam testbed at 50cm. As observed in sandy 
soil, the variations in path loss with frequency present in dipole antenna are not 
observed when using planar antenna [46, 47]. 

The change in path loss when a planar is buried between planar antennas is shown 
in Fig. 6.22(a) for sandy soil and in Fig. 6.22(b) for silty clay loam. In sandy soil, 
di erence of 8dB is observed at frequencies less than 400MHz, and in silty clay 
loam overall there is di erence except 4-5 dB di erence at 300 MHz and 800 MHz 
[29, 33]. 

The path loss di erence using same antenna at 50cm and 100cm distance in 
di erent soils is presented in Fig. 6.22(c) and Fig. 6.22(d), respectively. A 28dB lower 
path loss is observed in sandy soil when compared to silty clay loam both at 50cm and 
100cm distance. This happens because the sandy soil holds less bounded water which 
is the major component in soil that absorbs electromagnetic waves [29]. A propagation 
path loss analysis has been presented using dipole and planar antennas in the sandy 
and silty clay loam. In the sandy soil, better radio wave propagation is observed. The 
results show that the planar antenna is more e"cient for subsurface communications. 
The analysis is useful to determined inter-node distance in sensor-guided irrigation 
system. 
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Fig. 6.20: Return Loss Comparison: (a) Dipole antennas only, (b) Planar antennas 
only, (c) using Dipole and Planar Antenna in sandy soil, (d) using Dipole and Planar 
Antenna in in Silty Clay Loam Soil 

Fig. 6.21: Path Loss comparison: (a) Planar antenna in sandy soil, (b) Planar antenna 
in silty clay loam, 

References 

[1] (2020) CST Microwave Studio. www.cst.com/products/cstmws 

www.cst.com/products/cstmws


-e----- Planar - Sandy Soil - 100 Cm - Plnnar present at 50 Cm 

90 -----.-pJanar-SandySoil- lOOCm -NoPlnnarat50Cm 

10~~-~-~-~~-~-~-~~ 

100 200 300 400 500 600 700 800 900 1000 
Frequency (MHz) 

-e----- Planar Sandy Soil - 50 Cm 

90 -----.- Planar Silty Clay Loam - 50 Cm 

30 

10~~-~-~-~~-~-~-~~ 

100 200 300 400 500 600 700 800 900 1000 
Frequency (MHz) 

C 
..l 

90 

.c 50 

~ 
30 

10~~-~-~-~~-~-~-~~ 

100 200 300 400 500 600 700 800 900 1000 
Frequency (MHz) 

-e-----Ptanar SandySoil- lOOCm 

90 --Planar Silty Clay Loam - I 00 Cm 

10~~-~-~-~~-~-~-~~ 

100 200 300 400 500 600 700 800 900 1000 
Frequency (MHz) 

(a) (b) 

(c) (d) 

References 225 

Fig. 6.22: (a) Planar antenna in sandy soil, (b) Planar antenna in silty clay loam, (c) 
Dipole and planar antenna in sandy soil, (d) Dipole and planar antenna in silty clay 
loam soil 

Fig. 6.23: Path Loss comparison: (a) Planar antenna placed between two planar 
antenna (sandy), (b) Planar antenna placed between two planar antenna (silty clay 
loam), (c) Planar antenna in both soil place at a distance of 50cm, (d) Planar antenna 
in both soil place at a distance of 100cm, 

[1] Abrudan TE, Kypris O, Trigoni N, Markham A (2016) Impact of rocks and 
minerals on underground magneto-inductive communication and localization. 
IEEE Access 4:3999–4010, DOI 10.1109/ACCESS.2016.2597641 

[3] of Agriculture UD (2014) Census of Agriculture. URL http://www.agcensus. 
usda.gov/ 

[52] Akyildiz IF, Stuntebeck EP (2006) Wireless underground sensor networks: 
Research challenges. Ad Hoc Networks Journal 

[54] Akyildiz IF, Sun Z, Vuran MC (2009) Signal propagation techniques for 
wireless underground communication networks. Physical Communication 
Journal (Elsevier) 2(3):167–183 

[6] Arnautovski-Toseva V, Grcev L (2016) On the image model of a buried horizontal 
wire. IEEE Transactions on Electromagnetic Compatibility 58(1):278–286 

https://usda.gov
http://www.agcensus


226 6 Underground Antennas 

[7] Banos A (1966) Dipole radiation in the presence of a conducting halfspace. 
Pergamon Press 

[8] Biggs A (1968) Dipole antenna radiation fields in stratified antarctic media. 
Antennas and Propagation, IEEE Transactions on 16(4):445–448, DOI 10.1109/ 
TAP.1968.1139227 

[9] Bird TS (2009) Definition and misuse of return loss [Report of the transactions 
Editor-in-Chief]. IEEE Antennas and Propagation Magazine 51(2):166–167, 
DOI 10.1109/MAP.2009.5162049 

[10] Brekhovskikh LM (1980) Waves in Layered Media. Academic Press, New York 
[11] Castorina G, Donato LD, Morabito AF, Isernia T, Sorbello G (2016) Analysis 

and design of a concrete embedded antenna for wireless monitoring applications. 
IEEE Antennas and Propagation Magazine 58(6):76–93 

[12] Dong J, Shen F, Dong Y, Wang Y, Fu W, Li H, Ye D, Zhang B, Huangfu J, Qiao 
S, Sun Y, Li C, Ran L (2016) Noncontact measurement of complex permittivity 
of electrically small samples at microwave frequencies. IEEE Transactions on 
Microwave Theory and Techniques 64(9):2883–2893, DOI 10.1109/TMTT. 
2016.2588487 

[13] Dong S, Yao A, Meng F (2015) Analysis of an underground horizontal 
electrically small wire antenna. Journal of Electrical and Computer Engineering 
2851:9 

[61] Dong X, Vuran MC (2011) A channel model for wireless underground sensor 
networks using lateral waves. In: Proc. of IEEE Globecom ’11, Houston, TX 

[62] Dong X, Vuran MC (2013) Impacts of soil moisture on cognitive radio 
underground networks. In: Proc. IEEE BlackSeaCom, Georgia 

[9] Dong X, Vuran MC, Irmak S (2012) Autonomous precision agricultrue through 
integration of wireless underground sensor networks with center pivot irrigation 
systems. Ad Hoc Networks (Elsevier) 

[12] Elliott RS (1981) Antenna Theory and Design. Prentice-Hall, Inc. 
[18] Fitzgerrell RG, Haidle LL (1972) Design and performance of four buried uhf 

antennas. IEEE Trans Antennas Propagation 20(1):56–62 
[19] Galejs J (1969) Antennas in Inhomogeneous Media. Pergamon Press 
[20] Hansen R (1963) Radiation and reception with buried and submerged antennas. 

IEEE Transactions on Antennas and Propagation 11(3):207–216 
[21] Hunt K, Niemeier J, Kruger A (2010) RF communications in underwater wireless 

sensor networks. In: IEEE International Conference on Electro/Information 
Technology (EIT), Normal, IL 

[22] Iizuka K (1964) An experimental investigation on the behavior of the dipole 
antenna near the interface between the conducting medium and free space. IEEE 
Transactions on Antennas and Propagation 12(1):27–35 

[23] Johnson RC (ed) (1993) Antenna Engineering Handbook, 3rd edn. McGraw-Hill, 
Inc. 

[24] Kesar AS, Weiss E (2013) Wave propagation between buried antennas. IEEE 
Transactions on Antennas and Propagation 61(12):6152–6156 

[19] King RWP, Smith G (1981) Antennas in Matter. MIT Press 



References 227 

[20] King RWP, Owens M, Wu TT (1992) Lateral Electromagnetic Waves. 
Springer-Verlag 

[20] Konda A, Rau A, Stoller MA, Taylor JM, Salam A, Pribil GA, Argyropoulos C, 
Morin SA (2018) Soft microreactors for the deposition of conductive metallic 
traces on planar, embossed, and curved surfaces. Advanced Functional Materials 
28(40):1803020, DOI 10.1002/adfm.201803020 

[28] Moore RK, Blair WE (1961) Dipole radiation in conducting half space. Journal 
of Res National Bureau of Standard 65 

[26] Peplinski N, Ulaby F, Dobson M (1995) Dielectric properties of soil in the 
0.3–1.3 ghz range. IEEE Transactions on Geoscience and Remote Sensing 
33(3):803–807 

[30] Ritsema CJ, etal (2009) A new wireless underground network system for 
continuous monitoring of soil water contents. Water Resources Research Journal 
45:1–9 

[24] Salam A (2018) Pulses in the sand: Long range and high data rate 
communication techniques for next generation wireless underground networks. 
ETD collection for University of Nebraska - Lincoln (AAI10826112), URL 
http://digitalcommons.unl.edu/dissertations/AAI10826112 

[25] Salam A (2019) A comparison of path loss variations in soil using planar and 
dipole antennas. In: 2019 IEEE International Symposium on Antennas and 
Propagation, IEEE 

[26] Salam A (2019) Design of subsurface phased array antennas for digital 
agriculture applications. In: Proc. 2019 IEEE International Symposium on 
Phased Array Systems and Technology (IEEE Array 2019), Waltham, MA, USA 

[27] Salam A (2019) A path loss model for through the soil wireless communications 
in digital agriculture. In: 2019 IEEE International Symposium on Antennas and 
Propagation, IEEE, pp 1–2 

[28] Salam A (2019) Sensor-free underground soil sensing. In: ASA, CSSA and 
SSSA International Annual Meetings (2019), ASA-CSSA-SSSA 

[29] Salam A (2019) Subsurface mimo: A beamforming design in internet of 
underground things for digital agriculture applications. Journal of Sensor and 
Actuator Networks 8(3), DOI 10.3390/jsan8030041, URL https://www.mdpi. 
com/2224-2708/8/3/41 

[30] Salam A (2019) Underground Environment Aware MIMO Design Using 
Transmit and Receive Beamforming in Internet of Underground Things, Springer 
International Publishing, Cham, pp 1–15 

[33] Salam A (2019) An underground radio wave propagation prediction model 
for digital agriculture. Information 10(4), DOI 10.3390/info10040147, URL 
http://www.mdpi.com/2078-2489/10/4/147 

[32] Salam A (2019) Underground soil sensing using subsurface radio wave 
propagation. In: 5th Global Workshop on Proximal Soil Sensing, Columbia, 
MO 

[33] Salam A (2020) Internet of Things for Environmental Sustainability 
and Climate Change, Springer International Publishing, Cham, pp 33–69. 

http://www.mdpi.com/2078-2489/10/4/147
https://www.mdpi
http://digitalcommons.unl.edu/dissertations/AAI10826112


228 6 Underground Antennas 

DOI 10.1007/978-3-030-35291-2_2, URL https://doi.org/10.1007/ 
978-3-030-35291-2_2 

[34] Salam A (2020) Internet of Things for Sustainability: Perspectives in Privacy, 
Cybersecurity, and Future Trends, Springer International Publishing, Cham, pp 
299–327. DOI 10.1007/978-3-030-35291-2_10, URL https://doi.org/10. 
1007/978-3-030-35291-2_10 

[35] Salam A (2020) Internet of Things for Sustainable Community Development, 
1st edn. Springer Nature, DOI 10.1007/978-3-030-35291-2 

[36] Salam A (2020) Internet of Things for Sustainable Community Development: 
Introduction and Overview, Springer International Publishing, Cham, pp 1–31. 
DOI 10.1007/978-3-030-35291-2_1, URL https://doi.org/10.1007/ 
978-3-030-35291-2_1 

[37] Salam A (2020) Internet of Things for Sustainable Forestry, 
Springer International Publishing, Cham, pp 147–181. DOI 10. 
1007/978-3-030-35291-2_5, URL https://doi.org/10.1007/ 
978-3-030-35291-2_5 

[38] Salam A (2020) Internet of Things for Sustainable Human 
Health, Springer International Publishing, Cham, pp 217–242. 
DOI 10.1007/978-3-030-35291-2_7, URL https://doi.org/10.1007/ 
978-3-030-35291-2_7 

[39] Salam A (2020) Internet of Things for Sustainable Mining, Springer International 
Publishing, Cham, pp 243–271. DOI 10.1007/978-3-030-35291-2_8, URL 
https://doi.org/10.1007/978-3-030-35291-2_8 

[40] Salam A (2020) Internet of Things for Water Sustainability, 
Springer International Publishing, Cham, pp 113–145. DOI 10. 
1007/978-3-030-35291-2_4, URL https://doi.org/10.1007/ 
978-3-030-35291-2_4 

[41] Salam A (2020) Internet of Things in Agricultural Innovation 
and Security, Springer International Publishing, Cham, pp 71–112. 
DOI 10.1007/978-3-030-35291-2_3, URL https://doi.org/10.1007/ 
978-3-030-35291-2_3 

[42] Salam A (2020) Internet of Things in Sustainable Energy 
Systems, Springer International Publishing, Cham, pp 183–216. 
DOI 10.1007/978-3-030-35291-2_6, URL https://doi.org/10.1007/ 
978-3-030-35291-2_6 

[43] Salam A (2020) Internet of Things in Water Management and 
Treatment, Springer International Publishing, Cham, pp 273–298. 
DOI 10.1007/978-3-030-35291-2_9, URL https://doi.org/10.1007/ 
978-3-030-35291-2_9 

[44] Salam A (2020) Wireless underground communications in sewer and stormwater 
overflow monitoring: Radio waves through soil and asphalt medium. Information 
11(2) 

[46] Salam A, Karabiyik U (2019) A cooperative overlay approach at the physical 
layer of cognitive radio for digital agriculture. In: Third International Balkan 

https://doi.org/10.1007
https://doi.org/10.1007
https://doi.org/10.1007
https://doi.org/10.1007
https://doi.org/10.1007/978-3-030-35291-2_8
https://doi.org/10.1007
https://doi.org/10.1007
https://doi.org/10.1007
https://doi.org/10
https://doi.org/10.1007


References 229 

Conference on Communications and Networking 2019 (BalkanCom’19), Skopje, 
Macedonia, the former Yugoslav Republic of 

[46] Salam A, Shah S (2019) Internet of things in smart agriculture: Enabling 
technologies. In: 2019 IEEE 5th World Forum on Internet of Things (WF-IoT), 
IEEE, pp 692–695 

[139] Salam A, Vuran MC (2016) Impacts of soil type and moisture on the capacity 
of multi-carrier modulation in internet of underground things. In: Proc. ICCCN 
2016, Waikoloa, Hawaii, USA 

[47] Salam A, Vuran MC (2016) Impacts of soil type and moisture on the capacity 
of multi-carrier modulation in internet of underground things. In: Proc. of the 
25th ICCCN 2016, Waikoloa, Hawaii, USA 

[48] Salam A, Vuran MC (2017) Em-based wireless underground sensor networks 
pp 247–285, DOI 10.1016/B978-0-12-803139-1.00005-9 

[49] Salam A, Vuran MC (2017) Smart underground antenna arrays: A soil moisture 
adaptive beamforming approach. In: Proc. IEEE INFOCOM 2017, Atlanta, 
USA 

[50] Salam A, Vuran MC (2017) Wireless underground channel diversity reception 
with multiple antennas for internet of underground things. In: Proc. IEEE ICC 
2017, Paris, France 

[145] Salam A, Vuran MC, Irmak S (2016) Pulses in the sand: Impulse response 
analysis of wireless underground channel. In: Proc. IEEE INFOCOM 2016, San 
Francisco, USA 

[51] Salam A, Vuran MC, Irmak S (2016) Pulses in the sand: Impulse response 
analysis of wireless underground channel. In: The 35th Annual IEEE 
International Conference on Computer Communications (INFOCOM 2016), 
San Francisco, USA 

[61] Salam A, Vuran MC, Irmak S (2016) Pulses in the sand: Impulse response 
analysis of wireless underground channel. In: The 35th Annual IEEE 
International Conference on Computer Communications (INFOCOM 2016), 
San Francisco, USA 

[62] Salam A, Vuran MC, Irmak S (2017) Towards internet of underground things 
in smart lighting: A statistical model of wireless underground channel. In: Proc. 
14th IEEE International Conference on Networking, Sensing and Control (IEEE 
ICNSC), Calabria, Italy 

[52] Salam A, Vuran MC, Irmak S (2017) Towards internet of underground things 
in smart lighting: A statistical model of wireless underground channel. In: Proc. 
14th IEEE International Conference on Networking, Sensing and Control (IEEE 
ICNSC), Calabria, Italy 

[53] Salam A, Hoang AD, Meghna A, Martin DR, Guzman G, Yoon YH, Carlson J, 
Kramer J, Yansi K, Kelly M, et al. (2019) The future of emerging iot paradigms: 
Architectures and technologies 

[54] Salam A, Vuran MC, Dong X, Argyropoulos C, Irmak S (2019) A theoretical 
model of underground dipole antennas for communications in internet of 
underground things. IEEE Transactions on Antennas and Propagation 



230 6 Underground Antennas 

[66] Salam A, Vuran MC, Dong X, Argyropoulos C, Irmak S (2019) A theoretical 
model of underground dipole antennas for communications in internet 
of underground things. IEEE Transactions on Antennas and Propagation 
67(6):3996–4009 

[55] Salam A, Vuran MC, Irmak S (2019) Di-sense: In situ real-time 
permittivity estimation and soil moisture sensing using wireless underground 
communications. Computer Networks 151:31 – 41, DOI https://doi.org/10.1016/ 
j.comnet.2019.01.001, URL http://www.sciencedirect.com/science/ 
article/pii/S1389128618303141 

[68] Salam A, Vuran MC, Irmak S (2019) Di-sense: In situ real-time 
permittivity estimation and soil moisture sensing using wireless underground 
communications. Computer Networks 151:31 – 41, DOI https://doi.org/10.1016/ 
j.comnet.2019.01.001, URL http://www.sciencedirect.com/science/ 
article/pii/S1389128618303141 

[61] Silva AR, Vuran MC (2010) (CPS)2: integration of center pivot systems with 
wireless underground sensor networks for autonomous precision agriculture. In: 
Proc. of ACM/IEEE International Conf. on Cyber-Physical Systems, Stockholm, 
Sweden, pp 79–88, DOI http://doi.acm.org/10.1145/1795194.1795206 

[70] Sivaprasad K, King R (1963) A study of arrays of dipoles in a semi-infinite 
dissipative medium. Antennas and Propagation, IEEE Transactions on 
11(3):240–256, DOI 10.1109/TAP.1963.1138045 

[67] Staiman D, Tamir T (1966) Nature and optimisation of the ground (lateral) 
wave excited by submerged antennas. Electrical Engineers, Proceedings of the 
Institution of 113(8), DOI 10.1049/piee.1966.0220 

[72] Tai CT, Collin RE (2000) Radiation of a hertzian dipole immersed in a dissipative 
medium. IEEE Transactions on Antennas and Propagation 48(10):1501–1506 

[65] Temel S, Vuran MC, Lunar MM, Zhao Z, Salam A, Faller RK, Stolle C 
(2018) Vehicle-to-barrier communication during real-world vehicle crash tests. 
Computer Communications 127:172–186 

[74] Tiusanen MJ (2008) Wireless Soil Scout prototype radio signal reception 
compared to the attenuation model. Precision Agriculture 10(5):372–381 

[75] Vuran MC, Salam A, Wong R, Irmak S (2018) Internet of underground 
things in precision agriculture: Architecture and technology aspects. Ad Hoc 
Networks DOI https://doi.org/10.1016/j.adhoc.2018.07.017, URL http://www. 
sciencedirect.com/science/article/pii/S1570870518305067 

[76] Vuran MC, Salam A, Wong R, Irmak S (2018) Internet of underground 
things in precision agriculture: Architecture and technology aspects. Ad Hoc 
Networks DOI https://doi.org/10.1016/j.adhoc.2018.07.017, URL http://www. 
sciencedirect.com/science/article/pii/S1570870518305067 

[72] Vuran MC, Salam A, Wong R, Irmak S (2018) Internet of underground things: 
Sensing and communications on the field for precision agriculture. In: 2018 
IEEE 4th World Forum on Internet of Things (WF-IoT) (WF-IoT 2018), , 
Singapore 

[78] Wait JR (1961) The electromagnetic fields of a horizontal dipole in the presence 
of a conducting half-space. Canadian Journal of Physics 39(7):1017–1028 

https://sciencedirect.com/science/article/pii/S1570870518305067
http://www
https://doi.org/10.1016/j.adhoc.2018.07.017
https://sciencedirect.com/science/article/pii/S1570870518305067
http://www
https://doi.org/10.1016/j.adhoc.2018.07.017
http://doi.acm.org/10.1145/1795194.1795206
http://www.sciencedirect.com/science
https://doi.org/10.1016
http://www.sciencedirect.com/science
https://doi.org/10.1016


References 231 

[79] Wheeler HA (1961) Useful radiation from an underground antenna. Journal of 
Research 65:89–91 

[80] Zemmour H, Baudoin G, Hamouda C, Diet A, Biancheri-Astier M (2015) 
Impact of soil on uwb buried antenna and communication link in ir-uwb wusn 
applications. In: Radar Conference (EuRAD), 2015 European, pp 353–356, 
DOI 10.1109/EuRAD.2015.7346310 


	Signals in the Soil: Underground Antennas
	


