11 research outputs found

    Symbols in engineering drawings (SiED): an imbalanced dataset benchmarked by convolutional neural networks.

    Get PDF
    Engineering drawings are common across different domains such as Oil & Gas, construction, mechanical and other domains. Automatic processing and analysis of these drawings is a challenging task. This is partly due to the complexity of these documents and also due to the lack of dataset availability in the public domain that can help push the research in this area. In this paper, we present a multiclass imbalanced dataset for the research community made of 2432 instances of engineering symbols. These symbols were extracted from a collection of complex engineering drawings known as Piping and Instrumentation Diagram (P&ID). By providing such dataset to the research community, we anticipate that this will help attract more attention to an important, yet overlooked industrial problem, and will also advance the research in such important and timely topics. We discuss the datasets characteristics in details, and we also show how Convolutional Neural Networks (CNNs) perform on such extremely imbalanced datasets. Finally, conclusions and future directions are discussed

    Evaluating the transferability of personalised exercise recognition models.

    Get PDF
    Exercise Recognition (ExR) is relevant in many high impact domains, from health care to recreational activities to sports sciences. Like Human Activity Recognition (HAR), ExR faces many challenges when deployed in the real-world. For instance, typical lab performances of Machine Learning models, are hard to replicate, due to differences in personal nuances, traits and ambulatory rhythms. Thus effective transferability of a trained ExR model, depends on its ability to adapt and personalise to new users or user groups. This calls for new experimental design strategies that are also person-aware, and able to organise train and test data differently from standard ML practice. Speciffically, we look at person-agnostic and person-aware methods of train-test data creation, and compare them to identify best practices on a comparative study of personalised ExR model transfer. Our findings show that ExR when compared to results with other HAR tasks, to be a far more challenging personalisation problem and also confirms the utility of metric learning algorithms for personalised model transfer

    Predicting permeability based on core analysis.

    Get PDF
    Knowledge of permeability, a measure of the ability of rocks to allow fluids to flow through them, is essential for building accurate models of oil and gas reservoirs. Permeability is best measured in the laboratory using special core analysis (SCAL), but this is expensive and time-consuming. This is the first major work on predicting permeability in the in the UK Continental Shelf (UKCS) based only on routine core analysis (RCA) data and a machine-learning approach. We present a comparative analysis of the various machine learning algorithms and validate the results, using permeability measured on 273 core samples from 104 wells. Results suggest that machine learning can predict permeability with relatively high accuracy. This opens new research directions in particular in the oil and gas sector

    Neurocomputing for spatio-/spectro temporal pattern recognition and early event prediction: methods, systems, applications

    Get PDF
    The talk presents a brief overview of contemporary methods for neurocomputation, including: evolving connections systems (ECOS) and evolving neuro-fuzzy systems [1]; evolving spiking neural networks (eSNN) [2-5]; evolutionary and neurogenetic systems [6]; quantum inspired evolutionary computation [7,8]; rule extraction from eSNN [9]. These methods are suitable for incremental adaptive, on-line learning from spatio-temporal data and for data mining. But the main focus of the talk is how they can learn to predict early the outcome of an input spatio-temporal pattern, before the whole pattern is entered in a system. This is demonstrated on several applications in bioinformatics, such as stroke occurrence prediction, and brain data modeling for brain-computer interfaces [10], on ecological and environmental modeling [11]. eSNN have proved superior for spatio-and spectro-temporal data analysis, modeling, pattern recognition and early event prediction as outcome of recognized patterns when partially presented

    A Data-Driven Approach to Identify Flight Test Data Suitable to Design Angle of Attack Synthetic Sensor for Flight Control Systems

    Get PDF
    Digital avionic solutions enable advanced flight control systems to be available also on smaller aircraft. One of the safety-critical segments is the air data system. Innovative architectures allow the use of synthetic sensors that can introduce significant technological and safety advances. The application to aerodynamic angles seems the most promising towards certified applications. In this area, the best procedures concerning the design of synthetic sensors are still an open question within the field. An example is given by the MIDAS project funded in the frame of Clean Sky 2. This paper proposes two data-driven methods that allow to improve performance over the entire flight envelope with particular attention to steady state flight conditions. The training set obtained is considerably undersized with consequent reduction of computational costs. These methods are validated with a real case and they will be used as part of the MIDAS life cycle. The first method, called Data-Driven Identification and Generation of Quasi-Steady States (DIGS), is based on the (i) identification of the lift curve of the aircraft; (ii) augmentation of the training set with artificial flight data points. DIGS’s main aim is to reduce the issue of unbalanced training set. The second method, called Similar Flight Test Data Pruning (SFDP), deals with data reduction based on the isolation of quasi-unique points. Results give an evidence of the validity of the methods for the MIDAS project that can be easily adopted for generic synthetic sensor design for flight control system applications

    Adaptive Pathways Using Emerging Technologies: Applications for Critical Transportation Infrastructure

    Get PDF
    Hazards are becoming more frequent and disturbing the built environment; this issue underpins the emergence of resilience-based engineering. Adaptive pathways (APs) were recently introduced to help flexible and dynamic decision making and adaptive management. Especially under the climate change challenge, APs can account for stressors occurring incrementally or cumulatively and for amplified-hazard scenarios. Continuous records from structural health monitoring (SHM) paired with emerging technologies such as machine learning and artificial intelligence can increase the reliability of measurements and predictions. Thus, emerging technologies can play a crucial role in developing APs through the lifetimes of critical infrastructure. This article contributes to the state of the art by the following four ameliorations. First, the APs are applied to the critical transportation infrastructure (CTI) for the first time. Second, an enhanced and smart AP framework for CTI is proposed; this benefits from the resilience and sustainability of emerging technologies to reduce uncertainties. Third, this innovative framework is assisted by continuous infrastructure performance assessment, which relies on continuous monitoring and mitigation measures that are implemented when needed. Next, it explores the impact of emerging technologies on structural health monitoring (SHM) and their role in enhancing resilience and adaptation by providing updated information. It also demonstrates the flexibility of monitoring systems in evolving conditions and the employment of AI techniques to manage pathways. Finally, the framework is applied to the Hollandse bridge, considering climate-change risks. The study delves into the performance, mitigation measures, and lessons learned during the life cycle of the asset

    Adaptive pathways using emerging technologies: Applications for critical transportation infrastructure

    Get PDF
    Hazards are becoming more frequent and disturbing the built environment; this issue underpins the emergence of resilience-based engineering. Adaptive pathways (APs) were recently introduced to help flexible and dynamic decision making and adaptive management. Especially under the climate change challenge, APs can account for stressors occurring incrementally or cumulatively and for amplified-hazard scenarios. Continuous records from structural health monitoring (SHM) paired with emerging technologies such as machine learning and artificial intelligence can increase the reliability of measurements and predictions. Thus, emerging technologies can play a crucial role in developing APs through the lifetimes of critical infrastructure. This article contributes to the state of the art by the following four ameliorations. First, the APs are applied to the critical transportation infrastructure (CTI) for the first time. Second, an enhanced and smart AP framework for CTI is proposed; this benefits from the resilience and sustainability of emerging technologies to reduce uncertainties. Third, this innovative framework is assisted by continuous infrastructure performance assessment, which relies on continuous monitoring and mitigation measures that are implemented when needed. Next, it explores the impact of emerging technologies on structural health monitoring (SHM) and their role in enhancing resilience and adaptation by providing updated information. It also demonstrates the flexibility of monitoring systems in evolving conditions and the employment of AI techniques to manage pathways. Finally, the framework is applied to the Hollandse bridge, considering climate-change risks. The study delves into the performance, mitigation measures, and lessons learned during the life cycle of the asset

    Long future frame prediction using optical flow informed deep neural networks for enhancement of robotic teleoperation in high latency environments

    Get PDF
    High latency in teleoperation has a significant negative impact on operator performance. While deep learning has revolutionized many domains recently, it has not previously been applied to teleoperation enhancement. We propose a novel approach to predict video frames deep into the future using neural networks informed by synthetically generated optical flow information. This can be employed in teleoperated robotic systems that rely on video feeds for operator situational awareness. We have used the image-to-image translation technique as a basis for the prediction of future frames. The Pix2Pix conditional generative adversarial network (cGAN) has been selected as a base network. Optical flow components reflecting real-time control inputs are added to the standard RGB channels of the input image. We have experimented with three data sets of 20,000 input images each that were generated using our custom-designed teleoperation simulator with a 500-ms delay added between the input and target frames. Structural Similarity Index Measures (SSIMs) of 0.60 and Multi-SSIMs of 0.68 were achieved when training the cGAN with three-channel RGB image data. With the five-channel input data (incorporating optical flow) these values improved to 0.67 and 0.74, respectively. Applying Fleiss\u27 Îş gave a score of 0.40 for three-channel RGB data, and 0.55 for five-channel optical flow-added data. We are confident the predicted synthetic frames are of sufficient quality and reliability to be presented to teleoperators as a video feed that will enhance teleoperation. To the best of our knowledge, we are the first to attempt to reduce the impacts of latency through future frame prediction using deep neural networks

    Techniques for effective virtual sensor development and implementation with application to air data systems

    Get PDF
    1noL'abstract è presente nell'allegato / the abstract is in the attachmentopen716. INGEGNERIA AEROSPAZIALEnoopenBrandl, Albert
    corecore