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Abstract. Exercise Recognition (ExR) is relevant in many high impact
domains, from health care to recreational activities to sports sciences.
Like Human Activity Recognition (HAR), ExR faces many challenges
when deployed in the real-world. For instance, typical lab performances
of Machine Learning models, are hard to replicate, due to differences in
personal nuances, traits and ambulatory rhythms. Thus effective trans-
ferability of a trained ExR model, depends on its ability to adapt and
personalise to new users or user groups. This calls for new experimen-
tal design strategies that are also person-aware, and able to organise
train and test data differently from standard ML practice. Specifically,
we look at person-agnostic and person-aware methods of train-test data
creation, and compare them to identify best practices on a comparative
study of personalised ExR model transfer. Our findings show that ExR
when compared to results with other HAR tasks, to be a far more chal-
lenging personalisation problem and also confirms the utility of metric
learning algorithms for personalised model transfer.

Keywords: Exercise Recognition · Transferability · Personalisation ·
Performance Evaluation

1 Introduction

Exercise Recognition (ExR) is an ongoing Machine Learning (ML) research chal-
lenge with many practical applications such as self-management of musculoskele-
tal pain, weight training, orthopaedic rehabilitation and strength and balance
improvement of pre-frail adults. Research in ExR falls under Human Activity
Recognition (HAR) research, which has broader applications in gait recognition,
fall detection and activity recognition for fitness applications, to name a few.

Fitness applications that adopt ExR as an integral component, face many
challenges at deployment, compared with other conventional Machine Learn-
ing (ML) or Deep Learning (DL) applications such as image recognition or text
classification. For instance lack of transferability of learned ML models is one of
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the main challenges that is present in many forms such as; the transferability to
new sensor modalities, to new activities or to new user groups. With new sensor
modalities, both heterogeneity of sensor data and differences in sensor config-
urations must be addressed. Transferability to new activity classes is generally
addressed as open-ended HAR, where either a knowledge-intensive method is
used with a corpus to learn heuristics that can cover all possible activities classes
to be expected in the future [5] or; in contrast a knowledge-light method learns a
feature space that is expected to adapt to new activity classes [13]. Lastly, when
deploying a generic fitness application, developers are unaware of the target user
group; and are unable to make recommendations or adapt to alternative sensors,
and/or exercise or physical activities. Here transferability to a new user group,
in addition to variations in sensor modalities, must also consider common factors
applicable to the group needs.

In this paper, we focus on ExR applications; their transferability to differ-
ent user groups and importantly how to design comparative studies that are
informed by ownership of data (i.e. data that is generated by a specific person).
Naturally, people incorporate many personal nuances when performing exercises.
In practice, these personal traits are captured by sensors. If the ExR algorithm is
unaware of the specific person it may find it challenging to map sensor readings
to a specific exercise. In this paper we show that adopting the correct evaluation
method is crucial to understanding the capabilities of an ExR algorithm amongst
a diverse group of users.

We explore person-aware evaluation methods using the HAR personalisation
algorithm MNp [13] that was inspired by Metric-Learning and Meta-Learning
ideas in the HAR (physical activity) domain. MNp achieves personalisation
without requiring test user data and learns a feature space that is transferable
to a wider range of users. We expect ExR to be a harder personalised model
transfer challenge, compared to models for recognising physical activities. Lets
consider a typical ambulatory physical activity such as walking, where gait and
personal nuances easily influence walking cycles; contrast that to an exercise,
such as a pelvic tilt or a knee roll (see Figure 4a) where its harder to isolate and
capture personal nuances. Our evaluation shows that MNp can be applied to
ExR and is transferable to new users not seen during training.

Rest of the paper is organised as follows. In Section 2 we explore related
literature in HAR and ExR domains. Next in Section 3, we present methods
that are explored in this paper; followed by an analysis of results with alterna-
tive evaluation strategies in Section 4. Finally conclusions and future directions
appear in Section 5.

2 Related Work

Research in Exercise Recognition (ExR) covers a wide variety of application
areas such as weight training [10, 6], rehabilitation [2] and callisthenics and gym
exercises [8, 15]. ExR like HAR, is a multi-class classification problem where
classes are unique exercises that are captured by a stream of sensor data. Many
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algorithms have been explored in literature such as k-NN [8, 14], Decision Trees
and Random Forest [10, 15] and CNN and LSTM [2, 12].

Personalising such algorithms is intuitively desirable for ExR as personal nu-
ances such as gait, posture and rhythm are known factors that are used by human
experts when analysing exercise performance and adherence in the real-world.
Although this remains largely unexplored for ExR; there is useful work in Human
Activity Recognition (HAR), where early research has looked at user-dependent
modelling with access to large quantities of labelled end-user data [9, 1, 7]. Fol-
low on work attempts to reduce this human burden, by adopting semi-supervised
learning methods [3, 4] that require some model re-training after deployment.

Recent advances in few-shot learning and meta-learning with Matching Net-
works (MN) [11] and Personalised MN (MNp) for HAR [13] has addressed the
short comings of previous methods by only using few data instances from end-
user as well as learning embeddings that are largely transferable to new activities
without needing model re-training after deployment. It has also outperformed
its non-personalised counterpart in the tasks of pose detection and HAR [13].
Importantly in this paper we investigate, if MNp is transferable to ExR, which
is arguably a more challenging personalised learning problem.

3 Methods

Given sensor data streams recorded while performing exercises, for supervised
ExR, data instances are extracted using the sliding window method applied to
each of the streams. Typical sensors include inertial sensors, depth cameras and
pressure mats. More formally, given a set of data instances, X , ExR involves
learning a feature space where the mapping from each instance, x, to an exercise
class, y, where y is from the set of exercise classes, L. Accordingly, each sensor-
based data instance is a data and class label pair, (x, y), where y ∈ L.

X = {(x, y) | y ∈ L} (1)

In comparison to computer vision or text datasets, each data instance in X
belongs to a person, p. Given the set of data instances obtained from person
p is X p, relationship of X p and X formalised as in Eqation 2. As before all
data instances in X p will belong to a class in L except special instances like
open-ended HAR where the class set is not fully specified at training time.

X = {X p | p ∈ P} where X p = {(x, y) | y ∈ L} (2)

Training and testing methodologies can adopt one of two approaches; person-
agnostic where an algorithm is trained and tested with the same user group; and
person-aware, where an algorithm is trained and tested on different user groups.
Both maintain disjointed sets of data instances in train and test; but the lat-
ter also preserves disjoint persons by preserving the person-to-data relationship
during model training and testing.
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3.1 Person-agnostic Evaluation

Person agnostic evaluations can be applied as a repeated hold-out (R-HO) or a
cross-fold (CF) validation methodologies. In either case, the person parameter of
each data instance is discarded when creating hold-out sets, or folds. This means
that a person’s data can be split between train and test sets. A percentage, λ,
of all data instance in X , is used as the set of test data instances, Xtest, and the
rest as the set of train data instances Xtrain.

X = {Xtrain,Xtest}
|Xtrain| ≈ (1− λ)× |X | and |Xtest| ≈ λ× |X |

(3)

Fig. 1: Person-agnostic train/test split

With R-HO, a λ percentage of the data instances are randomly selected
(without replacement) to form the test set and the remainder forming the train
set. This is repeated for multiple iterations. With CF, first, the dataset is divided
into a number of folds where each fold contains λ percentage of data, and at
each iteration, one fold is selected as the test set and the rest of the folds as
the training set. Both methods create train and test sets that share the same
population P (see Figure 1). Unlike with R-HO method, CF guarantees that
each data instance appears once in the test set.

A person-agnostic methodology for evaluation, trains and tests on the same
population. Accordingly, these methodologies are not designed to evaluate the
robustness of an algorithm on a different population following typical deploy-
ment. However they provide an “upper-bound” performance of a ML algorithm.

3.2 Person-aware Evaluation

A Person-aware evaluation can be performed as a repeated Persons-Hold-Out (R-
PHO) or a Leave-One-Person-Out (LOPO) methodology. With R-PHO, a per-
centage, µ, of the user population is selected as the test user set, rest forming the
train user set; and this is repeated for multiple iterations. With LOPO method-
ology, instances from a single user is put aside, to form a singleton test user
group, and the rest of the users form the training user group. The train and test
set formation with the test user group, Ptest, and the train user group, Ptrain



Evaluating Exercise Recognition Models 5

can be formalised as follows:

X = {Xtrain,Xtest}
Xtest = {X p | p ∈ Ptest} and Xtrain = {X p | p ∈ Ptrain}

P = {Ptrain,Ptest}
(4)

Fig. 2: Person-aware train/test split

LOPO ensures that each user in the population P is included in the test
set in one of the trials (similar to the person-agnostic CF method), but LOPO
also ensures disjointedness in selected persons (see Figure 2). We propose that
performance measures obtained with a person-aware methodology should be used
as the “lower-bound”, likely performance of a ML algorithm after deployment.

3.3 Personalised Matching Networks

The goal of personalisation is to learn a feature space that can dynamically
adapt to different test user groups. With reference to Sections 3.1 and 3.2, the
aim here is to find algorithms that outperform the “lower-bound” set by a non-
personalised algorithm when evaluated by a person-aware methodology. For this
purpose we explore the Personalised Matching Networks (MNp), which has been
successfully used for personalising HAR algorithms.

MNp is inspired by Metric Learning and Meta-Learning paradigms where the
classification task is learning to match a test instance, x, to one instance from a
set of representatives. The set of representative instances, S is chosen from the
same user (i.e. from. X p) ensuring all classes are represented. An instance in, S,
is a data instance, (x, y), and for each class up to, k, representatives are selected
from, X p, as in Equation 5.

S = {(x, y)|x ∈ X p, y ∈ L} where |S| = k × |L| (5)

We denote the training data set obtained for person, p’s data as X p
tr. An

instance in, X p
tr, consists of a query and support set pairs, (qi, Si), where, qi, is

a sensor data and class label pair, (xi, yi), (similar to a conventional supervised
learning training data instance). The complete training data set, Xtr, is the
collection of all, X p

tr, for the train user group Ptr.



6 A. Wijekoon and N. Wiratunga

X p
tr = {(q, S) | x ∈ X p, y ∈ L} where q = (x, y), y ∈ L

Xtr = {X p
tr | p ∈ Ptr}

(6)

During MNp training, a model learns a feature space where data instances
from different users are successfully transformed and mapped to class labels. Here
training can be viewed as a parameterised (Θ) end-to-end learning of a distance
/ similarity function, using a non-parametric attention-based kernel to compute
the objective matching function (see architecture in Figure 3). At testing, the
MNp algorithm predicts the label ŷ for a query instance x̂ with respect to its
support set Ŝ from the same user.

Fig. 3: Training MNp for HAR; adapted from [13]

4 Evaluation and Results

Aim of the evaluation is two fold; firstly we analyse lower and upper bound
performances of ExR algorithms using the 2 alternative methods of evaluation:
person-agnostic versus person-aware, secondly we explore the transferability of
personalised models for ExR from HAR. All experimental results calculate the
mean F1-score and any significance is reported at the 95% level.

4.1 MEx Dataset

MEx is a sensor-rich dataset collected for 7 exercises with four sensors, publicly
available at the UCI Machine Learning Repository1. Seven exercise classes are in-
cluded this data collection; 1-Knee Rolling, 2-Bridging, 3-Pelvic Tilt, 4-Bilateral
Clam, 5-Repeated Extension in Lying, 6-Prone Punch and 7-Superman (Figure4a).
These exercises are frequently used for prevention or self-management of LBP.

1 https://archive.ics.uci.edu/ml/datasets/MEx
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(a) Exercises (b) Raw sensor data

Fig. 4: MEx dataset

There are four sensor modalities; two accelerometers placed on the wrist and
the thigh of the person; a pressure mat was where the person lays on to perform
the exercises and a depth camera was placed above the person facing down-
words. The tri-axial accelerometers record data at 100Hz frequency within the
range of ±8g. The pressure mat and the depth camera record gray scale frames at
15Hz frequency and frame sizes are 32×16 and 240×320 respectively. Figure 4b
shows a visualisation of each sensor data type.

In this study we focus on ExR with a single modality. Accordingly we create
four datasets with the four modalities available on MEx; the thigh accelerometer,
the wrist accelerometer, the pressure mat and the depth camera respectively
referred to as ACT, ACW, PM and DC in the rest of this paper.

4.2 Pre-processing

The sliding window method is applied on each individual sensor data stream to
create data instances; where the window size is 5 seconds with 3 seconds overlap.
Each resulting window forms a data instance and is labelled with the exercise
class. This process yields datasets of 6240 instances (|X | = 6240), with 208 data
instance per user in average (|Xp| ≈ 208). We apply a set of pre-processing steps
for each sensor modality as recommended by the authors of [12]. A reduced frame
rate of 1 frame/second is applied for DC and PM data and the DC data frames
are compressed from 240× 320 to 12× 16. The inertial sensor data from ACW
and ACT are pre-processed using the Discrete Cosine Transformation (DCT)
according to [12].

4.3 Comparison of Person-agnostic and Person-aware Settings

In order to demonstrate the effect of different evaluation methods on ExR, we
evaluate ExR algorithms using the two person-agnostic evaluation methodolo-
gies; R-HO and CF (Section 3.1) and the person-aware methodology LOPO.
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We choose the best performing algorithms for each sensor dataset from [12] for
our comparative study. We discard the user parameter on the data instances to
obtain the person-agnostic datasets, and use 1/30 as the λ parameter to split
a dataset for training and testing or to create folds. Accordingly we repeat the
R-HO experiments for 30 iterations and perform 30 CF experiments. These are
compared with results from person-aware LOPO from [12].

Methodology Algorithm ACT ACW DC PM

Person-agnostic
R-HO

From [12]
0.9807 0.9163 0.9953 0.9905

CF 0.9798 0.9260 0.9960 0.9880

Person-aware LOPO From [12] 0.9015 0.6335 0.8720 0.7408

Table 1: Mean F1-score results: person-agnostic vs. person-aware settings

In Table 1, there is a significant difference between the performance measures
obtained with person-agnostic and person-aware methods. Inevitably when there
is no person-wise disjoint train and test splits, algorithms have the opportunity
to configure its parameters to better fit the expected user population at test
time, resulting in significantly improved performance. It is noteworthy that both
person-agnostic methods achieve similar mean F1-scores consistently with all
four datasets. We highlight that person-aware LOPO performance measures set
the “lower-bound” and person-agnostic performance measures set the “upper-
bound” for the ExR task with each sensor modality.

4.4 Comparative Study of Non-personalised vs. Personalised
Algorithms for ExR

Performance of non-personalised algorithms (from [12]) is compared with the
personalised algorithm MNp (from Section 3.3) for ExR. We evaluate with two
person-aware evaluation methodologies; R-PHO and LOPO from Section 3.2.
With R-PHO experiments a test set is formed with randomly selected instances
from 1/3 of persons forming the set of test users (µ), and the train instances
selected from the other 2/3 of train users. This is repeated for 10 test-train trials.
In LOPO experiments, we select the set of data instances from one user as the
test set and the rest forming the train set, and this is repeated 30 times but each
time with a different test user. While R-PHO helps to evaluate transferability of
the algorithms with multiple users at a time, LOPO evaluates the transfer to a
single user at a time, both are valid scenarios for ExR and HAR in general. For
comparative purposes, we also included results obtained by authors of [13] for
general HAR tasks, pose detection tasks and Activities of Daily Living (ADL)
classification task.

In Table 2 results are grouped under each task and the difference between
the personalised algorithm and the best non-personalised algorithm is presented
in the last column. Here the best non-personalised algorithm for the first three
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tasks is the non-personalised Matching Networks introduced in [11] and for the
MEx exercises domain they are the best performing algorithms found by the
authors of [12] for each sensor modality. Person-aware evaluation methodologies
require a non-parametric statistical significance test as they produce results that
are not normally distributed. We use the Wilcoxon signed-rank test for paired
samples to evaluate the statistical significance at 95% confidence and highlight
the significantly improved performances in bold.

Problem Evaluation
Dataset

Algorithm
Difference

Domain Methodology non-personalised MNp

Pose
R-PHO

HDPoseDS17 0.7678 0.9837 +21.68%

Detection HDPoseDS6 0.4292 0.9186 +48.94%

General
R-PHO

selfBACKW,T 0.7340 0.9169 +18.29%

HAR selfBACKW 0.6320 0.8563 +22.44%

ADL R-PHO PAMAP2 0.8715 0.8690 -0.25%

MEx

ACT 0.9064 0.9424 +3.60%

R-PHO
ACW 0.6352 0.6845 +4.93%

DC 0.8741 0.9186 +4.45%

PM 0.6977 0.8538 +15.61%

MEx

ACT 0.9015 0.9155 +1.40%

LOPO
ACW 0.6335 0.6663 +3.28%

DC 0.8720 0.9342 +6.22%

PM 0.7408 0.8205 +7.97%

Table 2: Mean F1-score Results for the comparison of non-personalised algorithm
vs. personalised algorithm for ExR

The personalised algorithm, MNp, has significantly outperformed the best
non-personalised algorithm on both evaluation methodologies. Overall similar
performance measures are observed across both methodologies, with the excep-
tion of the PM dataset, where there is a ∼ +5% difference when using LOPO
compared to R-PHO with the non-personalised algorithm.

We observe that personalisation has the greatest benefit for Pose detection,
followed by general HAR tasks which feature both ambulatory and stationary
activities; and thereafter on the ExR task. The exception here was ADL tasks,
where personalisation neither improved nor degraded performance. Close exami-
nation of the activity duration of each domain suggests that pose and ambulatory
activities are highly repetitive, or are performed in short repetitive time spans,
which minimises the capturing of personal rhythmic nuances. In comparison,
a single repetition of an exercise takes a longer time and consists of multiple
sub steps making it harder to model due to potential variation opportunities
between persons. Essentially MNp is capable of finding some commonalities be-
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tween exercise classes, but there is less opportunities than compared with pose or
ambulatory movements. In contrast, ADL activities tend to have less clear start
and stop demarcations and have even longer spans. They also have the high-
est possibility of featuring personal traits and nuances. For example, an ADL
classes such as ironing or cleaning can be completely different from one user to
another. Accordingly, personalised algorithms struggle to find such commonali-
ties between ADL classes; explaining results we had observed here.

4.5 Distribution of Performance Measures

We visualise the distribution of performance measures with different method-
ologies for datasets ACT, ACW, DC and PM in Figures 5a to 5d. Each figure
shows the distribution of results obtained from three experiments; CF method
with the non-personalised algorithm using red triangles, LOPO method with the
non-personalised algorithm using blue circles and LOPO method with the MNp

personalised algorithm using green stars.
The CF results on every dataset highlight the upper-bound performance of

the ExR task when evaluated under the assumption that the algorithm is trained
and tested on the same user distribution. The LOPO results obtained for the
non-personalised algorithm sets the lower-bound for the ExR task and highlights
how non-personalised algorithms struggle when tested on a person that was not
part of the training user group. Personalised algorithm such as MNp, minimise
the gap between the upper-bound and the lower-bound with a majority of users
by improving upon the lower-bound. As shown in Table 2, MNp, is a good choice
for personalising across all tasks. With significant advantages shown with pose
detection and fewest gains with the ExR task.

5 Conclusion

We present a comprehensive study of Exercise Recognition (ExR) model eval-
uation of adaptability to diverse user groups after deployment. We explore the
different evaluation methods that share the same user set during training and
testing (i.e. person-agnostic) and methods that keep disjoint user sets for train-
ing and testing (i.e. person-aware). We show how the prior method sets the
upper-bound and latter sets the lower-bound for model performance in ExR.
We highlight how person-agnostic evaluation results are normally distributed,
but person-aware evaluation results are not, thus calling for non-parametric
statistical significance testing methods. We adapted a personalised algorithm,
MNp, that is capable of learning a feature space that is transferable to unseen
users and user groups and show how it outperforms the lower-bound while using
the evaluation criteria suitable for model deployment(i.e. person-aware ExR).
Finally we believe improving performance of ExR with personalised algorithms
in the person-aware setting is a significant step towards deploying user-friendly,
unobtrusive ExR algorithms with fitness applications. We identify the need to
improve these personalised algorithms to better suit the ExR domain.
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(a) ACT

(b) ACW

(c) DC

(d) PM

Fig. 5: Distribution of F1-score over the folds
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