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Abstract. Engineering drawings are common across different domains
such as Oil & Gas, construction, mechanical and other domains. Auto-
matic processing and analysis of these drawings is a challenging task.
This is partly due to the complexity of these documents and also due
to the lack of dataset availability in the public domain that can help
push the research in this area. In this paper, we present a multiclass
imbalanced dataset for the research community made of 2432 instances
of engineering symbols. These symbols were extracted from a collection
of complex engineering drawings known as Piping and Instrumentation
Diagram (P&ID). By providing such dataset to the research community,
we anticipate that this will help attract more attention to an important,
yet overlooked industrial problem, and will also advance the research in
such important and timely topics. We discuss the datasets characteristics
in details, and we also show how Convolutional Neural Networks (CNNs)
perform on such extremely imbalanced datasets. Finally, conclusions and
future directions are discussed.

Keywords: CNN, Multiclass, Classification, Imbalanced Dataset, Engi-
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1 Introduction

Engineering drawings are known to be one of the most complex types of docu-
ments to process and analyse. They are widely used in different industries such
as construction and city planning (i.e. floor plan diagrams [2]), Oil & Gas (i.e.
P&IDs [9]), Mechanical Engineering [33], AutoCAD Drawing Exchange Format
(DXF) [13] and others. Interpreting these drawings requires highly skilled people,
and in some cases long hours of work. Processing and analysing these drawings
is becoming increasingly important. This is partly due to the urgent need to
improve business practices such as inventory, asset management, risk analysis,
safety checks and other types of applications, and also due to the recent advance-
ments in the domain of machine vision and image understanding. Deep Learning
(DL) [15], in particular, had significantly improved the performance by orders of



magnitude in many domains such as the Gaming and AI [17], Natural Language
Processing [36], Health [12], Cyber Security [28], and others.

The concept of Convolutional Neural Networks (CNNs) [16] has made signifi-
cant progress in recent years in many image-related tasks. It has been successfully
applied to several fields such as hand-written digit recognition [22], image classi-
fication [30,20], face recognition & biometrics [27], amongst others. Before CNNs,
improvements in image classification, segmentation, and object detection were
marginal and incremental. CNNs revolutionised this field. For example, Deep
Face [31], which is a face recognition system that was first proposed by Face-
book in 2014, achieved an accuracy of 97.35%, beating the then state-of-the-art,
by 27%.

Despite extensive progress in the field of image processing and analysis, very
little progress has been made in the area of analysing complex engineering draw-
ings, and extracting information from these diagrams is still considered a chal-
lenging problem [5]. Consider for example the case of the Piping and Instrumen-
tation Diagram (P&ID), which is a schematic engineering drawing, commonly
used in the Oil and Gas industry [9,24]. This type of diagram, as can be seen
in Figure 1, is made of symbols, connectivity information (lines, dashed lines,
combinations of lines), text, and other graphical elements.

Fig. 1: A typical example of elements within a P&ID diagram

Identification of the symbols within this kind of diagram would appear to
be an ideal problem which could be easily solved by convolutional neural net-
works. However, a recent review on the subject [7] showed that publicly available
datasets are not common in this area, with research commonly applied to small,
proprietary datasets. To take full advantage of the recent advances in machine
vision, and to facilitate reproducible experiments, a sizeable, labelled dataset in
the public domain is required.



Several factors make processing and analysing engineering drawings a chal-
lenging tasks. First, the quality of the images/scanned documents is sometimes of
a standard which requires the application of various image-enhancements meth-
ods. Second, the nature of these diagrams, where various types of elements might
be overlapping (i.e. a text overlaid on a symbol), in addition to possible data
annotations and other graphic elements makes accurate localisation of individual
elements more challenging. It is difficult to isolate one particular symbol from its
neighbours. Another inherent problem is the imbalanced distribution of various
symbols within these drawings. Handling all related challenges is beyond the
scope of this paper. The reader is referred to [24] for more detailed description
about the inherent characteristics and challenges of these types of drawings.

In this paper, we present a new multiclass dataset of symbols extracted
from engineering drawings to the research community. Realistically reflecting the
problem, this dataset is subject to some class-imbalance. The remaining parts
of this paper are organised as follows: In Section 2 we discuss relevant literature
to the digitisation of engineering drawings and class imbalance. In Section 3 we
present our methods which includes detailed discussion of the dataset, and our
approach for classifying engineering symbols. Benchmarking experiments and
results are presented in Section 4, and finally, conclusions and future directions
are discussed in Section 5.

2 Related Work

Attempts to process and analyse symbolic drawings date back to at least the
early 90’s. These include: analysis of musical notes [6]; processing mechanical
drawings [19]; and optical character recognition (OCR)[21,23,26]. In recent years,
digitising engineering drawings has become increasingly important as they are
widely used in different domains [9,2,33,13], however, literature is still limited.
To the best of our knowledge, there is no large, publicly available dataset to
facilitate the advantages of modern, data-hungry CNNs. A recent review [7] de-
tailed the whole process of digitisation and contextualisation of the three main
shapes contained in engineering drawings (i.e. text, lines and symbols). The au-
thors identified that, typically, symbols are located within the drawing either
in a specific or a holistic way. In specific localisation, the system has a prede-
fined symbol description/template, and an algorithm recursively looks for such
symbol. In contrast, holistic methods require differentiation of the three shapes
to then be able to split the drawing into layers. One of the most widely-used
frameworks in this regard is text-graphics separation [32], which is a family of
algorithms which distinguish text from lines and symbols based on properties
such as height-to-width radio, stroke, amongst others. CNNs could be applied
to both of these, given sufficient labelled data.

One type of engineering drawings, namely P&IDs, has attracted more re-
search attention in recent years. Typical examples, presented in [9,18,25], aimed
at detecting and recognising symbols within these diagrams. It can be argued
however, that most of the existing literature followed a traditional image process-



ing approach [14], which requires feature extraction [8], feature representation
[37], and classification to determine the class of objects (i.e. symbols, digits, ...)
[1].

Most recently in [9], authors presented a first step towards creating a sym-
bol repository for engineering drawings. A total of 1187 symbols split into 37
different classes was compiled. The repository was then processed by means of
class decomposition [10,11], resulting in a total of 57 sub-classes. Classification
accuracy was calculated using three different classification frameworks: Random
Forests (RF), Support Vector Machine (SVM) and a CNN. Class decomposition
demonstrated a slight improvement in classification results for SVM and CNN,
with a more considerable improvement in RF.

Overall, there is a growing interest in the research community in digitising
and analysing engineering drawings. Yet, the lack of public domain datasets is
considered as one of the main challenges to push the research boundaries in
this area. In addition to this, the class-imbalance problem could also be con-
sidered as another challenge, in particular when certain types of symbols either
dominate, or rarely appear in the dataset. Class-imbalance is common across dif-
ferent domains, and not only limited to engineering drawings [35,34]. Handling
this problem is often done by means of data resampling, where majority classes
are undersampled to reduce their dominance, or minority classes are oversam-
pled [35]. In addition to this, Generative Adversarial Neural Networks [15] were
successfully applied recently to augment an imbalanced dataset and improve
learning algorithm performance [3,4].

3 Methodology

This section presents our novel dataset of Symbols in Engineering Drawings
(SiED). First we give a brief description of how this dataset was constructed. This
is followed by a detailed description of dataset and class distribution. Finally,
a brief discussion related to the classification method used to benchmark this
dataset is presented.

3.1 Data Extraction

A collection of P&ID sheets was provided by an industrial partner. Following
the work in [25], a thresholding method was first applied to reduce noise. Areas
of interest were then identified interactively to discard boundaries, text and
annotation outside the border of each drawing. A traditional machine-vision
approach was then used to extract a set of symbols. A set of heuristic-based
methods were developed and applied sequentially to localise symbols within each
P&ID drawing. Figure 2 shows a random selection of typical symbols that appear
in P&IDs.



Fig. 2: A random selection of typical symbols that appear in P&IDs

The methods proved to be stable enough to provide a list of extracted and
well-defined symbols. However, a key limitation of such heuristic-based methods
is that they require extensive feature engineering and require fine-tuning and
customisation to generalise to unseen symbols or different types of diagrams [7].

3.2 Dataset

Using the method presented above, a series of P&IDs have been processed and
analysed. This resulted in a collection of symbols that represent different types of
equipment within the drawings. In total, a dataset of 2432 instances representing
39 different type of symbols were compiled. All symbols have been scaled to a
standard size of 100×100 pixels. The dataset provides rich source of information
to evaluate various supervised machine learning algorithms. However, and as
can be seen in Figure 3, the dataset is hugely imbalanced. Some symbols, such
as sensors, dominate the dataset, while others appear only once or are vastly
underrepresented.

The imbalance between symbols is huge in some cases. For example symbols
of type sensor appears 392 times in the dataset, while symbols such as Barred
Tee and Ultrasonic Flow Meter appear only once. Similarly, Reducer appears in
the dataset 285 times, while Control Valve Angle Choke only once.



Fig. 3: Class distribution in the dataset

Interestingly, eight types of symbols populate more than 64% of the dataset.
These are: Sensor, Reducer, Arrowhead, Valve Ball, DB&BBV, Valve Check,
Continuity Label and DB&BPV. At the same time, 18 symbols populate to-
gether less than 6% of the whole dataset. These are: Valve Slab Gate, Control
Valve Globe, Flange + Triangle, Control, Exit to Atmosphere, Rupture Disc,
ESDV Valve Slab Gate, Box, ESDV Valve Butterfly, Temporary Strainer, Con-
trol Valve, Valve Gate Through Conduit, Deluge, Vessel, Line Blindspacer, Con-
trol Valve Angle Choke, Barred Tee and Ultrasonic Flow Meter. In other words,
the dataset is hugely imbalanced.

3.3 Classification Method

To provide base-line results on this imbalanced dataset of symbols, we use CNNs.
CNNs [16] have made significant progress in recent years in many image-related
tasks and in particular in image classification [30,20].

The network architecture used in this paper consists of an input layer of
100 × 100 of the raw pixel values of the symbol and 32 filters (3 × 3). Then
a 2 × 2 max pooling layer. Then, two convolutional layers followed by a 2 × 2
max pooling layer. This structure is then repeated twice with two convolutional



layers, with 64 filters of size (3 × 3) followed by a max pooling layer. Finally,
a fully-connected layer composed of two hidden layers and an output layer of
39 (number of classes) units with softmax activation function. All convolutional
layers in the network used ReLU activations. Dropout [29] was used in the in
the fully connected layer with rates 0.1.

4 Experiments and Results

A series of experiments were carried out to establish the validity and stability
of the proposed CNN architecture.

4.1 Set up

The dataset was split into disjoint training, validation and testing sets. First, the
dataset was split into training and testing sets where 80% of the data was used
for training and the remaining 20% for testing. The training set was then split
into training and validation sets with ratios of 90% and 10% of the remaining
training set respectively. The CNN model was trained with a batch size of 64 for
25 epochs. These parameters were set empirically.

4.2 Results & Discussion

On the training set, an accuracy of 99.8%, with only 2 symbols incorrectly clas-
sified was recorded. On the test set, results were slightly lower, with accuracy of
95.3%. In other words 23 symbols were incorrectly identified. Table 1 provides
more details about performance across the different symbols and using three
different metrics: Precision, Recall, and F1-Score.

Table 1: Performance across different symbols in the dataset
Symbol Precision Recall F1-score Symbol Precision Recall F1-score

Control Valve 0.00 0.00 0.00 Control 1.00 1.00 1.00
Flange + Triangle 0.00 0.00 0.00 DB&BBV 1.00 1.00 1.00
Line Blindspacer 0.00 0.00 0.00 DB&BBV + Valve Check 1.00 0.90 0.95
Valve Gate Through Conduit 0.00 0.00 0.00 DB&BPV 1.00 0.95 0.98
Rupture Disc 0.33 1.00 0.50 Deluge 1.00 1.00 1.00
Valve Angle 0.33 1.00 0.50 ESDV Valve Ball 1.00 0.92 0.96
Valve Slab Gate 0.50 1.00 0.67 ESDV Valve Slab Gate 1.00 0.50 0.67
Valve Globe 0.57 1.00 0.73 Exit to Atmosphere 1.00 1.00 1.00
ESDV Valve Butterfly 0.67 1.00 0.80 Flange Single T-Shape 1.00 0.93 0.96
Control Valve Globe 0.80 0.57 0.67 Injector Point 1.00 0.62 0.77
Valve 0.80 1.00 0.89 Reducer 1.00 1.00 1.00
Flange Joint 0.85 1.00 0.92 Sensor 1.00 0.98 0.99
Arrowhead + Triangle 0.90 1.00 0.95 Spectacle Blind 1.00 1.00 1.00
Triangle 0.94 0.84 0.89 Valve Ball 1.00 0.97 0.99
Arrowhead 1.00 0.96 0.98 Valve Butterfly 1.00 1.00 1.00
Box 1.00 1.00 1.00 Valve Check 1.00 0.93 0.96
Continuity Label 1.00 1.00 1.00 Valve Plug 1.00 0.89 0.94

A closer look at the results, shows as expected that some of the minority
class instances went completely undetected. For example, for the control valve



symbols which has only five instances in the whole dataset, the corresponding
F1-score is zero. Such score can also be seen in Table 1 for the symbols the
’Flange + Triangle’ (17 instances in the whole dataset), the ’Line Blindspacer’
(4 instances only), ’Valve Gate Through Conduit’ with only 4 instances in the
whole dataset. Conversely, well represented symbols in the dataset were correctly
classified with relatively high precision and recall. For example, the ’Reducer’ F1-
score is 1. Notice that 285 instances of reducers are present in the dataset. A
similar performance can be observed for other majority class instances such as
’Sensor’ (392 instances), ’Valve Ball’ (173 instances in the dataset), and others.

These results are consistent with the literature and showed clearly that the
learning algorithm tend to be biased toward majority class-instances. Despite
this, it can be said that CNN performed extremely well on the testing set with
an overall accuracy reaching 95.3%, and an average precision, recall, and F1-score
of 0.785 ,0.822, and 0.784 respectively across all symbols in the dataset.

5 Conclusions

In this paper, we presented a new multiclass imbalanced dataset for the re-
search community. The dataset represents a collection of symbols extracted from
P&IDs. Despite the importance of processing and analysing engineering draw-
ings, no such dataset exists in the public domain. We anticipate that donat-
ing this dataset to the research community will help researchers in the domain
of machine learning and in particular imbalanced-class classification, and also
research in the machine vision domain who are interested in processing and
analysing engineering drawings. Future work will focus on handling this multi-
class imbalanced problem, where advanced methods such as GANs and other
data augmentation techniques might be utilised to improve the learning perfor-
mance.
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25. C. F Moreno-Garćıa, E Elyan, and C Jayne. Heuristics-Based Detection to Improve
Text / Graphics Segmentation in Complex Engineering Drawings. In Engineering
Applications of Neural Networks, volume CCIS 744, pages 87–98, 2017.

26. S. Mori, C. Y. Suen, and K. Yamamoto. Historical Review of OCR Research and
Development. Proceedings of the IEEE, 80(7):1029–1058, 1992.

27. U. Park and A. K. Jain. Face matching and retrieval using soft biometrics. IEEE
Transactions on Information Forensics and Security, 5(3):406–415, Sep. 2010.

28. N. Shone, T. N. Ngoc, V. D. Phai, and Q. Shi. A deep learning approach to network
intrusion detection. IEEE Transactions on Emerging Topics in Computational
Intelligence, 2(1):41–50, Feb 2018.

29. Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: A simple way to prevent neural networks from overfitting.
Journal of Machine Learning Research, 15:1929–1958, 2014.

30. C. Szegedy, Wei Liu, Yangqing Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. In 2015 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages 1–9, June
2015.

31. Y. Taigman, M. Yang, M. Ranzato, and L. Wolf. Deepface: Closing the gap to
human-level performance in face verification. In 2014 IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 1701–1708, June 2014.

32. Karl Tombre, Salvatore Tabbone, Bart Lamiroy, and Philippe Dosch.
Text/Graphics Separation Revisited. In Document Analysis Systems, volume 2423,
pages 200–211, 2002.

33. P. Vaxiviere and K. Tombre. Celesstin: Cad conversion of mechanical drawings.
Computer, 25(7):46–54, July 1992.

34. Pattaramon Vuttipittayamongkol and Eyad Elyan. Neighbourhood-based under-
sampling approach for handling imbalanced and overlapped data. Information
Sciences, 509:47 – 70, 2020.

35. Pattaramon Vuttipittayamongkol, Eyad Elyan, Andrei Petrovski, and Chrisina
Jayne. Overlap-based undersampling for improving imbalanced data classification.
In Hujun Yin, David Camacho, Paulo Novais, and Antonio J. Tallón-Ballesteros,
editors, Intelligent Data Engineering and Automated Learning – IDEAL 2018,
pages 689–697, Cham, 2018. Springer International Publishing.

36. Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He, Alex Smola, and Eduard Hovy.
Hierarchical attention networks for document classification. In Proceedings of the
2016 Conference of the North American Chapter of the Association for Compu-
tational Linguistics: Human Language Technologies, pages 1480–1489, San Diego,
California, June 2016. Association for Computational Linguistics.

37. D. Zhang and G. Lu. Review of shape representation and description techniques.
Pattern Recognition, 37(1):1–19, 2004.


	coversheet_journal_conference_paper
	ELYAN 2020 Symbols in engineering (AAM)
	Symbols in Engineering Drawings (SiED): An Imbalanced Dataset Benchmarked by Convolutional Neural Networks


