25 research outputs found

    A Survey on Identification of Motifs and Ontology in Medical Database

    Get PDF
    Motifs and ontology are used in medical database for identifyingand diagnose of the disease. A motif is a pattern network used for analysis of the disease. It also identifies the pattern of the signal. Based on the motifs the disease can be predicted, classified and diagnosed. Ontology is knowledge based representation, and it is used as a user interface to diagnose the disease. Ontology is also used by medical expert to diagnose and analyse the disease easily. Gene ontology is used to express the gene of the disease

    Fruit Shop Tool: Fruit Classification and Recognition using Deep Learning

    Get PDF
    Fruit image classification and recognition is a challenging application of computer vision. The computer vision system is used to recognize a fruit based on artificial neural networks. Deep neural network is widely used for various classification problems. In this paper Convolutional Neural Network (CNN) is used to recognize the fruits. The dataset contains 1877 images of ten categories which are used for the experimental purpose. CNN is constructed with sixteen layers which are used to extract the features from images and Support Vector Machine (SVM) classifier is used for classification. The proposed system has the classification accuracy of 99.2% and the recognition accuracy of 99.02%

    Machine Learning in Chronic Pain Research: A Scoping Review

    Get PDF
    Given the high prevalence and associated cost of chronic pain, it has a significant impact on individuals and society. Improvements in the treatment and management of chronic pain may increase patients’ quality of life and reduce societal costs. In this paper, we evaluate state-of-the-art machine learning approaches in chronic pain research. A literature search was conducted using the PubMed, IEEE Xplore, and the Association of Computing Machinery (ACM) Digital Library databases. Relevant studies were identified by screening titles and abstracts for keywords related to chronic pain and machine learning, followed by analysing full texts. Two hundred and eighty-seven publications were identified in the literature search. In total, fifty-three papers on chronic pain research and machine learning were reviewed. The review showed that while many studies have emphasised machine learning-based classification for the diagnosis of chronic pain, far less attention has been paid to the treatment and management of chronic pain. More research is needed on machine learning approaches to the treatment, rehabilitation, and self-management of chronic pain. As with other chronic conditions, patient involvement and self-management are crucial. In order to achieve this, patients with chronic pain need digital tools that can help them make decisions about their own treatment and care

    Water Supply Pipeline Risk Index Assessment Based on Cohesive Hierarchical Fuzzy Inference System

    Get PDF
    As populations grow, facilities such as roads, bridges, railways lines, commercial and residential buildings, etc., must be expanded and maintained. There are extensive networks of underground facilities to fulfil the demand, such as water supply pipelines, sewage pipelines, metro structures, etc. Hence, a method to regularly assesses the risk of the underground facility failures is needed to decrease the chance of accidental loss of service or accidents that endanger people and facilities. In the proposed work, a cohesive hierarchical fuzzy inference system (CHFIS) was developed. A novel method is proposed for membership function (MF) determination called the heuristic based membership functions determination (HBMFD) method to determine an appropriate MF set for each fuzzy logic method in CHFIS. The proposed model was developed to decrease the number of rules for the full structure fuzzy inference system with all rule implementation. Four very crucial parameters were considered in the proposed work that are inputs to the proposed CHFIS model in order to calculate the risk of water supply pipelines. In order to fully implement the proposed CHFIS just 85 rules are needed while using the traditional Mamdani fuzzy inference system, 900 rules are required. The novel method greatly reduces implementation time and rule design sets that are extremely time consuming to develop and difficult to maintain. Document type: Articl

    Human face detection techniques: A comprehensive review and future research directions

    Get PDF
    Face detection which is an effortless task for humans are complex to perform on machines. Recent veer proliferation of computational resources are paving the way for a frantic advancement of face detection technology. Many astutely developed algorithms have been proposed to detect faces. However, there is a little heed paid in making a comprehensive survey of the available algorithms. This paper aims at providing fourfold discussions on face detection algorithms. At first, we explore a wide variety of available face detection algorithms in five steps including history, working procedure, advantages, limitations, and use in other fields alongside face detection. Secondly, we include a comparative evaluation among different algorithms in each single method. Thirdly, we provide detailed comparisons among the algorithms epitomized to have an all inclusive outlook. Lastly, we conclude this study with several promising research directions to pursue. Earlier survey papers on face detection algorithms are limited to just technical details and popularly used algorithms. In our study, however, we cover detailed technical explanations of face detection algorithms and various recent sub-branches of neural network. We present detailed comparisons among the algorithms in all-inclusive and also under sub-branches. We provide strengths and limitations of these algorithms and a novel literature survey including their use besides face detection

    Improving WalkSAT for Random 3-SAT Problems

    Get PDF
    Stochastic local search (SLS) algorithms are well known for their ability to efficiently find models of random instances of the Boolean satisfiability (SAT) problems. One of the most famous SLS algorithms for SAT is called WalkSAT, which has wide influence and performs well on most of random 3-SAT instances. However, the performance of WalkSAT lags far behind on random 3-SAT instances equal to or greater than the phase transition ratio. Motivated by this limitation, in the present work, firstly an allocation strategy is introduced and utilized in WalkSAT to determine the initial assignment, leading to a new algorithm called WalkSATvav. The experimental results show that WalkSATvav significantly outperforms the state-of-the-art SLS solvers on random 3-SAT instances at the phase transition for SAT Competition 2017. However, WalkSATvav cannot rival its competitors on random 3-SAT instances greater than the phase transition ratio. Accordingly, WalkSATvav is further improved for such instances by utilizing a combination of an improved genetic algorithm and an improved ant colony algorithm, which complement each other in guiding the search direction. The resulting algorithm, called WalkSATga, is far better than WalkSAT and significantly outperforms some previous known SLS solvers on random 3-SAT instances greater than the phase transition ratio from SAT Competition 2017. Finally, a new SAT solver called WalkSATlg, which combines WalkSATvav and WalkSATga, is proposed, which is competitive with the winner of random satisfiable category of SAT competition 2017 on random 3-SAT problem

    A big-data analytics method for capturing visitor activities and flows: the case of an island country

    Get PDF
    © 2019, Springer Science+Business Media, LLC, part of Springer Nature. Understanding how people move from one location to another is important both for smart city planners and destination managers. Big-data generated on social media sites have created opportunities for developing evidence-based insights that can be useful for decision-makers. While previous studies have introduced observational data analysis methods for social media data, there remains a need for method development—specifically for capturing people’s movement flows and behavioural details. This paper reports a study outlining a new analytical method, to explore people’s activities, behavioural, and movement details for people monitoring and planning purposes. Our method utilises online geotagged content uploaded by users from various locations. The effectiveness of the proposed method, which combines content capturing, processing and predicting algorithms, is demonstrated through a case study of the Fiji Islands. The results show good performance compared to other relevant methods and show applicability to national decisions and policies

    On cognitive assistant robots for reducing variability in industrial human-robot activities

    Get PDF
    In the industrial domain, one important research activity for cognitive robotics is the development of assistant robots. In this work, we show how the use of a cognitive assistant robot can contribute to (i) improving task effectiveness and productivity, (ii) providing autonomy for the human supervisor to make decisions, providing or improving human operators’ skills, and (iii) giving feedback to the human operator in the loop. Our approach is evaluated on variability reduction in a manual assembly system. The overall study and analysis are performed on a model of the assembly system obtained using the Functional Resonance Analysis Method (FRAM) and tested in a robotic simulated scenario. Results show that a cognitive assistant robot is a useful partner in the role of improving the task effectiveness of human operators and supervisors.This work has been co-financed by the European Regional Development Fund of the European Union in the framework of the ERDF Operational Program of Catalonia 2014-2020, grant number 001-P-001643. Cecilio Angulo has been partly supported by the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 825619 (AI4EU).Peer ReviewedPostprint (published version

    Capacitated vehicle routing problem model for carriers

    Get PDF
    Background: The Capacitated Vehicle Routing Problem (CVRP) is one of the most important transportation problems in logistics and supply chain management. The standard CVRP considers a fleet of vehicles with homogeneous capacity that depart from a warehouse, collect products from (or deliver products to) a set of customer locations (points) and return to the same warehouse. However, the operation of carrier companies and third-party transportation providers may follow a different network flow for collection and delivery. This may lead to non-optimal route planning through the use of the standard CVRP. Objective: To propose a model for carrier companies to obtain optimal route planning. Method: A Capacitated Vehicle Routing Problem for Carriers (CVRPfC) model is used to consider the distribution scenario where a fleet of vehicles depart from a vehicle storage depot, collect products from a set of customer points and deliver them to a specific warehouse before returning to the vehicle storage depot. Validation of the model’s functionality was performed with adapted CVRP test problems from the Vehicle Routing Problem LIBrary. Following this, an assessment of the model’s economic impact was performed and validated with data from a real carrier (real instance) with the previously described distribution scenario. Results: The route planning obtained through the CVRPfC model accurately described the network flow of the real instance and significantly reduced its distribution costs. Conclusion: The CVRPfC model can thus improve the competitiveness of the carriers by providing better fares to their customers, reducing their distribution costs in the process

    Method for Attack Tree Data Transformation and Import Into IT Risk Analysis Expert Systems

    Get PDF
    Information technology (IT) security risk analysis preventatively helps organizations in identifying their vulnerable systems or internal controls. Some researchers propose expert systems (ES) as the solution for risk analysis automation since risk analysis by human experts is expensive and timely. By design, ES need a knowledge base, which must be up to date and of high quality. Manual creation of databases is also expensive and cannot ensure stable information renewal. These facts make the knowledge base automation process very important. This paper proposes a novel method of converting attack trees to a format usable by expert systems for utilizing the existing attack tree repositories in facilitating information and IT security risk analysis. The method performs attack tree translation into the Java Expert System Shell (JESS) format, by consistently applying ATTop, a software bridging tool that enables automated analysis of attack trees using a model-driven engineering approach, translating attack trees into the eXtensible Markup Language (XML) format, and using the newly developed ATES (attack trees to expert system) program, performing further XML conversion into JESS compatible format. The detailed method description, along with samples of attack tree conversion and results of conversion experiments on a significant number of attack trees, are presented and discussed. The results demonstrate the high method reliability rate and viability of attack trees as a source for the knowledge bases of expert systems used in the IT security risk analysis process.This article belongs to the Special Issue Human-Centered Computing and Information Security: Recent Advances & Intelligent Application
    corecore