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Abstract: Given the high prevalence and associated cost of chronic pain, it has a significant impact
on individuals and society. Improvements in the treatment and management of chronic pain may
increase patients’ quality of life and reduce societal costs. In this paper, we evaluate state-of-the-art
machine learning approaches in chronic pain research. A literature search was conducted using
the PubMed, IEEE Xplore, and the Association of Computing Machinery (ACM) Digital Library
databases. Relevant studies were identified by screening titles and abstracts for keywords related to
chronic pain and machine learning, followed by analysing full texts. Two hundred and eighty-seven
publications were identified in the literature search. In total, fifty-three papers on chronic pain
research and machine learning were reviewed. The review showed that while many studies have
emphasised machine learning-based classification for the diagnosis of chronic pain, far less attention
has been paid to the treatment and management of chronic pain. More research is needed on machine
learning approaches to the treatment, rehabilitation, and self-management of chronic pain. As with
other chronic conditions, patient involvement and self-management are crucial. In order to achieve
this, patients with chronic pain need digital tools that can help them make decisions about their own
treatment and care.

Keywords: chronic pain; machine learning; classification; clustering; treatment; self-management

1. Introduction

Chronic pain has a serious impact on both individuals and society. Prevalence es-
timates vary among studies, partly due to inconsistent definitions of chronic pain and
differences in the methods used to estimate it [1]. Several studies conducted in Europe and
the United States have estimated that prevalence is 15–50% [1–5]. In terms of individuals,
chronic pain can severely affect quality of life [6,7]. It is also known that comorbidities are
common among patients with chronic pain, e.g., anxiety, depression, sleep disturbance,
fatigue, and decreased overall physical and mental functioning [1,8,9]. Mortality rates
have been found to be higher in individuals affected by chronic pain. For instance, a large
meta-analysis showed that for widespread chronic pain, mortality is 2.5-times higher than
normal [10]. In terms of society, chronic pain has a major influence on the consumption
of healthcare resources and related costs [11]. The reduced work capacity of patients
with chronic pain results in major expenditures in sick leave compensation and disability
benefit [12]. For individuals with chronic pain, a study found that the probability of being
unemployed was twice as high and the probability of receiving disability benefits was
four-times higher, compared to the general population [13].
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The most common definition of pain is “an unpleasant sensory and emotional expe-
rience associated with actual or potential tissue damage, or described in terms of such
damage” [14]. Chronic pain or persistent pain is pain that lasts more than three months
(i.e., longer than the normal healing time of tissue). Chronic pain is different from acute
pain. Acute pain is caused by a specific disease or injury. Acute pain is usually resolved
as the injured tissue heals [15]. Chronic pain may arise from psychological states, does
not serve any biological purpose, and does not have a predictable endpoint [16]. Despite
recent advances in empirical pain research, effective methods for the treatment of chronic
pain are still lacking. How individual patients with chronic pain respond to treatment
and the adverse effects they experience are highly variable. In many cases, the cause of
chronic pain is unknown, as there are no objective findings or measures that can be used
to detect it. This makes treatment and management complex and time consuming. Due
to the high variability among patients, successful management of chronic pain requires
personalisation with respect to each patient’s pain intensity and duration, disease state,
tolerance of adverse events, and risk of medication abuse [17].

Identifying the underlying mechanisms of disease and enabling personalisation of
care are key to improving the treatment of chronic pain. These are areas where machine
learning (ML) is expected to be useful because ML excels at detecting patterns, rules,
and causal dependencies in large datasets. ML algorithms learn from data without being
explicitly programmed and can be used to obtain insights and make predictions and
decisions from large and complex datasets. In healthcare, these analyses can help to better
predict, identify, and treat diseases. To create reliable ML models, large volumes of relevant
training data are needed. Increased adoption of information systems in healthcare creates
vast amounts of health data and facilitates research in ML, which has the potential to
realise person-centred healthcare. Simultaneously, citizens are increasingly using health
apps and wearables for self-management, thus generating large amounts of health-related
data outside of the formal healthcare sector. This wide range of health data, generated
both in and out of clinical settings, can potentially be used by ML algorithms to support
chronic pain research. This paper intends to determine the state-of-the-art knowledge
in this field, identify directions for future studies using health data from numerous sources,
and indicate which decision-support tools and recommendation systems for both patients
and clinicians may be useful. Such tools can be built either by using existing chronic pain
models or data-driven methods.

ML is used both for classification (predicting discrete values such as male/female,
pain/not chronic pain, etc.) and regression (predicting continuous values, such as height,
salary, etc.). A ML algorithm can be supervised (labelled training data available) or
unsupervised (no labelled training data available). Brief explanations of the most common
ML algorithms follow below. For more information about ML algorithms, the book by
Theodoridis [18] can be consulted.

A naive Bayes classifier calculates the probability that a data point belongs to a certain
class using the Bayes rule. The data point is assigned to the class to which it most likely
belongs. This method is naive in the sense that it assumes the data points are independent
of each other. Support vector machine (SVM) is a supervised method where the task is to
create a hyperplane separating two classes. The hyperplane is found by optimising a cost
function. Decision trees (DTs) are multistage decision systems where classes are sequentially
rejected until an accepted class is reached. DTs can be used both for classification and
regression. A random forest (RF) is an ensemble of DTs. The output of a RF is the mode
of the classes (classification) or the average prediction of the trees (regression). K-nearest
neighbours (kNN) is a supervised learning method where for each data point, the distance
to the training points is considered. If most of the nearest training points to the data point
belong to a certain class, the data point is assigned to that class. Clustering is the task of
dividing an unlabelled dataset into groups. k-means clustering is one of the most popular
clustering methods. In k-means clustering, the task is to partition n data points into k
clusters. Each observation is assigned to the cluster with the nearest mean. AdaBoost is
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the abbreviation for adaptive boosting. Boosting is a technique used for creating a strong
classifier from a number of weak classifiers. Deep learning is a family of ML methods
based on neural networks (NNs). The algorithms are inspired by the human brain. NNs
consist of neurons arranged in different layers, similar to neurons in the brain.

Previous review papers have focused on how ML and statistical methods [19–22] can
be utilised in the treatment of patients with chronic pain. However, these reviews had a
restricted scope or were outdated in that they did not consider recent developments in ML
research. An up-to-date analysis of ML research in chronic pain care is currently lacking.
This is the intended contribution of the present paper.

The aim of this scoping review is to summarize and disseminate research findings
on the use of ML approaches in chronic pain research, to identify research gaps, and to
make recommendations for future research [23]. The literature search was guided by a set
of predefined search queries to major research databases. The identified publications were
screened by several independent reviewers following pre-defined inclusion and exclusion
rules. This rigid process ensured broad coverage of published evidence and facilitated
the objective validity and relevance assessment of every publication included in the review [23].
The following research questions (RQ) will be addressed in the present review:

• RQ1: Which ML methods have been used?
• RQ2: Which data have been used?
• RQ3: Were patient-generated data used?
• RQ4: Which chronic pain conditions were applied with ML algorithms?
• RQ5: Which stages (e.g., assessment/diagnosis or treatment) of chronic pain care were

addressed?

By answering the research questions, we plan to contribute to the body of knowledge
by providing insight into how ML approaches may be used to improve the treatment and
management of patients with chronic pain.

2. Methods
2.1. Search Strategy

The literature search of three databases, PubMed, IEEE Xplore, and the ACM Digital
Library, was performed 27 February 2019. The search included the keywords “machine
learning”, “pain”, and “fibromyalgia”, to be present in the title or abstract. Specifically,
the following query was used:

(pain OR fibromyalgia) AND machine learning.

This query returned 299 records. After removing duplicates, two-hundred eighty-
seven records were included in the screening process (Figure 1). PubMed searches required
keyword presence in the title or abstract. This option was not available in IEEE Xplore and
the ACM Digital Library, which limited keyword searches to abstracts only.

2.2. Inclusion Criteria

Before screening titles and abstracts, the paper inclusion criteria were defined as
follows:

• The paper must be written in English.
• The reported trials must be done on humans.
• The trials must include patients with chronic pain.
• The study must have been completed.
• This review focused on chronic pain studies where the source of the pain was not

known, such as fibromyalgia (FM) and chronic low back pain (CLBP).
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Figure 1. Flow diagram of the review process. Of 287 identified research papers, thirty-nine were
included in the review (PubMed n = 31, IEEE Xplore n = 6, ACM Digital Library n = 2). In addition,
fourteen papers from the reference lists were included in the review.

2.3. Exclusion Criteria

To limit the scope of the review, the following exclusion criteria were applied to the
identified publications:

• Review papers were excluded.
• Studies on acute pain were excluded.
• Headache, migraine, and chest pain were excluded.
• Postoperative pain and cancer-related pain were excluded.
• Studies with only healthy research participants were excluded.

We wanted to review studies on chronic pain patients. Review papers occurring
in our literature search were therefore excluded. Our focus was on chronic pain; hence,
we exclude all studies on acute pain. Chest pain is often acute or related to heart disease,
which is why this was excluded. Headache and migraine could be chronic, but we decided
to exclude these conditions. For postoperative and cancer-related pain, the reason for
the pain is known, while we focused on pain with an unknown reason. Pain studies on
healthy participants were excluded because they were not related to chronic pain.

2.4. Screening and Full-Text Reading

Before full-text reading, we read through the abstracts of the 287 records (Figure 1).
Based on screening of the abstracts, one-hundred ninety-nine papers were excluded. There
was a conflict on 51 papers. Of these 51 papers, twenty-eight were excluded after resolving
the conflict. In total, two-hundred twenty-seven papers were excluded based on the screen-
ing. After screening the abstracts, sixty papers remained for full-text reading. There was a
conflict on 12 papers. As in the screening process, we resolved the conflict and ended up
with 39 papers included in the review. At this stage, twenty-one articles were excluded by
the following reasons:

• Wrong population (only healthy participants included in trials, no patients with
chronic pain): twelve papers (all from the original search)

• Wrong publication type: nine papers (five from the original search and four from
the references)

• Wrong study design: twelve papers (seven from the original search and five from
the references)

• Content overlap [24,25] (from original search, excluding [24])
• Studies not using ML: ten papers (all from the papers found in the reference lists)

Some of the papers were excluded for more than one of the reasons above. While
reading papers in full text, we discovered some papers in the reference lists that seemed
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relevant for our review, but that were not identified in the original literature search because
the term “machine learning” was not present in their titles or abstracts. Hence, to identify
additional papers for inclusion in the review, we checked the reference lists of the papers that
had already been included. Titles containing words such as “classification” and “clustering”
were considered. Thirty-two papers from the reference lists were selected for further review.
Following a full-text reading of these papers, nine of them were included, and eighteen of
them are excluded. In total, fifty-three studies were included in the review (Table 1).

3. Results
3.1. Applications of Machine Learning in Chronic Pain Research

The results of the review are summarised in Table 1. In this table, the publications are
grouped into six different categories with respect to the objectives of the studies and which
stages of chronic pain care were addressed (RQ5):

• Classification/diagnosis of patients with chronic pain using structured health data
• Classification/diagnosis of patients with chronic pain using text and images
• Genomics approaches and pain biomarker identification
• Treatment
• Self-management
• Measurement of pain intensity

For each publication, information was extracted and is represented as columns in
Table 1 for answering the research questions (RQ1–RQ5) as follows: chronic pain condition
(RQ4), data size and data sources (RQ2 and RQ3), and ML methods (RQ1).

Table 1. Decisions: Classifying using health data, classifying using text and images, genomics approaches and biomarker
identification, treatment, self-management, and measuring pain intensity.

Study Year Condition Data Size Data Sources ML Methods

Classifying patients
using structured health data

Melidis [26] 2018 IBS, FM, CFS 1751 Symptom frequency questionnaire Adaptive network model, k-means
clustering, NN

Davis et al. [27] 2018 FM 2529 De-identified clinic-level data K-means clustering, principal component
analysis, discriminant analysis

Lin et al. [28] 2018 MPS 56 SEMG Template matching, k-means clustering

Oliviero and Poli-Neto [29] 2017 CPP 346

A database of diagnosed cases containing
the full history of the patient. Seven different

conditions related to pelvic pain were
included in the data.

Naive Bayes, C4.5, SVM, AdaBoost, kNN,
Weka software [30]

Yim et al. [31] 2017 FM 313 Demographic characteristics Clustering
Emir et al. [32] 2015 FM 587,960 Structured EHR data (Humedica database) RF

Garcia-Zapirain et al. [33] 2015 FM 127 Psychopathological and medical-social
features, VAS AdaBoost

Olugbade et al. [34] 2014 CLBP 31 Movements, muscle activity characteristics,
SEMG (EmoPaindataset) One-way ANOVA, SVM

Chan [35] 2013 CLBP 40 Gait data kStar, SVM, MLP, DT
Yang et al. [36] 2012 CRPS 20 Gait data MLP, SVM, RF, LDA, KStar

Goertzel et al. [37] 2006 CFS 103 Clinical data Nonlinear regression

Classifying patients using
text and images

Fodeh [38] 2018 Musculoskeletalpain 92 Clinical notes from EHR kNN, DT, SVM, RF
Tan [39] 2018 CLBP 871 Lumbar spine imaging, radiology reports Natural language processing

Zhong [40] 2018 TN 46 sMRI SVM
Cheng [41] 2018 AS 133 Questionnaire, fMRI Multiple linear regression

Rogachov et al. [42] 2018 AS 133 fMRI PRoNTo [43]
Mano [44] 2018 CLBP 97 fMRI (+test data from OpenPain project) SVM, conditional variational autoencoder
Sevel [45] 2018 CFS 33 sMRI and PROM SVM

Lopez-Sola [46] 2017 FM 72 fMRI SVM
Qin et al. [47] 2016 CLBP 22 Body movement and EMG (EmoPain dataset) RF, kNN, hidden Markov model

Olugbade et al. [48] 2015 CLBP 53
Motion capture, EMG, video, audio,

and Hospital Anxiety and Depression Scale
(EmoPain dataset)

SVM, RF

Labus [49] 2015 IBS 212 sMRI MVPA

Robinson et al. [50] 2015 FM 26 sMRI,PROM (mood and pain intensity) Naive Bayes, logistic regression, kNN, MLP,
SVM, DT

Sundermann [51] 2014 FM, RA 50 fMRI, VAS MVPA, SVM, DT, RF, naive Bayes, LDA, MLP
Callan et al. [52] 2014 CLBP 26 fMRI Sparse logistic regression
Bagarinao [53] 2014 CPP 66 sMRI SVM

Ung [54] 2012 CLBP 94 sMRI SVM



Appl. Sci. 2021, 11, 3205 6 of 18

Table 1. Cont.

Study Year Condition Data Size Data Sources ML Methods

Genomics approaches and
biomarker identification

Lukkahatai et al. [55] 2018 FM 47 Gene expression data Fisher’s ratio
Chancellor et al. [56] 2018 IC 448 Urine samples, questionnaires Supervised learning

Ultsch et al. [57] 2016 Chronic pain 535 genes Pain genes ctional genomics analysis
Braundmeier-Fleming et al.

[58]
2016 IC 34 DNA from stool and vaginal samples extended random forest

Treatment

Golabchi [59] 2019 CLBP 62 SEMG, VAS RF, linear regression

Sabeti [60] 2019 FM 20 PROM and patient-generated data
(wristband sensors) kNN, AdaBoost, SVM, RF, LDA, LUCCK

Nijeweme-d’Hollosy [61] 2018 CLBP 1326 Age, well-being, pain description DT, RF, and boosted tree
McKernan [62] 2018 FM 15,945 EHR Penalized regression

Jiang [63] 2017 CLBP 78 SEMG SVM

Aung et al. [64] 2015 CLBP 22
The EmoPain dataset (anthropometric

measurements, facial expressions, movement
behaviours)

SVM, RF

Aung et al. [65] 2014 CLBP 21 Sit-to-stand and one-leg stand RF
Aung et al. [66] 2013 CLBP 21 The EmoPain dataset RF

Zhang [25] 2013 Chronic neck
pain

794 Patients records DT, non-dominated sort

Ghosh [67] 2012 CLBP 53 MRI SVM
Dickey [68] 2002 CLBP 9 3D vertebral motion LDA and NN

Self-management

Jamison et al. [69] 2019 Chronic pain 144
Pain Catastrophizing Scale, Pain Disability

Index, Hospital Anxiety and Depression
Scale, VAS

Multilevel AR (1) modelling, SAS procedure
[70], χ2-test, logistic regression

Meier [71] 2018 CLBP 20 MRI, PROM (pain-related fear) MVPA, PRoNTo [43]

Rahman [72] 2018 Chronic pain 28,952 Patient-generated data (mobile app: pain
data)

Logistic regression, RF, SVM, k-means
clustering

Rabbi et al. [73] 2018 CLBP 10
Patient-generated data (mobile app:

sensor-based and self-reported physical
activity, and self-reported pain

RL

Huang et al. [74] 2011 Chronic pain 187 [75] PROM SVM
Huang [76] 2009 Chronic pain 187 [75] PROM DT, naive Bayes, SVM, MLP

Measuring pain intensity

Lee et al. [77] 2019 CLBP 71 Exacerbation manoeuvres, fMRI SVM, SVR
Jaiswal et al. [78] 2018 Shoulder pain 25 Facial expression videos CNN

Hammal and Cohn [79] 2012 Shoulder pain 129 Facial expression videos, PROM SVM, active appearance model

Kaltwang et al. [80] 2012 Shoulder pain 25 Facial expression videos Relevance vector regression, active
appearance model

Lucey [81] 2011 Shoulder pain 129 Facial expression videos SVM

The results clearly showed an obvious problem of interest would be to find an appro-
priate way of distinguishing patients with chronic pain from healthy controls. Many of
the included papers had such a focus [32,35,36,46,49,50,52–54]. The identification of useful
means of distinguishing patients with chronic pain from healthy controls would make it easier
to characterise a patient with a certain set of symptoms and thereby make it easier to suggest
a successful treatment [26]. A specific line of research was provided in [51], where the goal
was to distinguish FM from rheumatoid arthritis (RA) patients. Although these patients have
many similar symptoms, they usually require different treatment. Hence, a successful classifier
in this setting could lead to improved treatment outcomes for these patients. A good first step
in identifying the best treatment for the individual patient is to cluster patients with the same
disease, as done in [27,31].

Identifying genes relevant to chronic pain is useful in determining patients with
chronic pain conditions and can provide links to the pathophysiology of chronic pain.
However, the number of papers related to genomics approaches and biomarker identifi-
cation is small. We found two studies that aimed to identify biomarkers for bladder pain
and pelvic pain using extended random forest [56,58]. In other studies, Ultsch et al. [57]
identified 535 genes related to pain. This set of genes can be considered a reflection of
the knowledge concerning the genetic architecture of pain acquired in any context of pain
research available at the time of publication. Lukkahatai et al. [55] developed an algorithm
to identify genes that discriminate FM patients from healthy controls.
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Efficient ML methods for classifying and clustering patients with chronic pain have
proven to be useful in pain assessment and treatment decision-making. These methods
have been used both for making a correct diagnosis and to identify subgroups among
patients with the same diagnosis who potentially react differently to a certain treatment,
such as two of the studies that aimed at identifying subgroups of FM patients by using
clustering techniques [27,31]. Examples of research more directly related to treatment include
outcome prediction in acupuncture [25], suicide prediction among FM patients [62], and disc
localisation in CLBP patients [67]. Jiang et al. [63] used SVM-based classifiers of surface
electromyography (SEMG) data to identify low back pain (LBP) patients who would respond
to a 12 week rehabilitation program. The best performing classifier achieved a classification
accuracy of 97%. Thus, the authors claimed that their study could be helpful for physicians
or therapists in recommending the best treatment for individual LBP patients. In another
study [61], a clinical decision support tool was built for treatment of LBP using three ML
models (DT, RF, and boosted tree).

Self-management has also been shown to be a key application of machine learning
in empowering the patients to manage their condition. Six of the included papers focused
on self-management of chronic pain [69,71–74,76]. Two of these were authored by the same
group of researchers, with both studies using the same training dataset [74,76]. They
aimed to support patient self-management by analysing self-reported data from patients
with chronic pain pre-treatment, post-treatment, and at three month follow-up. The main
topics of the studies were prediction of patients’ health level [76] and feature selection
to optimise questionnaires by omitting irrelevant questions [74]. Three studies were
related to fear-avoidance behaviour and anticipation of pain [69,71,73]. Regular physical
activity is an important factor for successful management of chronic musculoskeletal
pain [73]. However, many patients avoid physical activity due to a strong fear of pain.
Jamison et al. [69] aimed to identify individuals who are prone to catastrophise their pain,
by analysing daily assessment data from a mobile application for patients with chronic
pain. Meier et al. [71] analysed self-reported questionnaire data and functional magnetic
resonance imaging (fMRI) of patients with CLBP to estimate the level of pain-related
fear in individuals. Rabbi et al. [73] examined the feasibility of a mobile app to promote
physical activity among patients suffering from chronic back pain. The application uses
ML to analyse sensor data and self-reported physical activity data to generate personalised
physical activity recommendations based on the patient’s behaviour. One study focused
on measuring and predicting pain volatility by employing ML methods to analyse data
from users of a pain management app [72].

Valid and reliable assessment of pain is essential in diagnostics of chronic pain and
in guiding treatment decisions [82]. This review includes five studies focusing on automatic
estimation of pain intensity. Of these, four studies used facial expression videos from a publicly
available shoulder pain research database as the training data [78–81]. The training data were
annotated, and all four studies used algorithms for supervised learning. In two of the studies,
a SVM was applied to classify discrete levels of pain intensity [79,81]. Kaltwang et al. [80]
applied the relevance vector regression algorithm for continuous estimation of pain intensity.
Jaiswal et al. [78] used a convolutional neural network (CNN) to estimate pain intensity by
regression. Lee et al. [77] used ML to predict clinical pain based on brain imaging data (fMRI)
and physiological data from patients with CLBP. This study used support vector regression
(SVR) for the prediction of pain intensity on a continuous scale. In research settings, brain
imaging approaches can help to better understand the underlying mechanisms of pain.

3.2. Machine Learning Algorithms

A wide variety of ML algorithms were used in the reviewed papers. To provide a struc-
tured overview, these publications were grouped according to a hierarchy of ML algorithms.
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3.2.1. Supervised Algorithms

The vast majority of included publications used supervised approaches for addressing
problems in chronic pain research. These models rely on labelled data available for training. Most
of the algorithms solved classification tasks by assigning a predefined class label to an observation.
Common examples included SVMs [77,79] and DT-based models (DT and RF) [51,61]. The
predictions made by these algorithms are relatively easy to interpret, making them attractive
choices for addressing clinical problems.

Deep learning-based models have already demonstrated their value, especially in analysing
unstructured data and images. Despite their superior performance, they are still only employed
to a limited extent in medical research. This was confirmed by the papers included in this
review, as only four out of 53 included publications used neural net-based models [26,36,68,78].

Seven of the included publications used various forms of regression
algorithms [37,41,52,59,62,72,80]. Instead of assigning a predefined class label, these al-
gorithms output continuous numerical values. Such outputs may be preferred when
predicting risk scores or probabilities or solving other problems requiring a continuous
value rather than a class label.

3.2.2. Unsupervised Algorithms

Unsupervised ML algorithms do not require labelled data for training. These algorithms
are used for identifying patterns or reducing dimensionality in high-dimensional data. Four out
of the 53 included publications used unsupervised method clustering (k-means) [26–28,31,72].
Typical problems solved by clustering algorithms were partitioning patients with chronic pain
according to pain intensity/volatility, physical and mental state, and social support [31,72].
Clustering was also used for identifying granular characteristics of FM patient subgroups [27]
and grouping of symptoms reported in patient survey data [26]. Clustering results, in most
cases, were used in further analysis and served as the input for task-specific data-processing
pipelines.

3.3. Data

The amount of health-related data collected and stored is increasing at a rapid pace.
Due in particular to advances in medical imaging and genomics, substantial volumes
of health data are stored in clinical systems. In addition, the increased availability and
use of consumer health technologies, such as smartphones, mobile apps, and wearable
devices, have led to the availability of patient-generated health data. Hence, a wide range
of health data exists, both in and out of clinical settings, which can potentially be used by
ML algorithms in chronic pain research.

Health data are either structured or unstructured. Structured data are easier to store and
access and can be used in the development of ML algorithms. Examples of structured data
that have been used for chronic pain diagnosis and treatment include electronic health record
(EHR) data [25,32,62], claims data [27], International Classification of Diseases (ICD) codes,
and patient-generated data (from questionnaires or mobile phone applications) [26,56,72].
Feature selection in structured data can be systematically done with the help of statistical
analysis, similar analysis studies, and guidelines [27].

Unstructured data are data that do not have a data model or are not organised in a pre-
defined manner. The most common unstructured data in the studies included in this review
are magnetic resonance imaging (MRI) data. MRI involves the use of strong magnetic fields
and radio waves to generate images of the organs in the body. Both fMRI and structural
magnetic resonance imaging (sMRI) images are widely used in classifying patients with
chronic pain versus healthy controls. Other imaging data include facial expressions used
to measure pain intensity [78–81]. Medical texts are important parts of unstructured data
in the EHRs that can provide useful information. Natural language processing has been
used to obtain pain-related information from medical texts [39,50]. Sensor data such as gait
information and electromyography (EMG) are also useful in examining the kinematic and
kinetic parameters of the gait of patients [35,36] or measuring muscle activity.
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Patient-generated data are also emerging as important for chronic pain research.
Wearable devices such as wristbands may provide biometric and physical activity data [60].
Sensor data and patient self-reported data can complement EHR data to provide a more
comprehensive picture of a patient’s health status. Questionnaires or self-reported data
can be either structured or unstructured, depending on whether the data are in the form of
multiple choice responses or free-text, such as patients who can indicate the frequency of
pain symptoms they experienced on a point scale. ML methods that are used to analyse
structured questionnaires data include adaptive networks [26].

The availability of training data is often an obstacle for ML research in health settings,
due to strict privacy and confidentiality regulations. Hence, most of the datasets used
in the included studies are not publicly available. However, a few are available for academic
use, and these are shown in Table 2.

Table 2. Datasets available for academic use.

Title Participants Data Types

UNBC-McMaster Shoulder Pain
Expression Archive Database [81]

129 patients with shoulder pain
(66 female and 63 male)

Video of facial expressions while performing range-of-motion tests. Frames
are coded with self-reported and observer-reported ratings of pain.

EmoPain dataset [64] 22 patients with CLBP (15 female,
7 male) and 28 healthy controls

A fully labelled multimodal dataset containing face videos, 3D motion
capture, and EMG signals from back muscles. Pain-related facial

expressions and body movement behaviours were elicited from people with
chronic pain performing physical exercises.

OpenPain dataset [44] fMRI data of patients with CLBP

Optum Humedica database [83] >150 million people De-identified EHR data and claims data, including diagnoses, treatments,
pharmacy and over-the-counter prescriptions, text notes, etc.

3.4. Types of Chronic Pain That May Benefit from ML Research

While many cases of chronic pain originate from primary underlying medical condi-
tions or injury, the majority of studies included in this paper focused on pain conditions
with unclear pathophysiology and relatively high prevalence. This subsection describes
how ML has been used for the diagnosis, treatment, and management of these conditions.

CLBP is the most prevalent chronic pain condition, with estimates falling in the range
of 5% to 20% [84]. Prevalence increases linearly with age between the ages of 20 and 60
years and is higher among women than men [84]. In some cases, CLBP can be caused by
injury or disease, but ninety percent of patients with CLBP have non-specific low back
pain [85]. CLBP is the condition most frequently studied in the current review, and more
aspects of the care pathway are covered than is the case for other conditions, as can be seen
in Table 3.
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Table 3. Applications of machine learning studies on different types of chronic pain (prevalence sources: [86–91]).

Condition Prevalence Diagnosis Clinical Decision
Support

Rehabilitation Self-Management

Myofascial Pain Syndrome (MPS) 9%–20% [28]

Chronic Musculoskeletal Pain 11.4%–24% [38]

Chronic Pelvic Pain (CPP) 4%–24% [29,53]

Chronic Low Back Pain (CLBP) 5%–20% [39,44,52,54,77] [59,61,67,68] [34,35,48,63–66] [47,71,73]

Chronic Shoulder Pain 15.1% [78–81]

Irritable Bowel Syndrome (IBS) 11% [26,49]

Interstitial Cystitis/Bladder Pain
Syndrome (IC)

2.7%–6.53% [56,58]

Fibromyalgia (FM) 2%–5% [26,27,31–33,46,50,51,55] [27,60,62]

Chronic Fatigue Syndrome (CFS) 0.76%–3.28 % [26,37,45]

Chronic Neck Pain 2.2% [25]

Rheumatoid Arthritis (RA) 0.41%–0.54% [51]

Ankylosing Spondylitis (AS) 0.07%–0.32% [41,42]

Trigeminal Neuralgia (TN) 0.03%–0.3% [40]

Complex Regional Pain Syndrome
(CRPS)

0.025% [36]

Unspecified Chronic Pain [57] [69,72,74,76]

FM has also been examined in several studies. FM is characterised by widespread
musculoskeletal pain [92], and its prevalence is estimated as being between 2% and 5%
[93,94]. The most common application of ML in FM is to apply classification and clustering
techniques to aid in diagnostics or to discover previously unknown subgroups of FM
patients [26,27,31–33,46,51,55]. Identifying subgroups might be particularly useful in the
treatment and management of FM since these patients are highly heterogeneous and
may respond differently to the same therapy. Yim et al. [31] conducted a study where
FM patients were divided into four subgroups using a cluster analysis method. Data
on pain, physical, social, and psychological function were used to discover the clusters.
Other applications of machine learning in FM included predicting quality of sleep, level of
fatigue [60], and suicide risk [62].

ML applications for other functional disorders, such as myofascial pain syndrome
(MPS) [28], irritable bowel syndrome (IBS) [26,49], and chronic fatigue syndrome (CFS)
[26,37,45], could also be useful for FM patients. Similar to the FM studies, many of these
studies focused on the classification of patients. Lin et al. [28] classified MPS patients
by SEMG patterns using template matching and K-means clustering. Melidis et al. [26]
used symptoms data from patients with a functional disorder, FM, IBS, or CFS, to
discover symptom clusters. Labus et al. [49] used sMRI data to classify IBS patients
versus healthy controls.

Two studies focused on the diagnosis of chronic pelvic pain (CPP) (pain in the lower
abdomen and/or in the pelvis) [29,53]. Oliveiro and Poli-Neto [29] compared differ-
ent classification algorithms on the multi-label problem of diagnosing which diseases
(e.g., interstitital cystitis/bladder pain syndrome (IC) and IBS) are causing the pelvic
pain. Bagarinao et al. [53] used sMRI data and a multivariate classification approach to
distinguish participants with CPP from healthy controls. Two studies applied ML to
identify diagnostic biomarkers for IC [56,58]. As with many other chronic pain condi-
tions, the underlying cause of the disease and diagnostic biomarkers remain unknown.
Chancellor et al. [56] applied supervised ML on urine samples and questionnaire data to
identify biomarkers that can discriminate two sub-types of IC patients and healthy controls.
To discover stool-based biomarkers for IC, Braundmeier-Fleming et al. [58] used ML to
classify DNA from stool samples of IC patients and healthy controls.

Ankylosing spondylitis (AS), also known as Bekhterev’s disease, is a chronic inflam-
matory autoimmune disease that primarily affects spine joints, causing severe chronic
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pain [95]. The exact cause of AS remains unclear, and no effective treatment exists [95]. AS
was the focus of two studies in the current review, both of which applied ML approaches
to the same fMRI dataset to classify AS and healthy controls [41,42].

For each of the chronic pain conditions complex regional pain syndrome (CRPS), chronic
neck pain, and trigeminal neuralgia (TN), we identified a single study. Yang et al. [36]
proposed to apply multilayer perceptron neural networks to detect abnormal gait patterns for
CRPS. CRPS affects the limbs and can be induced by surgery or trauma [96]. Zhang et al. [25]
used similarity-based learning for outcome prediction of acupuncture therapy for chronic
neck pain. To distinguish TN patients from healthy controls, Zhong et al. [40] applied
multivariate pattern classification to neuroimaging data. TN is a condition characterised by
severe facial pain and can be associated with systemic diseases such as multiple sclerosis or
cardiovascular diseases [89].

Four studies focused on shoulder pain; all used the same dataset of facial expression
videos to automatically assess pain intensity [78–81]. Five studies investigated chronic pain
in general. Four of these focused on self-management [69,72,74,76], while one study aimed
to identify genes relevant to pain [57] to aid diagnostics.

4. Discussion
4.1. Important Findings

The considerable number of papers that appeared in the literature search indicates that
the use of ML methods in chronic pain research has drawn significant attention and is con-
sidered potentially useful. A wide variety of ML methods were employed in the considered
studies. Most of these methods involve supervised classification or regression algorithms.
Classical ML algorithms, such as SVM and DT, were commonly used in the selected studies.
Deep learning was applied to a limited extent, indicating that the uptake of these algo-
rithms may be more problematic for the research community. The limited interpretability
and explainability of deep learning-based models may be important reasons why these
methods, the use of which has become the de facto standard in modern image and video
analysis, are less visible in the scientific publications in the medical field.

A limited number of the studies focused on the treatment of chronic pain. The majority
of the studies contributed to treatment indirectly through various types of classification.
The task of finding the best treatment for a specific patient is still performed by the clinician,
without the assistance of clinical decision support tools. Hence, there is a need for tools
that help clinicians make decisions concerning safe, effective, and efficient treatment plans
based on either contemporary chronic pain models or directly on the data. Useful tools for
these tasks could include DTs and reinforcement learning (RL).

Various types of data have been utilised in chronic pain studies. However, methods
that integrate multiple data sources (e.g., both EHR data and patient-generated data) are
underdeveloped. Consequently, existing work typically depends on a limited number of
data types. The issue of data quality in clinical data and how it affects the results of studies
have still not been fully explored. For genomics data, translation of findings from animal
to humans is still limited and remains a challenging topic [26]. Furthermore, the sample
size used in studies is typically small [63]. Moreover, long-term monitoring with large
datasets is required in future work to test whether these techniques can be applied to assess
rehabilitation or treatment outcomes for patients [36].

As shown in Table 3, previous research has concentrated on the early stages of
the chronic pain care pathway. However, few studies have focused on the rehabilita-
tion and self-management phases. CLBP is the pain condition that has attracted the most
research interest, as it was the focus of 20 of the included studies. This is also the only con-
dition in which research focused on all phases of the care pathway. The significant amount
of research that has focused on CLBP reflects the high prevalence of the condition. FM was
the second most frequently investigated condition, with 11 studies covering the diagnosis
and clinical decision support phases. While the majority of the research focused on CLBP
and FM, several chronic pain conditions were addressed by only one or two studies.
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4.2. Recent Research

Several papers relevant for this review have been published after February 2019. A few
papers are mentioned below. Lamichhane et al. 2021 [97] used SVM to classify LBP patients
versus healthy controls. Brain images (MRI and fMRI) were used in the classification process.
The study fits into “Classifying patients using text and images” in Table 1. Santana et al. 2020
[98] tested different classifiers (logistic regression, support vector classifier, kNN, DT, RF, and
multilayer perceptron (MLP)) on chronic pain patients (FM and CLBP) and healthy controls.
Questionnaires associated with depression and anxiety and quantitative sensory tests were
used as input data to the classifiers. This study fits into the group “Classifying patients using
structured health data” in Table 1. Santana et al. 2019 [99] used deep learning to classify chronic
pain patients versus healthy controls. Resting state fMRI data were used; hence, the study can
be put into the group “Classifying patients using text and images” in Table 1.

4.3. Potential Limitations of This Review

The aim of the review presented in this paper was to survey a wide range of studies
to summarize the state-of-the-art with regard to ML methods in chronic pain research.
The literature search was performed using three major research databases (Pubmed, IEEE
Xplore, and the ACM Digital Library). To reduce the risk of overlooking important studies,
we used a generic query. However, no query search can identify all relevant publications
on a topic. To identify additional studies for the review, the reference lists of the included
papers were checked. Publications not indexed in these major databases (typically some
domain-specific conferences and recently established journals) were left out of this review.
The use of strict criteria for determining the inclusion of papers can lead to more attention
being paid to formalities than on the contents of a specific publication. Inclusion criteria
are defined beforehand and sometimes lead to highly relevant and even top-rated publica-
tions in the field being overlooked due to minor discrepancies. In this study, the risk of
excluding relevant publications was minimised by involving five independent reviewers
in the publication screening process and by relying on majority votes when it came to
deciding which papers should be included or excluded. Moreover, in the initial screening
stage (title and abstract), only publications that were clearly irrelevant were discarded.
Questionable papers were passed to the next step and considered after full-text reading.

4.4. Future Research Directions

As noted previously, few of the included studies focused on the use of ML in the treat-
ment of chronic pain. This observation, combined with the fact that learning from data can
facilitate the treatment of patients with chronic pain, indicates that decision support tools
and recommendation systems for both patients and clinicians may be useful. Tools can be
built either by using existing chronic pain models or based on data-driven methods.

At present, no satisfactory treatment exists for patients with chronic pain. There are
at least two important reasons for this: First, chronic pain is not a life-threatening disease.
Hence, it attracts less attention and is considered to be less of a priority in healthcare service
[100]. Second, the population of patients with chronic pain is large and heterogeneous.
Identifying the best treatment for an individual patient is challenging. ML may be key
to remedy this problem. The underlying concept is that patients and clinicians can learn
about the best treatment in a specific case based on real-world patient data. Existing
analytical predictive models and ML techniques can be utilised to provide a personalised
model of the risk associated with the diseases. Based on this model, personalised treatment
plans and recommendations can be derived by maximising the treatment outcome while
simultaneously minimising patient risk.

By collecting and analysing large volumes of patient data, it may be possible to
identify underlying patterns that could prove instrumental to improving the quality of
life for a large group of people. To achieve the best possible decision support system,
access to both EHR data and patient-generated data is important. Both data sources have
the potential to support the search for a successful decision support tool. Typically, over
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the short term, it is easier and more realistic to obtain access to patient-generated data
because we assume they contain fewer sensitive data. Information like heart rate, physical
activity, sleep, medication, and patient-reported pain level may offer valuable insights
into the patients’ health under given circumstances. Such data may be used to determine
whether the observed data can be used to quantify a patient’s level of pain. If so, using
these data to build a ML model that can provide tailored recommendations patients may
reduce the number of painful episodes.

RL and DTs may be utilised to build a data-driven decision support tool for the
treatment and management of chronic pain. RL is an area of ML concerned with how
to take optimal actions in an environment to maximise the notion of cumulative reward.
Novel RL research needs to be conducted to make the algorithm safer and more robust
and to reduce the risk for patients. DT is another machine learning technique that can be
effective to visually and explicitly derive decisions and decision-making policies based
on data.

To enable the development and usability of personalised decision support systems,
the availability of patient-generated data is crucial. By utilising new self-management
technologies, personal data can be collected in a straightforward and cost-effective manner.
ML algorithms can learn from these large amounts of personal data to customise treatment
and management to the needs and preferences of each individual. However, a platform to
collect and process these data in a privacy-preserving manner needs to be developed, to
enable ML algorithms to exploit the vast potential of such data sources.

5. Conclusions

Publications on ML in chronic pain research were reviewed. The reviewed papers were
grouped into six categories. The largest group consisted of papers presenting approaches
to classifying patients with chronic pain using structured data. While many studies
have emphasised classification tasks, less attention has been paid to the treatment and
management of chronic pain. FM and CLBP were the most frequently researched conditions.
Several conditions attracted less research attention, as they were covered by one or two
studies. More research is needed on the treatment, rehabilitation, and self-management of
chronic pain. As with other chronic diseases, encouraging patient involvement and self-
management is crucial. To become more involved in the management of their conditions,
patients require tools that can help them make healthy choices. Increased use of advanced
data-analytics methods alongside more traditional approaches has the potential to make
valuable contributions to chronic pain treatment and management.
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Abbreviations

ANOVA analysis of variance
AS ankylosing spondylitis
CFS chronic fatigue syndrome
CLBP chronic low back pain
CNN convolutional neural network
CPP chronic pelvic pain
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CRPS complex regional pain syndrome
DT decision tree
EHR electronic health record
EMG electromyography
FM fibromyalgia
fMRI functional magnetic resonance imaging
IBS irritable bowel syndrome
IC interstitial cystitis/bladder pain syndrome
kNN k-nearest neighbours
LBP low back pain
LDA linear discriminant analysis
LUCCK learning using concave and convex kernels
ML machine learning
MLP multilayer perceptron
MPS myofascial pain syndrome
MRI magnetic resonance imaging
MVPA multivariate pattern analysis
PROM patient reported outcome measures
PRoNTo pattern recognition for neuroimaging toolbox
RA rheumatoid arthritis
RF random forest
RL reinforcement learning
RQ research question
SEMG surface electromyography
sMRI structural magnetic resonance imaging
SVM support vector machine
SVR support vector regression
TN trigeminal neuralgia
VAS visual analogue scale
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