26 research outputs found

    A study on IoT-related security issues, challenges, and solutions.

    Get PDF
    The Internet of Things is now being developed to be the most cutting-edge and user-centric technology in the works. Raising both an individual\u27s and society\u27s level of life is the goal of this endeavour. When a technology advances, it always acquires certain flaws, which are always open to being attacked and taken advantage of in some manner. In this work, the problems posed by the Internet of Things (IoT) based on the fundamental security principles of confidentiality, integrity, and availability are discussed. It has also been discussed how an overview of the security restrictions, requirements, processes, and solutions implemented for the challenges generated in secured communication inside the IoT ecosystem. In this paper, the vulnerabilities of the underlying Internet of Things network are brought to light, and many security concerns on multiple tiers of the Internet of Things ecosystem have been examined. Based on the findings of our research into the vulnerabilities that are now present, a variety of potential solutions have been proposed in order to solve the ongoing problems that are plaguing the IoT ecosystem. In addition to that, it provides an overview of the various protocols that are used for security in IoT

    RPL-based routing protocols for multi-sink wireless sensor networks

    Get PDF
    Recent studies demonstrate that the performance of a wireless sensor network (WSN) can be improved by deploying multiple sinks in the network. Therefore, in this paper we present different routing protocols for multi-sink WSNs based on the routing protocol for low-power and lossy networks (RPL). Our protocols use different routing metrics and objective functions (OFs). We use the available bandwidth, delay, MAC layer queue occupancy, and expected transmission count (ETX) as the tie-breaking metrics in conjunction with the shortest hop-count metric. Our OFs use the tie-breaking metrics on a greedy or end-to-end basis. Our simulation results demonstrate that the protocols based on the delay, buffer occupancy, and ETX metrics demonstrate best performance, increasing the packet delivery ratio by up to 25% and decreasing the number of retransmissions by up to 65%, compared to a version of the RPL protocol that only uses the hop-count metric. Another key insight is that, using the tie-breaking metrics on a greedy basis demonstrates a slight performance improvement compared to using the metrics on an end-to-end basis. Finally, our results also demonstrate that multiple sinks inside a WSN improve the RPL-based protocol performance

    A Review on the Role of Nano-Communication in Future Healthcare Systems: A Big Data Analytics Perspective

    Get PDF
    This paper presents a first-time review of the open literature focused on the significance of big data generated within nano-sensors and nano-communication networks intended for future healthcare and biomedical applications. It is aimed towards the development of modern smart healthcare systems enabled with P4, i.e. predictive, preventive, personalized and participatory capabilities to perform diagnostics, monitoring, and treatment. The analytical capabilities that can be produced from the substantial amount of data gathered in such networks will aid in exploiting the practical intelligence and learning capabilities that could be further integrated with conventional medical and health data leading to more efficient decision making. We have also proposed a big data analytics framework for gathering intelligence, form the healthcare big data, required by futuristic smart healthcare to address relevant problems and exploit possible opportunities in future applications. Finally, the open challenges, future directions for researchers in the evolving healthcare domain, are presented

    Leveraging CDR datasets for Context-Rich Performance Modeling of Large-Scale Mobile Pub/Sub Systems

    Get PDF
    International audienceLarge-scale mobile environments are characterized by, among others, a large number of mobile users, intermittent connectivity and non-homogeneous arrival rate of data to the users, depending on the region's context. Multiple application scenarios in major cities need to address the above situation for the creation of robust mobile systems. Towards this, it is fundamental to enable system designers to tune a communication infrastructure using various parameters depending on the specific context. In this paper, we take a first step towards enabling an application platform for large-scale information management relying on mobile social crowd-sourcing. To inform the stakeholders of expected loads and costs, we model a large-scale mobile pub/sub system as a queueing network. We introduce additional timing constraints such as i) mobile user's intermittent connectivity period; and ii) data validity lifetime period (e.g. that of sensor data). Using our MobileJINQS simulator, we parameterize our model with realistic input loads derived from the D4D dataset (CDR) and varied lifetime periods in order to analyze the effect on response time. This work provides system designers with coarse grain design time information when setting realistic loads and time constraints

    New Internet of Medical Things for home-based treatment of anorectal disorders

    Get PDF
    Home-based healthcare provides a viable and cost-effective method of delivery for resource and labour-intensive therapies, such as rehabilitation therapies, including anorectal biofeedback. However, existing systems for home anorectal biofeedback are not able to monitor patient compliance or assess the quality of exercises performed, and as a result have yet to see wide spread clinical adoption. In this paper, we propose a new Internet of Medical Things (IoMT) system to provide home-based biofeedback therapy, facilitating remote monitoring by the physician. We discuss our user-centric design process and the proposed architecture, including a new sensing probe, mobile app, and cloud-based web application. A case study involving biofeedback training exercises was performed. Data from the IoMT was compared against the clinical standard, high-definition anorectal manometry. We demonstrated the feasibility of our proposed IoMT in providing anorectal pressure profiles equivalent to clinical manometry and its application for home-based anorectal biofeedback therapy

    Effect of Islanding and Telecontrolled Switches on Distribution System Reliability Considering Load and Green-Energy Fluctuations

    Get PDF
    To improve electrical distribution network reliability, some portions of the network could operate in autonomous mode, provided that the related technical issues are addressed. More specifically, when there is not a path from those portions to the primary substation due to a fault in the network, such portions could be disconnected from the main network and supplied by local generation only. Such a mode of operation is known as "intentional islanding" and its effectiveness, in terms of adequacy, depends on the ability of the local generation to meet the island's load. In fact, the ratio between the available local generation and load demand can frequently change during islanding due to load variations and, especially, due to the strongly irregular behavior of the primary energy sources of renewable generators. This paper proposes an analytical formulation to assess local generation adequacy during intentional islanding, accounting for the aforementioned variations. More specifically, the fluctuations of load and green-energy generators during islanding are modeled by means of Markov chains, whose output quantities are encompassed in the proposed analytical formulation. Such a formulation is used by the analytical equations of load points' outage rate and duration. The evaluation of the reliability indices accounts for a protection scheme based on an appropriate communication infrastructure. Therefore, a brief overview on the telecommunications technologies has been presented with reference to their suitability for the specific application. In particular, distribution network safety issues have been considered as the main concern. The results show that neglecting load and generation fluctuations leads to a strong overestimation of the ability of distributed generators to meet the island load. Through a case study it is observed that the error on the load point outage rate is greater than the one affecting the outage duration

    Survey of millimeter-wave propagation measurements and models in indoor environments

    Get PDF
    The millimeter-wave (mmWave) is expected to deliver a huge bandwidth to address the future demands for higher data rate transmissions. However, one of the major challenges in the mmWave band is the increase in signal loss as the operating frequency increases. This has attracted several research interests both from academia and the industry for indoor and outdoor mmWave operations. This paper focuses on the works that have been carried out in the study of the mmWave channel measurement in indoor environments. A survey of the measurement techniques, prominent path loss models, analysis of path loss and delay spread for mmWave in different indoor environments is presented. This covers the mmWave frequencies from 28 GHz to 100 GHz that have been considered in the last two decades. In addition, the possible future trends for the mmWave indoor propagation studies and measurements have been discussed. These include the critical indoor environment, the roles of artificial intelligence, channel characterization for indoor devices, reconfigurable intelligent surfaces, and mmWave for 6G systems. This survey can help engineers and researchers to plan, design, and optimize reliable 5G wireless indoor networks. It will also motivate the researchers and engineering communities towards finding a better outcome in the future trends of the mmWave indoor wireless network for 6G systems and beyond

    Multi-Hop Real-Time Communications Over Bluetooth Low Energy Industrial Wireless Mesh Networks

    Get PDF
    Industrial wireless sensor networks (IWSNs) are used to acquire sensor data that need real-time processing, therefore they require predictable behavior and real-time guarantees. To be cost effective, IWSNs are also expected to be low cost and low power. In this context, Bluetooth low energy (BLE) is a promising technology, as it allows implementing low-cost industrial networks. As BLE is a short-range technology, a multihop mesh network is needed to cover a large area. Nevertheless, the recently published Bluetooth mesh networking specifications do not provide support for real-time communications over multihop mesh networks. To overcome this limitation, this paper proposes the multihop real-time BLE (MRT-BLE) protocol, a real-time protocol developed on top of BLE, that allows for bounded packet delays over mesh networks. MRT-BLE also provides priority support. This paper describes in detail the MRT-BLE protocol and how to implement it on commercial-off-the-shelf devices. Two kinds of performance evaluation for the MRT-BLE protocol are provided. The first one is a worst case end-to-end delay analysis, while the second one is based on the experimental results obtained through measurements on a real testbed

    Key Generation for Internet of Things: A Contemporary Survey

    Get PDF
    Key generation is a promising technique to bootstrap secure communications for the Internet of Things (IoT) devices that have no prior knowledge between each other. In the past few years, a variety of key generation protocols and systems have been proposed. In this survey, we review and categorise recent key generation systems based on a novel taxonomy. Then, we provide both quantitative and qualitative comparisons of existing approaches. We also discuss the security vulnerabilities of key generation schemes and possible countermeasures. Finally, we discuss the current challenges and point out several potential research directions
    corecore