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Abstract— This paper presents a first-time review of the 

open literature focused on the significance of big data generated 

within nano-sensors and nano-communication networks 

intended for future healthcare and biomedical applications. It is 

aimed towards the development of modern smart healthcare 

systems enabled with P4, i.e. predictive, preventive, 

personalized and participatory capabilities to 

perform diagnostics, monitoring, and treatment. The analytical 

capabilities that can be produced from the substantial amount 

of data gathered in such networks will aid in exploiting the 

practical intelligence and learning capabilities that could be 

further integrated with conventional medical and health data 

leading to more efficient decision making. We have also 

proposed a big data analytics framework for gathering 

intelligence, form the healthcare big data, required by futuristic 

smart healthcare to address relevant problems and exploit 

possible opportunities in future applications. Finally, the open 

challenges, future directions for researchers in the evolving 

healthcare domain, are presented. 

Index Terms—Nano-sensors, Nano communication, Big Data 

Analytics, Body-centric communication, Smart Healthcare  

I. INTRODUCTION 

Current healthcare scheme is a reactive approach to address 

diseases, infections or injuries once they have already occurred 

or have clear symptoms noticed by patients. Time-lapse in 

diagnosis and treatment relies on the initiative taken by the 

victims in visiting a healthcare facility. Such a time lapse is a 

critical factor in the treatment of the disease. In many cases, just 

the delayed diagnosis leads to chronic diseases, advanced stages 

of cancers or even deaths. The severity of the issue can be 

realized by the fact that chronic diseases account for 59% 

annual deaths, and 46% of the burden of total diseases 

worldwide [1]. Whereas, cancer is the second leading cause of 

death globally as mentioned by world health organization [2]. 

Late-stage presentation and inaccessibility to in-time diagnosis 

facilities are common reasons.  

An earlier detection and prompt intervention can increase 

chances of treatment and cure in case of any diseases, even 

cancer, for example, as highlighted by ministry of health 

Ontario, mammography screening  of 70% of women between 

the ages of 50 and 69 would have reduced deaths due to breast 

cancer, by one-third, over a ten-year period [1]. So there is a 

requirement of proactive rather than a reactive healthcare that 

can not only detect possible disease, infections or injuries as 

soon as they happen but, ideally, even before they start.  

Futuristic healthcare is moving towards that predictive, 

participatory, preventive and personalized (P4) [3] paradigm 

with an aim to provide patient-specific diagnosis and treatment 

services in a seamless and proactive manner.  

Big data analytics and nano-technology independently have 

emerged as key players for the realization of such a smart 

healthcare system. There is a continuous progress on both fronts 

simultaneously. New nano-technology based miscellaneous 

smart devices are being invented to perform healthcare tasks [4] 

of monitoring, diagnosis, and treatment in P4 manner. In future, 

a huge influx of real-time heterogeneous data is expected from 

the adoption of devices that rely on body-centric nano-

networks. On the other end, an overwhelming amount of big 

data already exists in the healthcare sector [5] primarily from 

conventional databases comprising electronic medical records. 

This data can be exploited to gather intelligence required for the 

provision of omnipresent P4 Healthcare.  

Gathering intelligence form such data is a challenging task. 

Because the data from conventional and non-conventional 

sources is expected to possess the characteristics like high 

volume, velocity, veracity, and value associated with big data. 

Traditional data analytics tools cannot manage this big data to 

extract practical knowledge out of it. Therefore, innovative, 

efficient, interoperable, and scalable big data analytics solutions 

are required to process and analyze such big data from both 

sources. But the idea of leveraging from conventional medical 

data using big data analytics tools to address different 

healthcare challenges is not a new topic [6]. There are also 
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many examples in the literature where applications [7], 

potential role [8], possible implementation frameworks [9] and 

steps involved in analysis are discussed thoroughly for big data 

from conventional sources.  

Reason for the popularity of this concept is that the healthcare 

data from conventional sources itself is enormous in volume, 

heterogeneous in nature and possess valuable information if 

harnessed properly. For instance, conventional data for the 

United States (US) healthcare have already exceeded 150 

Exabyte in 2010 [5]. Similarly, healthcare databases of other 

countries like China and India are expected to cross zettabyte 

and yottabyte soon [5]. Beside that an increasing complexity is 

also seen in the data generated. For example, only in the fields 

of neuroimaging and genetics, petabytes of new data are 

generated every year and complexity level is increased 8 to 9 

folds comparing to the complexity level in 1985 as a benchmark 

[10]. According to [5] the size and complexity of healthcare, 

biomedical and social research information almost double every 

12-14 months. These all factors make the use of big data 

analytics tools an optimal choice for knowledge extraction from 

conventional data.  

On the other end, with the advances in the use of nano-

technology in smart healthcare devices and facilities, the 

challenge to be addressed is the exploitation of exponentially 

growing continuous data generated by millions of nano-sensors 

[11].  Nano-sensors communicating internally and with central 

nodes or macro devices on the body, via body area networks 

which subsequently communicate on the internet with the 

central healthcare system is a futuristic paradigm (Internet of 

bio nano-things) [12] for smart healthcare. Currently, such 

arrangements facilitate basic health monitoring and reporting 

for offline diagnostics. Besides, that deployment options are 

limited because of the underlying safety concerns and 

precautions required.  

But the fact is that a continuous progress can be seen in nano-

networks and communications [11], [13], [14]and subsequent 

cited work is promising, that inspires for a networking 

paradigms that facilitates seamless deployment of nano-sensors 

in different healthcare contexts; in the environment, on the 

body, and inside the body [12]. In the future, living beings, 

including patients and healthy ones, are expected to carry or be 

surrounded by numerous nano-sensors continuously sensing 

and transferring information about their health status. Besides 

that miscellaneous smart healthcare devices like wearables or 

regular sensors will also be contributing towards the generation 

of non-conventional continuous data. According to Statista 

414.1m users of wearables are expected by 2022 [15], and ABI 

researchers report, though, today hub devices like smartphones, 

laptops, tablets, and wearables hold the major share of smart 

devices connected to internet, but, by the year 2020, 60% of the 

estimated 30 billion devices are expected to be nodes or sensors 

[16]. 

In such scenario, analysis of data, for educated decision 

making, in real-time can play a vital role, particularly for in-

time provision of crucial healthcare services. Big data analytics 

tools for stream processing can help to address the challenges 

of processing continuous data streams efficiently. The impact 

of big data analytics for knowledge extraction and proactive 

decision making can be further enhanced by using conventional 

healthcare data in combination with continuous data from smart 

devices. 

The contribution of this paper is that it highlights the 

significance and need of interdisciplinary research for nano-

sensors, nano-communication and big-data analytics in the 

healthcare sector. It provides a combined review of existing 

research work from the areas of nano-sensors, nano-

communication, and big data from the healthcare perspective. 

Nano-sensors are classified on the basis of their applications, 

implementation methods, and architectural layout in healthcare 

setup. In conjunction, the state-of-the-art nano-communication 

approaches introduced in the healthcare space are classified, 

and underlying challenges are elaborated. Besides that, a big 

data analytics based knowledge extraction framework is 

proposed to get an insight from conventional and non-

conventional data sources including the applications of nano-

sensors and nano-communication. Terms like smart healthcare 

devices and wearables are used frequently throughout this 

paper, in general, they mean arrangements that rely on nano-

sensors, or specified otherwise.  

The rest of the paper is organized as follows: Section II presents 

a discussion on nano-sensors, their applications, and 

architecture and implementation methods. Section III covers 

nano-communication and its enabling technologies. Section IV 

explains a unified big data analytics framework for extracting 

knowledge from healthcare big data. Some open challenges for 

the interdisciplinary research are discussed in section V. 

Section VI concludes the whole discussion on the 

interdisciplinary study. 

II. NANO-SENSORS AND NETWORKS  

Nano-sensors are extremely small integrated devices 

engineered from nanomaterials or biological materials. They 

are used to detect and respond to a physical property from the 

environment. Nano-sensors work the same way as conventional 

sensors, but their size is extremely small - billionths of a meter. 

They can perform set of simple functions to manipulate signals 

for detecting, modifying and recording measurements. Nano-

sensors come in a variety of sizes and shapes ranging from the 

size of a macromolecule to that of a bio-cell (i.e., dimensions of 

1-100 nm) [17]. In biomedical applications, the size of the 

nano-sensors used for taking invasive measurements is 

extremely small compared to the one used to record 

noninvasive measurements. The application area, measurement 

site, the end goal, and safety constraints play a critical role in 

deciding the material and size of a nano-sensor. 

In healthcare domain, nano-sensors can be used for different 

purposes including monitoring, detection, and treatment. For 

example, nano-sensors can detect chemical compounds in 

concentrations as low as one part per billion, or the presence of 
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different infectious agents such as virus or harmful bacteria 

[17]. An example of such a nano-sensor is bio-transferrable 

graphene wireless nano-sensor [18] illustrated in Fig. 1. The 

proposed architecture of bio-transferrable nano-sensor has a 

satisfactory response in sensing extremely sensitive chemicals 

and biological compounds up to single bacterium. It also has 

wireless remote powering and readout functionality.   

The data measured by nano-sensors needs to be processed and 

shared with other nano-sensors and nano-devices. Therefore, 

nano-sensors with thier computation, communication, and 

action components are miniaturized and fabricated into a single 

box called nano-machine [19]. Several nano-machines can be 

connected together through nano-routers that rout measured 

data to other nano-devices or external devices such as mobile 

phones [12]. The interconnected cluster of such nano-machines 

is called a nano-network. An example of such nano-network is 

given in Fig. 2. 

 

A. Types of Nano-sensors 

Nano-sensors are mainly characterized by their material, size, 

and functionality [21].  They can be physical, chemical, 

electrical, or magnetic sensors, and can be used to detect 

minuscule quantities, minute particles, or monitor physical 

parameters. Some prominent types [17] of nano-sensors are as 

follow:  

Physical Nano-sensors: these types of sensors measure 

magnitudes of parameters such as pressure, mass, force, or 

displacement. These nano-sensors usually employ the 

electronic properties of both nanotubes and nanoribbons that 

change when they are bent or deformed. A range of physical 

nano-sensors such as force nano-sensors, displacement nano-

sensors, and pressure nano-sensors, are available nowadays 

[17]. A carbon nanotube (CNT) based physical force nano-

sensor is shown in Fig. 3.  

 

Chemical Nano-sensors: these sensors normally measure the 

gas concentration or the molecular composition of a substance, 

or they detect specific type of molecules.  Chemical nano-

sensors operate on the principals that are based on the change 

in electronic properties of carbon nanotubes (CNTs) and 

graphene nanoribbons (GNRs), when different kinds of 

molecules are adsorbed on top of them, it changes the number 

of electrons that can pass through the carbon lattice [23]. A new 

type of sensor is proposed in [24], as shown in Fig. 4, which has 

the potential to replace sniffer dogs when it comes to detecting 

explosives. 

 

Figure 3: Schematic illustration of the fabricated CNT-based 

nanoelectromechanical force sensor [22] 

Figure 4: Nano-sensors for the detection of TNT [24] 

 

Figure 1: Bio-transferrable graphene wireless nano-sensor [18] 

Figure 2: Nano-network: glucose graphene skin sweat sensor and 

drug delivery chip [20] 
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Bio Nano-sensors: Bio-nano-sensors employ biological 

materials and mechanisms to obtain a measurable biochemical 

and biophysical signal linked to a specific disease at the level 

of a single molecule or cell signal, which can be used to detect 

information regarding a physiological change or the presence 

of various chemical or biological materials in the environment 

[25]. Bio-nano-sensors are normally fabricated by 

incorporating a biological component (e.g., a whole bacterium), 

a biological product (e.g., an enzyme or antibody), or 

biomaterials (e.g., biological cells, nucleic acids, proteins, 

lipids) with or without non-bio-materials so that they can 

integrate into human body easily. They are mostly used to 

monitor biomolecular processes such as DNA interactions, 

antibody, and enzymatic interactions, or cellular 

communication processes, amongst others [21]. 

Examples of bio-nano-sensors include genetically modified 

cells and artificially engineered cells. Bio-nano-sensors are able 

to detect asthma attacks, lung cancer, common virus. Fig. 5 

shows, a Sandwich Assay that combines mechanical and 

optoplasmonic transduction which can detect cancer 

biomarkers in serum at ultralow concentrations [27]. 

 

 

 
Figure 5: Bio-nano-sensor for cancer detection [27] 

B. Arrangements 

In healthcare applications, two approaches i.e., invasive or non-

invasive are used for the implementation of nano-sensors. In 

invasive approach, inspired by living body natural biological 

interactions, nano-sensors can be injected/introduced into the 

body. These sensors can intervene with cells and organs, and 

communicate with each other in order to exchange information 

about sensed molecules or chemical concentrations [11]. 

Whereas in non-invasive approach, sensors (or sensing devices) 

are placed on or near the surface of the living tissue(s) of the 

subject. Wearables are an example of non-invasive biosensors 

used to measure physical and biochemical parameters from the 

subject without changing their routine and lifestyle. 

C. Architectural layout 

With limited communication range and processing capacity, 

nano-machines use short-range methods to communicate 

between them. But, by increasing coordination and 

communication range among several nano-machines, their 

capabilities and potential applications can be expanded in 

nanodevices [17], [28]. This will also extend the nano-networks 

coverage area to reach unprecedented locations. The next 

natural step is to connect nano-devices with the conventional 

networks that will define a new networking paradigm referred 

as the Internet of Nano-Things (IoNT) [12], [28]. Over the last 

few years, a number of layered architecture and communication 

approaches have been proposed [12], [17], [29], [30]. In this 

paper, two most popular nano-communication approaches i.e., 

molecular communication (MC) and electromagnetic 

communication (EMC) has been discussed in section III (Nano-

Communication). A wireless nano-network architecture is 

presented in Fig. 6 

D. Applications of Nano-sensors 

Nano-sensors have great potential and incredible applications 

in all domains of life including, healthcare, environmental 

monitoring, consumer products, robotics, transportation, 

security, surveillance, defense, and agriculture etc. Currently, 

biomedical and healthcare are rapidly growing sectors for nano-

sensors due to increasing demand for rapid, compact, accurate 

and portable diagnostic sensing systems. In biomedical and 

healthcare area, these devices can offer revolutionary personal 

healthcare solutions by providing continuous monitoring. The 

applications of nano-sensors can be divided into the following 

broad groups: biomedical, environmental, industrial, smart 

office management, agricultural, and military applications as 

shown in Fig 7. 

 
 
Figure 7: Application fields of nano-sensor networks 

E. Challenges/Constraints 

Improvement in design, size, and biocompatibility of nano-

sensors particularly in invasive implementation scheme are 

challenging requirements for data sensing in an efficient and 

secure way. The biocompatibility issue is addressed by using 

Figure 6: Wireless nano-network architecture [30]. 
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the material extracted from natural biomaterials, such as the cell 

membrane. In invasive approach, metrological considerations 

have significant importance in general but can become 

challenging when the biomedical measurement is involved. 

Therefore, sensors and the instrumentation linked to them need 

to be calibrated periodically, especially when used for critical 

diagnosis or therapeutic monitoring.  

Inserting engineered sensing devices directly into a subject has 

certain disadvantages and additional design challenges. In the 

lab environment, it may cause infection either because of the 

insertion procedure or discordancy between the organ and the 

sensing devices. Further complications can arise if the invasive 

sensing devices are used within the subject for an extended 

period of time. Therefore safe solutions are required for  

invasive methods. 

III. NANO-COMMUNICATION 

By means of communication, nano-sensors will be able to 

autonomously transmit their sensing information to take actions 

when needed. In recent years, telemedicine and e-health 

activities have produced a large number of successful 

applications in healthcare through different communication 

technologies. Furthermore, thanks to the big data processing 

techniques, the health information inside the patient can be 

collected over a longer period of time, and physicians can 

perform more reliable analysis rather than relying on the data 

recorded in short hospital visits [12], [30]. 

A. Methods of nano-communication and their characteristics 

Nano-communication, the exchange of information at nano-

scale, is the only feature that enables nano-machines to work in 

a synchronous, supervised and cooperative manner to pursue a 

common objective. However, for the time being, it is still an 

unsolved challenge to enable the communication among nano-

devices. Four main communication paradigms are proposed for 

nano-networks depending on the technology used to 

manufacture the nano-machines and the targeted application, 

namely, nano-electromagnetic, molecular, acoustic, and nano-

mechanical [31]. Here we briefly discuss two popular 

communication methods i.e., electromagnetic and molecular 

communication two popular methods, and share some examples 

from the literature.  

1) Molecular Communication  

Molecular communication, the transmission, and reception of 

information encoded in molecules is a new and interdisciplinary 

field [32]. In molecular communication, a nano-transmitter 

releases small particles such as molecules or lipid vesicles into 

a fluidic or gaseous medium, where the particles propagate until 

they arrive at a receiver. The nano-receiver then detects and 

decodes the information encoded in these particles. Messages 

can be encoded in different properties such as concentration, 

number, type, release timing, and/or a ratio of molecules.  A 

summary of the design and engineering of components for 

molecular communication systems from biology, chemistry, 

and nanotechnology is provided in [25], [33]. The first approach 

for engineering bio-nano-sensor has been used and 

demonstrated in synthetic biology [35]-[37] by modifying a 

metabolic pathway of a biological cell, which then synthesizes 

and releases specific signal molecules to send information. 

Another approach to engineer sender and receiver bio-nano-

machines is to create simplified cell-like structures using 

biological materials (e.g., by embedding proteins in a vesicle) 

[38], [39].  

2) Electromagnetic communication 

Nano-electromagnetic communication is defined as the 

transmission and reception of EM radiation from components 

based on novel nano-materials [32]. The latest advancements in 

graphene-based electronics have opened the door to EM 

communication among nano-devices in the terahertz (THz) 

band.  The refinement of existing architectures and the 

utilization of new technologies brought THz communication 

paradigm closer to the reality. In order to enable 

communication among devices at the nano-scale, THz 

transmitters should be compact where their area size should 

reach to hundreds of square nanometers.  It is found that 

electronic sources are capable of providing high levels of 

average output power at lower THz frequencies [40] and they 

can be feasible for THz biological research studies. 

Advancements in microelectronics led to miniature electronic 

components suitable for intra-body communication [41]. For 

example, novel miniaturized transistors that adopt non-planar 

architectures, such as the FinFET [42] and the 3D Tri-gate 

transistor [43], have been manufactured. Besides their compact 

size, these architectures mitigate the undesirable behavior of the 

short channel effect and increase the transistor channel 

dimension. Nano-antenna can be made of either conventional 

material or novel materials like carbon nanotube and graphene. 

A metallic plasmonic nano-antenna is proposed for intra-body 

nano-networks in [44]. A beam reconfigurable multiple input 

multiple output (MIMO) antenna system based on graphene 

nano-patch antenna is proposed in [45], the radiation directions 

of which can be programmed dynamically, leading to different 

channel state matrices. 

B. Challenges 

The integration of in-vivo nano-communication with big data 

health will expand the potential services that can help in 

healthcare. Many open challenges [46] are still being 

investigated, with no mature solutions achieved, robust and 

large-scale nano-networks [12], [30]. One issue in the physical 

layer concerns the propagation of signals in various media and 

environments. Channel models that incorporate path loss, noise 

and channel capacity for both molecular and electromagnetic 

nano-communication are needed. In addition, channel 

characteristics for intra-body nano-networks may vary with 

health conditions and from person to person, so it is not clear 

how this variation can be incorporated into channel modeling. 

One important issue in the link layer is concerned with error 

handling to improve the reliability of transmission. In light of 

the capabilities of nano-machines, new coding schemes and 

error correction mechanisms will have to be developed [31]. 

The size of nano-machines makes it impractical to have 

individual network addresses for the individual nodes. Hence, 

addressing can be cluster-based instead of node-based. This 

makes it possible to address a group of nodes based on the 

health functionality they perform or the biological organ or 

phenomena they monitor [33]. The transmission range is 
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extremely limited, which makes multi-hop communication and 

routing crucial aspects for nano-networks.  

Considering the mobility of nano-machines and indeterministic 

direction of a communication route, a dynamic routing system 

is required. Nano-machines suffer from unreliable transmission 

due to the high path loss and molecular absorption noise [34], 

which requires the dense deployment of nano-machines. 

Congestion control is the main challenge, especially in dense 

nano-networks. The real-time or near-real-time operation is a 

fundamental requirement in the healthcare application design. 

However, the unpredictable transmission medium and very 

short transmission range of intra-body nano-communication 

bring random delays. Moreover, the heterogeneous properties 

of nano-machines targeted for various medical purposes will 

result in different data representations and formats. Therefore, 

data fusion needs to be optimal, dynamic, and delay-tolerant 

[30] for applications that rely on the integration of diverse data 

sources.  

1) Simulators for Nano-communication 

Besides the research advancements in communication and 

hardware devices, a modular and freely available simulation 

platform is also highly required to enable research activities to 

achieve the nano-communication.  NanoNS [45] and N3Sim 

[47] are simulators for diffusion-based molecular 

communication among immobile nano-devices. A simulator of 

Brownian motion was investigated in [48], where a dual time-

step approach was adopted to manage the runtime complexity 

brought by a large number of particles. A High-Level 

Architecture-based simulator design was proposed to provide a 

comprehensive and scalable platform for molecular 

communication performance evaluation [49]. A generic 

simulation platform is proposed to fit in with multiple nano-

devices, channel models, molecular propagation models and 

nano-devices mobility models [50].  

A simulation tool for bacteria-based communication, BNSim, 

is introduced in [51]. Recently, a new network simulator 

nanoNS3 for modeling bacterial molecular communication is 

developed atop Network Simulator 3 (NS-3) in [52]. The 

features of existing molecular communication simulators 

NanoNS, N3Sim, Nano-sim, and nanoNS3 can be summarized 

in [52]. Meanwhile, with respect to the EM-based nano-

networks, Nano-Sim is developed in [53], [54] as an open 

source simulator implemented on the top of the platform NS-3 

[55]. The simulator models the three basic types of nodes in a 

nano-sensor network: nano-machines, nano-routers, and nano-

interfaces.  

Pulse-based communication protocols are implemented in the 

PHY/MAC layer, and a routing protocol based on selective 

forwarding is implemented on the network layer. The properties 

of ultrasound communication for nano-networks were 

evaluated via a simulation study on detailed channel modeling 

and network protocols in [56]. Existing simulators use a 

simplified approximation of the receiver response thus affecting 

the accuracy of the simulation. For the time being, none of these 

simulators could capture all features characterizing the nano-

communication as one completed platform. A key challenge is, 

therefore, to integrate a large number of tools into a single 

package and to make it possible to consistently compare and 

evaluate various designs for nano-communication. More 

research is required to develop a mature, flexible and robust 

platform.  

IV. BIG DATA ANALYTICS FOR HEALTHCARE DATA 

    The advancement of nanotechnology and rapid emergence of 

nano-sensors would ultimately lead to a network of millions of 

interconnected devices on a nanoscale. Consequently, such a 

network would generate a vast amount of data which inspires 

for the envisioned predictive, preventive, personalized and 

participatory health-care framework. The knowledge extracted 

from the large volume of information can induce a reduction in 

healthcare cost by enabling early diagnosis.  From a patient’s 

perceptive, continuous assessment of the biomarkers obtained 

via IoBN could either altogether prevent or detect early onset 

of fatal diseases, which is beyond what is possible today. 

Likewise, the synergy between nanotechnology and big data 

paradigm strive to address the challenges of collecting long-

term volumes of complex and diverse health information, 

integrating data from sensor arrays, and analyzing massive 

amount information that would drive the clinical research 

forward.  

In this section first, we describe the characteristics of big data 

in the context of healthcare systems. Subsequently, aligned with 

the vision of connected nano-sensors we discuss the related 

knowledge extraction methods equally applicable to our 

scenario. While we explain the framework, we categorize and 

describe sources that contribute to big data in healthcare. We 

also discuss salient enabling technologies for big data-driven 

analytics framework.    

In[57], Doug Laney tried to characterize the future data 

challenges in three dimensions: Volume, Velocity, and Variety 

which emerged later as major characteristics of big data. In 

addition to the three V’s, other dimensions of big data have also 

been mentioned like Veracity, Variability (complexity) and 

Value, terms are introduced by IBM, SAS and Oracle 

respectively [58]. However, the general consensus to describe 

big data is based on four major attributes (4Vs) [59], which are 

discussed as follows:  

Volume: Consider an implementation scheme for ubiquitous 

sensing with millions of nano-sensors in and off body networks. 

A frequent communication is expected between sensors and the 

central nodes or routers resulting in the generation of a huge 

amount of continuous data. The emergence of bio-nano sensor 

paradigm would result in a step change, the way we measure 

and sense. A clear change would be a transition from non-

continuous to a continuous source of information since on-body 

sensors are accepted to transmit information continuously. The 

merger of such data from multiple networks (internet of nano-

things) will increase the data size manifolds. Beside that 

existing medical databases also contain an abundance of data.  

It will require big data processing and analytics tools to handle 

such scale of information.  

Velocity: As discussed above, smart devices generate a 

continuous stream of information as opposed to offline data 

sources such as health records etc. This demands specialized 

technologies for collecting, merging and processing the 

information in real-time while maintaining the data integrity.   

Nano-sensors have limited energy and data storage capacity, so, 

for the transfer of information, data can be sent in many small 
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packets with high speed to keep the integrity of the data intact. 

Therefore, in a bio-nano-sensor implementation scheme, 

frequent communication is a kind of requirement [60]. Besides 

the speed of data generation due to frequent communication, 

another factor contributing towards the velocity is the 

requirement of real-time analysis for timely and informed 

decision making. The speed of the data generation and 

requirement of real-time analysis makes it a big data analytics 

problem.  

Variety: Heterogeneity of smart nano-sensors and diversity in 

underlying communication technology will lead to a variety of 

data types produced. In addition, variety can arise by combining 

heterogeneous data from multiple sources like sensors, clinical 

examination, medical reports, lab tests etc. This data can be 

structured like medical databases, semi-structured like digital 

logs of sensor communication and unstructured like text reports 

and visual aids. 

Value: The value of the data gathered from single source e.g. 

nano-sensors depends on the factors like age of data and end 

goals. Fresh data may have more value than the data generated 

long ago, similarly for a particular problem where data 

generated from nano-sensors can be enough for decision 

making the value of the data generated is much more than the 

other cases where it plays only a partial role. However, a fusion 

of data from nano-sensors with the data from other sources like 

electronic medical records (EMRs), can enhance the value of 

data. In general, it is observed that in healthcare value of single 

data chunk from a certain time period decreases over the time, 

but the value of fused or aggregated data increases over the time 

[61].  

A. Big Data Analytics Framework 

In this section, we have presented an analytics framework as 

shown in Fig.8 that is in-line with the vision of exploiting nano-

sensors network data in conjunction with data from 

conventional sources. The proposed framework comprises three 

layers: Layer 1 refers to data source layer whereas Layer 2 

consists of enabling technologies for data collection and 

processing. Finally, layer 3 refers to the analytics engine that 

makes use of state-of-the-art machine learning algorithms to 

convert raw data into actionable information.  These layers are 

further discussed in detail in the subsequent subsections. 

Besides that, some use cases from healthcare are presented in 

Table 1 for each knowledge extraction step.  

1) Layer 1: Data Sources 

The transformation of data to knowledge starts from the data 

collection stage. In our proposed big data analytics pipeline, 

layer one represents data sources. Today, main sources of 

healthcare data are miscellaneous smart healthcare devices and 

electronic records stored in conventional databases. We have 

categorized these data sources into two broad categories named 

as Conventional and Non-Conventional sources which are 

further discussed below:   

a) Conventional data sources 

As reviewed by Steinhubl et al. [62], the most common type of 

information from the human body using the current technology 

includes temperature, pressure, glucose concentration, cardiac 

heartbeats etc. These biomarkers are analyzed using various 

data processing techniques to establish patterns that lead to 

specific diseases. These patterns are further correlated with 

conventional health-screening technologies such as X-ray 

tomography, magnetic resonance, ultrasound etc. to provide an 

accurate diagnosis of a possible medical condition  

Likewise, another source of information with regards to 

patients’ data comes from the text records such as Electronic 

Health Records (EHR). The EHR contains textual reports on 

symptoms and corresponding diseases. In the current literature, 

the knowledge extracted from these sources relies heavily on a 

myriad of methods from signal processing, image recognition, 

and text analytics domain.  

 

Figure 8: Envisaged Big data analytics framework for extracting intelligence from healthcare data. 
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The amount of information obtained from these conventional 

sources are huge in volume and also heterogeneous in nature 

The non-standardization of data format and presence of 

multiple players in the market offering a variety of hardware 

and software make data management even more challenging. 

Similarly, the presence of heterogeneous data makes it 

impossible for the conventional data storage and processing 

techniques to extract any meaningful information.   

With the help of nonconventional knowledge extraction tools 

like big data analytics, a world of value can be generated out of 

this data to improve the overall healthcare system. There 

already exists an ongoing debate on the possible role of big data 

analytics in healthcare [5], [6], [8], [61], [63], and its practical 

implications [64]-[67] that is very promising. 

b) Non-conventional continuous data 

We are entering a new era of ubiquitous healthcare services 

which entitles real-time diagnosis, monitoring, and treatment 

services anywhere. Emerging technologies for smart healthcare 

devices are very promising for the realization of this dream. 

These smart devices vary in their size, capacities, and functions. 

Example of smart medical devices today vary from surgery 

assistant robots [68] to wearable and implantable smart devices 

[69] for continuous monitoring [70]. Due to the continuity of 

progress in underlying technologies smaller, efficient and cheap 

devices like nano-sensors are becoming the norm. Numerous 

nano-sensors working together in the form of a network can be 

used in-off body for sensing. These smart devices and body-

centric sensor-networks can perform personalized healthcare 

operations like monitoring and drug delivery, in real-time. Such 

an always-on system is characterized by constant 

communication of devices among themselves. This machine to 

machine communication will lead to the generation of 

nonconventional high speed, high volume streams of data.  

The implantable biosensors offer a possibility of continuous 

assessment of health conditions as opposed to traditional 

diagnostics methods i.e., laboratory testing of blood and urine. 

The real-time sensing on a molecular level such as metabolites 

[71] can help proactively detect health abnormalities in 

advance. In [72] authors have shown that the presence of drugs 

and events of gastroesophageal reflux disease can be detected 

by continuous monitoring of body fluids such as saliva, tears, 

and sweats. Likewise, advancement in nanoscale technology 

has made it possible to sense the level of glucose in the tears via 

contact lenses [72]. 

The skin-like stretchable devices which are able to attach to the 

human skin, known as Biostamps [73], have been manufactured 

with an aim to monitor body vitals. These devices harvest 

energy from radio signals relayed to them by a wearable device. 

Likewise, there are several studies [74] that have reported the 

use of printable sensor array for measuring electrical impedance 

on the patients’ skin.  

Nano-sensors are expected to have diversity because of 

different manufacturing materials, applications, 

implementation requirements and underlying technologies. 

Assuming huge variety in nano-sensors, generation of diverse 

data types is quite obvious besides the speed. This 

heterogeneous data form conglomerate of smart devices would 

comprise structured, semi-structured and unstructured data.  

To summarize data generated from smart healthcare devices is 

characterized by all 4 Vs of big data. The advancement in data 

processing techniques such as real-time stream processing 

solutions like Spark or Storm engine on top of Hadoop would 

allow us to envisage proactive disease prediction and 

prevention solutions.  

2) Layer 2: Enabling Technologies 

To envision and develop nano-sensors based comprehensive 

big data analytics solutions, an equally challenging task is data 

integration. This requires collecting information from 

conventional and non-conventional data sources and storing 

this information in a unified space in order to be processed later 

for knowledge extraction.  Economically or technically it is not 

feasible for all entities to create such facilities in-house to sotre 

and process that huge amount of data. Besides that extending of 

storage and computational capacity according to the demands 

is also a challenging task. Thanks to robust flexible cloud 

computing facilities which are becoming the backbone of 

current big data analytics frameworks that can help to transfer 

the data from the body to the cloud. The availability of the data 

in a single space can enable developing a patient-centered 

model allowing practitioners to quickly access and study long-

term patient information.  

These cloud-based solutions not only reduce healthcare cost 

by enabling early diagnosis but from a physician perspective, it 

allows them to share successful treatments with colleagues or 

researchers.  In recent times one such example of a clinical 

database is established by Harvard’s project entitled informatics 

for integrating biology and bedside (i2b2) [75]. This platform 

is currently adopted by over 100 medical institutions 

worldwide. Likewise, other cloud-based clinical initiatives 

include Health Cloud Exchange [76], e-Health Cloud [77]-[78], 

and Husky Healthcare social Cloud [79]. The cloud supports the 

integration of a system that is heterogeneous and 

geographically separated and becomes an obvious choice for 

healthcare conglomerates.  

Amazon Web Services, Google Cloud, IBM Cloud, Microsoft 

Azure, Cloudera, Hortonworks, and MapR, are the few of the 

popular names who provide cloud service commercially. They 

also support batch processing with Hadoop suitable for 

conventional data and stream processing facilities like Spark for 

continuous data, along with many other big data analytics tools. 

Authors in [67] also provide a general framework for Big Data 

analytics in health care. 

Fog computing and edge computing [112] are also emerging 

concepts for data storage and processing for the urgent decision 

making. In this case another layer of data storage and 

processing is added between cloud and the data source. Data 

related to urgent decisions can be processed at this layer and 

actions necessary can be taken with low recall time.  

Effective and efficient machine learning algorithm for 

gathering intelligence from distributed data from miscellaneous 

sources is also challenging requirement. Advances on the front 

of deep learning for IoT environment are promising. Similar 

deep learning approaches can be replicated for healthcare use 

cases of nano-sensors applications. 
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3) Layer 3: Knowledge Extraction 

A pile of data itself has no value until unless it is converted into 

knowledge for logical conclusions and decision making. In 

parallel, advances in data mining, machine learning, 

computational technologies, biomedical testing and statistical 

techniques altogether have revolutionized the knowledge 

extraction process. The Knowledge Extraction (KE) process 

can be divided into following phases: preprocessing, data 

fusion, feature extraction, prediction and visualization, which 

are subsequently discussed in detail. 

a) Preprocessing 

Healthcare big data can be diverse in formats, may contain 

missing values, noise, errors and inconsistencies. Such gross 

data may affect the performance of the analysis and lead to 

incorrect results. So it needs to be preprocessed, i.e. formatted 

and cleaned, before any prediction model or data analytics 

technique is applied. It is a common understanding among data 

scientists that preprocessing takes more time than the model 

implementation. Data preprocessing is a very laborious but 

important step to overcome problems discussed below:  

Missing values: In preprocessing one of the biggest challenges 

is to deal with missing values. Medical records can contain 

missing values due to multiple reasons like data not provided 

by patients, not entered in records by hospitals, machine or 

human error etc. Authors in [80], [81] categorize missing data 

in the context of healthcare as missing not at random (MNAR), 

missing at random (MAR), and missing completely at random 

(MCAR). Authors in [80] discuss three popular strategies to 

handle missing values. Easiest and common approach is to 

ignore data with missing values and take available complete 

cases. Instances or features with missing value can be ignored 

simply in this approach. It can be opted where the rest of data 

can lead to meaningful conclusions anyway. Other is the use of 

single value imputation method, in this popular approach 

missing values are replaced by some alternative value like zeros 

or mean, mod etc. [82], [83] of the relevant data. Most advance 

approach is, model-based imputation where some prediction 

method can be used to attain the values close to possible actual 

data with the help of available data [84]. In [85] authors take 

model-based approach and use locally auto-weighted least 

squares imputation (LAW-LSimpute) for the estimation of 

missing values in microarray data, it automatically weights the 

neighboring genes based on their importance.  Another example 

of imputation method is the use of latent factor model by [84] 

to replace the missing values in the patient data using the latent 

factor matrix developed by the combination of patients features 

in particular scenario. Authors in [86] discuss in detail a method 

of multiple imputation using chained equations (MICE) and 

[81] recommends it as one of very effective approach for 

handling missing values. 

Erroneous data and noise: They are the factors that also highly 

influence the quality of analysis, [87] explores four approaches 

for noise removal. Three of these methods are basically outlier 

detection techniques based on distance calculation, clustering, 

and local outlier factor (LOF). The fourth one is a hyper clique-

based data cleaning technique.  Authors in [88] recommend the 

use of Fuzzy logic as a resilient and consistent approach to 

handle noise. 

b) Data Fusion:  

Data aggregation from heterogeneous sources is required at 

different levels like routers, local data processing units 

(LDPUs) and cloud. Data aggregation schemes for nano-

sensors also depend on the network topology used for nano-

networks.   

Authors in [89] discuss three machine learning data fusion 

techniques for IoT data, named as probabilistic methods, 

artificial intelligence, and theory of belief. Whereas authors in 

[90] categorize data aggregation techniques as cluster-based, 

tree-based, or structure-free algorithms. They define these 

categories for sensors network data based on networking 

approaches and consider clustering based approach most 

popular one. In [91] authors think the tree-based approach is 

adopted commonly for the flow of data in wireless sensor 

networks (WSN). Different data aggregation schemes for tree-

based networks are also discussed in the literature [92]-[95]. 

These schemes or their modified versions can also be opted for 

data aggregation in nano-sensors particularly electromagnetic 

ones to overcome latency.  

Aggregations of data from routers, sinks or LDPUs to upload it 

to the cloud is a separate task from the data aggregation from 

multiple sensors discussed above. Authors in [90] propose a 

solution comprising Body Area Network Data Aggregation 

Algorithm (Banag) for data aggregation and an Optimal 

Channelization Algorithm (OCA) for data transfer to cloud. 

This solution prioritizes data aggregation and transportation to 

cloud on the basis of urgency and criticality.  

c) Features Extraction 

Healthcare big data gathered from different sources and 

comprising a variety of data records can have numerous data 

features at the end. Use of all the features may not be feasible 

and can lead to the curse of dimensionality. Each subgroup from 

the complete feature space can lead to a different type of 

information, and findings of varying quality as the result of the 

analysis performed. So the selection of the right features 

become very important to reach desired information with a 

certain accuracy. 

Measuring correlation of features with the predicate and among 

themselves can be a good approach to find relevant features that 

can lead to meaningful results. Existing feature selection 

methods can be categorized as wrappers, filters and embedded 

[96]. Wrappers are algorithms that choose a subset of features 

for best performance on the basis of an iterative process, being 

exhaustive in nature they may not be feasible in case of high 

dimensions. Filtering is simple and fast as it takes feature 

characteristics into consideration for ranking and uses this 

ranking score for feature selection instead of relying on some 

algorithm. Embedding is a blend of wrapper and filter. It carries 

advantages of the both while overcoming the iterative search 

bottleneck of wrapping. Authors in [97] have used a filtering 

technique called Particle Swarm optimization technique, a 

computationally inexpensive method in terms of memory and 

speed. It is applied to the sensors data set to select a subset of 

features discarding irrelevant data to detect heart disease using 

different enabling algorithms. In [98] authors use a coarse based 

wrapper approach for genomic level feature selection, on 

multiple balanced samples subgroup selected randomly.  
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Authors in [84] use expert knowledge and Pearson correlation 

to extract 79 features, related to patient’s demographic 

information, cerebral infarction and living habits (e.g. 

smoking),    from structured medical data to predict the risk of 

cerebral infarction disease. They use keyBword selection 

method to extract important features from text data and then use 

convolutional neural networks CNN to extract 100 features 

from them using multilayer approach. At each layer, the 

combination of words are selected and passed to the next layer 

from the text data with an assigned weight, in the end, features 

from text and structured data are combined. Similarly, in case 

of nano-sensor networks a combinatorial approach can be 

adopted to jointly exploit features from conventional and non-

conventional data sources to achieve higher intelligence. 

d) Data Visualization 

Data visualization techniques are used to make sense of the vast 

amount of data graphically allowing the users to interact with 

the data for knowledge discovery. Data visualization techniques 

can be broadly divided into Scientific Visualization (SciViz) 

and Information Visualization (InfoViz). The data obtained 

from computerized tomography (CT Scan) and magnetic 

resonance imaging (MRI) are examples of SciViz. InfoViz, on 

the other hand, is a representation of complex models which do 

not necessarily has a physical meaning. The visualization of 

data obtained from the sensors or developing a visual 

representation of textual health records of the patient comes 

under the realm of InfoViz. Lifeline systems [99] and cube 

techniques [100] are examples of InfoViz that allows 

examining patients visually based on their health records 

attributes. Preprocessing techniques such as principal 

component analysis PCA, and singular value decomposition 

(SVD) are often applied to reduce the dimensionality of the data 

that further aids in the data visualization. We foresee that 

similar approaches will be adopted for the visualization of data 

obtained from bio-sensor nodes.  

e) Predictive Modeling: 

If data is the backbone of knowledge extraction process then 

machine learning based predictive modeling plays a role of the 

brain. Robust machine learning algorithms on big data 

platforms can not only find hidden patterns and correlations in 

the data to provide an insight about existing realities but it can 

also exploit them to predict possible future outcomes very 

accurately. Here we try to highlight the role of machine learning 

in knowledge extraction by discussing some common 

techniques used in the healthcare sector. 

Fuzzy Logic, a rules-based method, is a very popular technique 

in health care [88], [101]-[104] for decision making according 

to a predefined instructions set.  [104] is a good example for 

understanding how fuzzy logic can work in the context of 

healthcare. Authors propose a self-learning Fuzzy Expert 

System that takes as input the blood pressure (BP), heart rate 

(HR), blood sugar (BS) data, collected from continuous 

monitoring. Then it fuzzifies (compares) the data against 

predefined fuzzy rules and prescribes on the basis of those rules. 

The salient characteristic of the proposed system is a loopback 

feature that improves fuzzy rules, knowledge base, and 

recommendation set continuously.  

Apart from fuzzy logic prediction and approaches can be divded 

into supervised or unsupervised categories.  

(1) Supervised learning problems:  

They are the problems where the predicate, the outcome 

parameter is known. In supervised learning, problems can be 

further subcategorized as classification problems or regression 

problems. Cases, where the goal is to separate different 

instances from a data into distinct groups on the basis of some 

attributes, is called classification, for example, categorizing 

different patients on the basis of their medical stats.  

The cases where we are interested to estimate something in 

terms of continuous numeric values they are called regression 

problems, for example, calculating chances of a patient to get a 

disease or predicting expected pulse rate at a certain time and 

particular circumstances on the basis of previous data. There are 

plentiful algorithms for each type of problem.  

In healthcare frequent problems discussed are related to 

classification like genome or cancer type classification. There 

are many machine learning algorithms available for 

classification, some popular conventional algorithms include 

Naive Bayesian (NB), K-nearest Neighbour (KNN), Decision 

Tree (DT), Hidden Markov Model(HMM), Neural 

Networks(NN) and Support Vector Machine(SVM). In addition 

to that advance deep learning methods are also getting popular. 

Authors in [84] have used three conventional machine learning 

algorithms Naive Bayesian (NB), K-nearest Neighbor (KNN), 

and Decision Tree (DT) to predict the risk of cerebral infarction 

disease in patients using the patients’ demographic and cerebral 

infarction data.  

One of the popular application of classification algorithms is 

cancer detection in healthcare research. Authors in [105] have 

tried to classify the subtype of Oligodendroglioma tumor by 

analyzing images of Pathology samples. They have proposed 

(GANNIGMA-ensemble) model comprising globally 

optimized Artificial Neural Network Input Gain Measurement 

Approximation (GANNIGMA) combined with an ensemble 

classification (GANNIGMA-ensemble) technique to generate 

the diagnostic decision rule. The GANNIGMA hybrid feature 

selection finds the significant features and ensemble applies a 

combination of algorithms. In [106] authors have used a very 

popular classification algorithm SVM in combination with 

convolutional neural networks to classify breast cancer 

subcategory by performing analysis on microscopic images of 

biopsy. A Hidden Markov model-based method is proposed by 

[107] for behavioral profiling of dementia patients using data 

collected by continuous monitoring with the help of in-home 

sensors. Authors in [98] have applied a unique coarse-to-fine 

learning approach on genome data to identify whether a loci is 

suspicious or not as a carrier of gastric cancer. 

(2) Unsupervised learning problems:  

In healthcare, another common category of problems fall in 

unsupervised learning, where we have a pile of data but the 

predicate or outcome variable is not defined. This approach is 

commonly used to explore and group the data on the basis of its 

characteristics using some clustering method.  
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Table 1: Knowledge extraction steps and use cases for healthcare 

Paper Task Data Method Problem Addressed 

[85] Data Pre-

processing 

Eight different bio datasets  Locally auto-weighted least 

squares imputation 

Missing values estimation 

[84] Medical Records latent factor model Reconstruct missing values 

[110] Data Fusion Personal health record(PHR) ontology and NLP Interoperability & integration 

[109] Five gene expression datasets  p-norm singular value 

decomposition 

Dimension reduction 

[111] Simulation data 

two gene expression datasets 

Non-convex proximal P-norm-

graph-Laplacian PCA 

Dimension reduction  

[97] Feature 

Extraction 

Demographic features & Heart 

performance indicators 

Particle Swarm Optimization Feature Selection 

[98] Simulated genotypes data Boosting Overcome bias/imbalance 

[84] Medical Records CNN Feature extraction from text  

[112] ECG User-defined threshold level Efficiency and low latency for fog 

computing 

[113] Visualization DNA microarrays data Point clouds, solar systems, 

and treemaps 

Visualization of genes sequential 

patterns 

[88] Fuzzy Logic 

 

Simulation Fuzzy logic Decision-making systems 

[101] ECG, heart rate, 3-axes human 

body acceleration, temperature 

Fuzzy logic Recognizing mental or physical 

stress 

[103] 3-axis acceleration, heart rate, 

breathing rate 

Fuzzified neural network The unusual physical condition 

detection 

[102] Body mass index, waist 

circumference, waist-to-height 

ratio 

Fuzzy logic Abdominal obesity & cardio-

metabolic risks assessment 

[104] lab tests, historical data, sensor 

data 

Self-learning fuzzy logic 

scheme 

Optimized recommendation 

system 

[98] Supervised 

Learning 

Gastric cancer dataset Coarse-to-fine learning Detection of suspicious loci 

[84] Medical Records, Structured and 

unstructured(text) 

Convolutional neural network 

(CNN) 

Disease Risk Prediction 

[114] Subjective data: 

A measure of fatigue, stress, 

anger, depression, environment 

Multi-layer perceptron, SVR, 

GRNN, and  

KNN 

Predict psychological wellness 

[97] Demographic features an& Heart 

performance indicators 

Bagged Tree, Random Forest, 

and AdaBoost 

Detect the heart disease 

[111] Theoretical framework Attentive vision-based 

algorithm 

Pill Detection & Identification via 

image recognition 

[106] Microscopic images of biopsy SVM, CNN Classification of breast cancer  

[109] Unsupervised 

Learning 

Five gene expression datasets K-Means Tumor clustering 

There are different clustering approaches like Partitional, 

Density-based, Hierarchical, Spectral, Grid-based, 

Gravitational, Correlation, and Herd clustering [108]. There 

also exist many clustering algorithms but some prominent of 

them are Kmeans, Density-Based Spatial Clustering of 

Applications with Noise (DBSCAN), Mean-Shift Clustering, 

Expectation–Maximization (EM), Gaussian Mixture Models 

(GMM) etc. Clustering algorithms are very important for the 

analysis of healthcare data as in many cases the ground truth is 

not known and all we have is bulk of data and we have to extract 

knowledge out of it. For example, we have miscellaneous heart 

rate, blood pressure, glucose level data of men and women 

patients and we do not want to estimate anything or categorize 

patients into any categories. All we want is to explore data for 

any possible hidden meaning in it or want to group together 

patients on the basis of similarities data itself reflects. In [109] 

authors apply K-means clustering method for tumor clustering 

based on the low-rank approximation matrix. 

V. OPEN RESEARCH CHALLENGES 

Application of nano-technology and big data analytics in 

healthcare is emerging as a new integrated area of study. 

Growth in bio-nano-technology and big data healthcare is likely 

to attract more interest of researchers in this area.  Already a lot 

of progress can be seen in the area of bio-nano-technology and 

big data healthcare independently, but their interdisciplinary 

study is at nascent stages. Therefore there exist many open 
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challenges that seek intention of the researcher, some important 

challenges are given below:  

A. Standardization of data formats and protocols: 

There are so many vendors who deliver a plethora of 

miscellaneous equipment, technologies, and services for 

diagnosis, monitoring, and treatment in healthcare. This 

diversity of equipment and technology lead to the generation of 

numerous data formats and transfer protocols, for example, 

several GB of raw data generated by ECG in a day can be 

transferred in XML format and skin images taken by a camera 

can be multimedia files [115]. Handling such a variety of data 

is a challenging task. It becomes even more crucial for the 

future smart healthcare system appraised for the efficiency of 

real-time services. In such scenario, it becomes important that 

stakeholders step up for standardization of data formats and 

protocols to reach some unified solution. In addition, attention 

should be paid to the fact that data formats and protocols should 

be light and efficient to support nano-communication [116].  

B. Unified data schema: 

As mentioned earlier there are numerous stakeholders involved 

in data generation and management. They use different schema 

for the data storage which makes data integration and 

interoperability difficult. There also exists some efforts for the 

standardization of different aspects of data exchange and 

interoperability for conventional health care data, for example 

in March 2003, the Consolidated Health Informatics (CHI) set 

requirement that all federal health care services agencies adopt 

the primary clinical messaging format standards (i.e., the Health 

Level Seven [HL7] Version 2.x [V2.x] series for clinical data 

messaging, Digital Imaging and Communications in Medicine 

[DICOM] for medical images, National Council for 

Prescription Drug Programs [NCPDP] Script for retail 

pharmacy messaging, Institute of Electrical and Electronics 

Engineers [IEEE] standards for medical devices, and Logical 

Observation Identifiers, Names and Codes [LOINC] for 

reporting of laboratory results) [117]. Fast Healthcare 

Interoperability Resources (FHIR) by HL7 is another standard 

for exchanging healthcare information electronically [118]. 

Similar standards are also required for non-conventional data 

sources. Data storage schema may vary due to different 

placement arrangements of nano-sensors as well. It is desired 

that a unified data storage schema be adopted by all 

stakeholders so exchange and integration of data could be easy 

and efficient for the provision of seamless smart healthcare 

services. 

C. Development of parameters and methods to validate the 

quality of data:  

In conventional data analytics, sample data was taken into 

account, and a refined sample, free of errors and missing values 

was opted for analytics. But big data analytics has shifted the 

paradigm from sample to whole data analytics. This whole data 

approach has also raised a concern about quantity vs quality 

[119]. Increase in data amount also increase the chances of 

missing and erroneous data. It is common to have missing 

values [80], noise or other parameters that may affect the 

quality of healthcare big data. This bad quality input data can 

affect the performance of analytics and may lead to incorrect 

findings. It is the demand of time that new robust parameters to 

compare the quality of data be defined and new data validation 

methods should be developed to assess and improve the quality 

of raw data. 

D. The mechanism for defining level and scale of 

aggregation: 

Data fusion or aggregation in big data from continuous and 

conventional sources in itself is a very challenging task not only 

because of volume, heterogeneous nature and velocity of data 

but also because of the purpose of aggregation. In nano-sensor-

network, whether the data be aggregated at the router level, at 

any interim smart hop or in the cloud, it all depends on the end 

goals and utility of data. Similarly, the decision about the scale 

of the data aggregation also depends on the subject and purpose 

of data aggregation. Nevertheless, keeping all these aspects in 

consideration, some generalized rules should be defined for 

level and scale of data aggregation. It will make not only the 

data sharing, processing and analysis easy but it can also help 

to improve the privacy and security of data. 

E. Analytics tools: 

Analytics has shifted from the sample-based approach to whole 

data based methodology.  But most of the existing algorithms 

are designed to extract knowledge from sample data and they 

are not efficient for large-scale data and there is a scarcity of 

big data analytics techniques. Therefore new scalable 

techniques and algorithms are required to perform analytics on 

big data. For example in healthcare a very common task is 

clustering which requires robust clustering algorithm scalable 

to big data problems, in addition, metrics to validate the 

clustering results are also required. Besides that such algorithms 

are required which can also perform for real-time analysis on 

distributed data. 

F. Privacy: 

Where the capacity of big data analytics to find a needle from 

the haystack is its merit, there it also raises a serious question 

on how to maintain the privacy of individuals and institutions. 

Though different anonymization approaches exist, still 

knowledge of few key attributes and application of some data 

mining can help to trace individuals. For the security and 

privacy, new anonymization methods should be developed. 

G. Security: 

Continues machine to machine communication particularly at a 

very small device like nano-sensor which do not have much 

processing power, data security becomes a challenging tasks 

against data hacking and malicious adversary attempts. New 

robust techniques are required to ensure data security and 

privacy. 

H. Hybrid Solutions: 

Since there are lots of communication paradigms for nano-

communication, the study on the interaction between two 

different communications paradigm is still missing. It is 

generally believed that by merging all the communications 

together the nano-network would be much more flexible and 

powerful. Hence studies on hybrid communication mechanism 

and their feasibility are much needed future direction. 
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VI. CONCLUSION 

In future, such ubiquitous and smart healthcare system is 

desired which is equipped with P4 (i.e. predictive, preventive, 

personalized and participatory) to perform diagnostics, 

monitoring and treatment functions in seamless and smart 

manner. Developments in the field of big data analytics and 

nano-technologies in the context of healthcare are very 

promising to realize this dream. Smart devices based on nano-

sensor networks can provide technical support to take critical 

measurements on real time. Big data analytics can help to gather 

intelligence from those measurements data to make important 

and urgent decisions for diagnosis to drug delivery. Therefore, 

there is a need of thorough research on this interdisciplinary 

area. In this paper we have covered the role of nano-sensors, 

nano-communication and big data analytics towards futuristic 

healthcare system and emphasise the need to open the door to 

an interdisciplinary research discussing some pressing 

challenges.   
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