20 research outputs found

    Design of 100 GHz-class Mach-Zehnder modulators in a generic indium phosphide platform

    Get PDF
    We propose a push-pull electrode design for a Mach-Zehnder modulator in a generic indium phosphide platform. We calculate the frequency response of the modulator for a range of mask design parameters. We propose the design parameters for a 50Ω, velocity matched MZM with 95GHz bandwidth

    200 Gbps/lane IM/DD Technologies for Short Reach Optical Interconnects

    Get PDF
    Client-side optics are facing an ever-increasing upgrading pace, driven by upcoming 5G related services and datacenter applications. The demand for a single lane data rate is soon approaching 200 Gbps. To meet such high-speed requirement, all segments of traditional intensity modulation direct detection (IM/DD) technologies are being challenged. The characteristics of electrical and optoelectronic components and the performance of modulation, coding, and digital signal processing (DSP) techniques are being stretched to their limits. In this context, we witnessed technological breakthroughs in several aspects, including development of broadband devices, novel modulation formats and coding, and high-performance DSP algorithms for the past few years. A great momentum has been accumulated to overcome the aforementioned challenges. In this article, we focus on IM/DD transmissions, and provide an overview of recent research and development efforts on key enabling technologies for 200 Gbps per lane and beyond. Our recent demonstrations of 200 Gbps short-reach transmissions with 4-level pulse amplitude modulation (PAM) and discrete multitone signals are also presented as examples to show the system requirements in terms of device characteristics and DSP performance. Apart from digital coherent technologies and advanced direct detection systems, such as Stokes–vector and Kramers–Kronig schemes, we expect high-speed IM/DD systems will remain advantageous in terms of system cost, power consumption, and footprint for short reach applications in the short- to mid- term perspective

    Electrically packaged silicon-organic hybrid (SOH) I/Q-modulator for 64 GBd operation

    Get PDF
    Silicon-organic hybrid (SOH) electro-optic (EO) modulators combine small footprint with low operating voltage and hence low power dissipation, thus lending themselves to on-chip integration of large-scale device arrays. Here we demonstrate an electrical packaging concept that enables high-density radio-frequency (RF) interfaces between on-chip SOH devices and external circuits. The concept combines high-resolution Al2O3\mathrm{Al_2O_3} printed-circuit boards with technically simple metal wire bonds and is amenable to packaging of device arrays with small on-chip bond pad pitches. In a set of experiments, we characterize the performance of the underlying RF building blocks and we demonstrate the viability of the overall concept by generation of high-speed optical communication signals. Achieving line rates (symbols rates) of 128 Gbit/s (64 GBd) using quadrature-phase-shiftkeying (QPSK) modulation and of 160 Gbit/s (40 GBd) using 16-state quadrature-amplitudemodulation (16QAM), we believe that our demonstration represents an important step in bringing SOH modulators from proof-of-concept experiments to deployment in commercial environments

    Kernel mapping for mitigating nonlinear impairments in optical short-reach communications

    Get PDF
    Nonlinear impairments induced by the opto-electronic components are one of the fundamental performance-limiting factors in high-speed optical short-reach communications, significantly hindering capacity improvement. This paper proposes to employ a kernel mapping function to map the signals in a Hilbert space to its inner product in a reproducing kernel Hilbert space, which has been successfully demonstrated to mitigate nonlinear impairments in optical short-reach communication systems. The operation principle is derived. An intensity modulation/direct detection system with 1.5-mu m vertical cavity surface emitting laser and 10-km 7-core fiber achieving 540.68-Gbps (net-rate 505.31-Gbps) has been carried out. The experimental results reveal that the kernel mapping based schemes are able to realize comparable transmission performance as the Volterra filtering scheme even with a high order. (C) 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreemen

    A verified equivalent-circuit model for slotwaveguide modulators

    Get PDF
    We formulate and experimentally validate an equivalent-circuit model based on distributed elements to describe the electric and electro-optic (EO) properties of travellingwave silicon-organic hybrid (SOH) slot-waveguide modulators. The model allows to reliably predict the small-signal EO frequency response of the modulators exploiting purely electrical measurements of the frequency-dependent RF transmission characteristics. We experimentally verify the validity of our model, and we formulate design guidelines for an optimum trade-off between optical loss due to free-carrier absorption (FCA), electro-optic bandwidth, and {\pi}-voltage of SOH slot-waveguide modulators
    corecore