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Abstract: Nonlinear impairments induced by the opto-electronic components are one of the
fundamental performance-limiting factors in high-speed optical short-reach communications,
significantly hindering capacity improvement. This paper proposes to employ a kernel mapping
function to map the signals in a Hilbert space to its inner product in a reproducing kernel
Hilbert space, which has been successfully demonstrated to mitigate nonlinear impairments in
optical short-reach communication systems. The operation principle is derived. An intensity
modulation/direct detection systemwith 1.5-µm vertical cavity surface emitting laser and 10-km 7-
core fiber achieving 540.68-Gbps (net-rate 505.31-Gbps) has been carried out. The experimental
results reveal that the kernel mapping based schemes are able to realize comparable transmission
performance as the Volterra filtering scheme even with a high order.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Driven by emergence of cloud applications, more than 70% of network traffic stays within
the datacenters, where high-speed short-reach transmission techniques are highly demanded
[1]. Optical fiber transmission has evolved over decades and been widely recognized as the
most cost- and energy-efficient technique to offer ultra-high capacity [1,2]. The datacenter
I/O port transmission speed is soon approaching 200-Gbps per lambda [3]. To meet such
a high data rate, the intensity modulation direct detection (IM/DD) systems with advanced
modulation formats such as pulse amplitude modulation (PAM) or discrete multi-tone (DMT)
have been experimentally demonstrated [4–8,13]. However, such an IM/DD system imposes
stringent requirements on optoelectronic devices, bringing a significant challenge to cost-sensitive
datacenters. Meanwhile, spatial division multiplexing (SDM) techniques provide an alternative
approach to cope with an ever-increasing capacity demand, showing a great potential to achieve
1-Tbps and beyond [9]. Novel system techniques, such as vertical cavity surface emitting laser
(VCSEL) with multi-core fiber (MCF), are promising to increase the spatial bandwidth density
[10]. Although the cost-effective broadband opto-electrical components have been developing
rapidly to keep pace with the capacity requirement of optical short-reach systems, the impairments,
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especially the nonlinear ones, introduced by these components to the high-speed short-reach
communication systems cannot be neglected and become a significant issue that hinders the
capacity improvement [2]. These nonlinear impairments come from non-idealities of various
opto-electronic devices [2,11], such as the nonlinear modulation characteristics from the laser,
saturated power amplification from the optical/electrical amplifier, square law detection of the
signal at the photodetector, and consequently are difficult to be mitigated by using any analytical
modeling.

Recently, Volterra filtering [12,13] and machine learning (ML) algorithms [14,15] have been
introduced as numerical methods for channel equalization against the nonlinear impairments in
200-Gbps and beyond optical short-reach communication systems [4–8,13]. Compared with the
linear signal processing methods employed only in one-dimensional scalar signal space, such as
feed forward equalization, these methods handle the signal recovery in a complete and sequential
high-dimensional space, known as a Hilbert space (HS). However, they still have limited benefits
to mitigate nonlinear impairments. The Volterra filtering scheme uses high-order multiplications
of all the inputs that have been applied to the system, and its complexity increases exponentially
with nonlinear kernel orders. Typically, to keep complexity in an acceptable level, the nonlinear
kernel order of no more than 3 is implemented [12,13]. However, a small order is limited
to compensate the complicated nonlinear impairments in optical short-reach systems. Many
ML algorithms, such as [14,15], compensate the nonlinear impairments through learning from
multiple neural layers, which also treat the signal in a high-dimensional manner. Nevertheless,
the more the neural layers are introduced, the higher the computational complexity is. It remains
an open question whether the high computational complexity of ML-based equalizers are proper
in optical short-reach communications.

From the signal processing perspective, the aforementioned challenge of the existing methods
that mitigate the nonlinear impairments is referred to as ‘curse of dimension’ dilemma [16].
When the signal dimension increases, the performance can be improved but causing intolerable
complexity. It often happens that when increasing the signal dimension up to a certain level, a
very little performance improvement needs a dramatic increase of the calculations. One way to
address this dilemma is to find a suitable dimension mapping function. The kernel mapping, also
referred to as ‘kernel trick’ [18], was proposed to address the ‘curse of dimension’, and hence
has a great potential to tackle with the issues caused by complicated nonlinear impairments in
optical short-reach communications as well. A kernel mapping function maps the signals in a HS
to the inner product in a reproducing kernel Hilbert space (RKHS). Therefore, the complicated
calculations caused by a high (or infinite)-dimensional space are not needed.

In this regard, this paper introduces the kernel mapping method for signal processing in optical
short-reach communications, where ‘Mercer kernel’ is utilized to map the signals in the HS to the
inner product in the RKHS. A 540.68-Gbps (net-rate 505.31-Gbps) optical short-reach system
with IM/DD, DMT, 1.5-µm VCSEL and 10-km 7-core fiber is carried out to experimentally
demonstrate the kernel mapping idea. In this paper, we significantly extend the previous work
reported in [19] by: 1) providing theoretical analysis and operational principles of the kernel
mapping; 2) introducing mathematical derivations of the kernel least mean square (KLMS)
and kernel recursive least squares (KRLS) algorithms; 3) showing experiments results for the
DSP flow optimization process; 4) extending the experimental results with both KLMS and
KRLS algorithms. The results reveal that kernel mapping is effective to mitigate the nonlinear
impairments for short-reach optical communications. The proposed KLMS and KRLS achieve
comparable transmission performance with Volterra filtering scheme.

2. Operation principles

In this section, we introduce operational principles of the kernel mapping for nonlinear impairment
mitigation in short-reach optical communication systems.
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In this paper, matrices are denoted by boldface capital letters, vectors are denoted by boldface
lowercase letters, and scalars are denoted by lowercase letters. A boldface lowercase letter with
a subscript represents a vector in the vector space. A boldface lowercase letter with blankets
means a vector sampled at a given moment, while a normal lowercase letter with blankets means
a scalar at a given sampling point.

The basics of HS and RKHS are detailed in AppendixA.1 and AppendixA.2, respectively. To
employ kernel mapping in the optical communications, the signal processing in the RKHS is
done with the inner production of the signals. To further improve the analytic power of the RKHS
in optical communications, kernel mapping is needed for transforming the reproducing kernel κ
(xi, xj) from the RKHS to the feature space F composed of feature vectors ϕ (.) of the RKHS.

According to Mercer’s theorem, any reproducing kernel κ (xi, xj) in the RKHS can be expanded
with the non-negative eigenvalues λp and eigenfunctions θp, which is expressed in (1).

κ(xi, xj) =
∑∞

p=1
λpθp(xi)θp(xj). (1)

Then, kernel mapping ϕ (.) is constructed as follows:

ϕ(.) =
[√
λ1θ1(.),

√
λ2θ2(.), . . .

]
|H → F, (2)

where ϕ (.) is a kernel vector (i.e., a feature vector) in the feature space F. The dimension of
the kernel mapping feature space is determined by the number of positive eigenvalues, which is
infinite when Gaussian kernel function is employed. Thus, F is equal to RKHS with Gaussian
kernel function. Without loss of generality, we do not distinguish F and RKHS in this paper. An
important rule of the kernel function κ (xi, xj) is expressed as:

κ(xi, xj) = ϕ(xi)Tϕ(xj). (3)

A concrete example of expanding calculation of 2 samples xi, p and xi, q in Gaussian kernel with
(3) is presented as follows.

κ(xi, p, xi, q) = exp(−(xi, p − xi, q)2/2σ2)

= exp(−(xi, p2 + xi, q2)/2σ2) ·
∑∞

m=0

(xi, pxi, q)m

m!σm

=
∑∞

m=0

{
exp(−

xi, p2

2σ2 ) exp(−
xi, q2

2σ2 )

√
1
m!

√
1
m!

xi, pm

σm/2
xi, qm

σm/2

}
,

= ϕ(xi, p)Tϕ(xi, q)

(4a)

ϕ(xi, p) = exp(−
xi, p2

2σ2 )(1,
√

1
1!
xi, p
σ

,
√

1
2!
xi, p2

σ2 , . . .). (4b)

Equation (4) demonstrates the Gaussian kernel function is capable of processing all the orders
of the kernels, i.e., (1, x, x2, x3, . . . ), where the higher orders (x2, x3, . . . ) represent nonlinear
distortions. Therefore, after the kernel mapping the nonlinear effects are transformed into the
inner production. However, the usage of the Gaussian kernel function in our proposed method
does not need the concrete expansion shown in (4b), while the inner production shown in (23) in
AppendixA.2 is enough.

It is easy to find that the feature space F is the same as the RKHS since they share the same
basis set. If we denote a vector ρ in the RKHS as ρ =

∑m
i=1 aiϕ(xi), any continuous mapping {f |

Rt->R} in the RKHS meets (5) [18].

| |f − ρTϕ(.)| |<ε,∀ε>0. (5)

Equation (5) implies that the linear model in the RKHS has the universal approximation property
[20]. Combining (28) in AppendixA.2 and (5), we can recover the signal impaired by the
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high-order nonlinear distortions, in the RKHS in a linear manner. Such signal recovery is based
on the optimization of ϕ and ρ with training data sets. The kernel mapping in the RKHS is
illustrated in Fig. 1. The initial signal vector x is distorted by the nonlinear impairments, which
are difficult to be modeled by any analytic solutions in the HS. After kernel mapping ϕ (.), we can
get an analytic solution in the RKHS with feature vectors ϕ (x). Then, ρTϕ based transformation
(i.e. matrix rotation) is used to map the signals in the RKHS to R, which can be easily processed
with linear compensating schemes for mitigating the nonlinear impairments.

Fig. 1. Schematic diagram of kernel mapping.

The strategy to employ kernel mapping is to formulate the classic linear signal processing
in the RKHS to iteratively mitigate nonlinear impairments. We use the training data set
{x(k), d(k)}|k=1,2,...N, to obtain the optimal parameters for kernel mapping ϕ (.) as well as the
equalization coefficients. Here, x(k) is the received signal vector at the k-th sampling point in
the HS, d(k) is the transmitted signal at the k-th sampling point, and N is the training data size.
w(k)|k=1,2,...N is the estimated filter weight vector at the k-th sampling point. Assuming d=(d(1),
d(2), . . . , d(N)), the error signal as the difference between d and kernel mapped signal is shown
as follow:

e = d −
N∑
k=1

w(k)ϕ(x(k)). (6)

Equations (6) and (28) in AppendixA.2 are the same if (3) is satisfied. The geographical
interpretation of the error signal e, desired signal d and kernel mapped signal is shown in Fig. 2.
The kernel mapping and the equalization coefficients can reach the optimization convergence
point when the error signal is perpendicular to the kernel mapping space [17]. This principle
shares with many linear signal processing methods. As a result, combing the kernel mapping
and linear signal processing algorithms, such as LMS and RLS, makes optical short-reach
communication systems tolerant to nonlinear impairments.

Fig. 2. Geographic interpretation of the signal processing space with kernel mapping.

2.1. Kernel least mean square (KLMS) algorithm

The design of the KLMS algorithm at the k-th time sampling point in the RKHS is inspired by
the classic LMS algorithm, which is expressed as:

e(k) = d(k) − w(k − 1)Tϕ(x(k)), (7a)
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w(k) = w(k − 1) + ηe(k)ϕ(x(k)), (7b)

where e(k) is the error signal between transmitted signal d(k) and equalized signal, w(k) is the
estimated filter weight vector, and η is the step-size parameter. By calculating the weight updating
formula in (7b) iteratively, we get:

w(k) = w(k − 1) + ηe(k)ϕ(x(k))
= w(k − 2) + η(e(k − 1)ϕ(x(k − 1) + e(k)ϕ(x(k))) = . . .

= η
∑k

i=1
e(i)ϕ(x(i)) (w(0) = 0).

(8)

Thus, after k-th training samples, the weight estimation is expressed as a linear combination of
all the previous and present transformed inputs, weighted by the prediction errors (and scaled by
η). This also matches the theorem employing ρ in (5) [20]. When the estimated weights are used
to compensate a new set of received vector x’, the recovered signal is calculated by:

w(k)Tϕ(x′) = (η
∑k

i=1
e(i)ϕ(x(i)))ϕ(x′) = η

∑k

i=1
e(i)κ(x(i), x′). (9)

It is interesting to find the weights w absent in the equalized signals that are influenced by the
nonlinear impairments. Instead, the sum of all past errors is multiplied by the kernel mapping on
the previously received data (i.e., training data). It proves that the kernel mapping is a process
without referring to the coefficient w and the high-dimensional feature vector ϕ. Thus, the ‘kernel
trick’ proposed for optical communications can well address the nonlinear impairments in a
high-dimensional manner and avoid the ‘curse of dimension’ efficiently.
Then, the KLMS algorithm can be expressed as follows.

fk−1(x(k)) = η
∑k−1

i=1
e(i)κ(x(i), x(k)), (10a)

e(k) = d(k) − f k−1(x(k)), (10b)

fk(·) = fk−1(·) + ηe(k)κ(x(k), ·). (10c)

The function fk is the equalization mapping at the k-th iteration, which also corresponds to the
k-th time sampling point. Similar as the LMS algorithm, (10a) is a mapping function, (10b) is an
error function and (10c) is an updating function.

The signal processing flow of KLMS is shown as in Algorithm 1. NL is the number of iterations,
also the training overhead. All the nonlinear equalizer coefficients are derived using a training
data set.

2.2. Kernel recursive least squares (KRLS) algorithm

The KLMS deals with the instantaneous value of the squared estimation error, and hence faces
the same convergence rate problem as that in the LMS. Comparatively, the RLS algorithm aims
at minimizing the sum of the squared estimation errors, it always provides a convergence rate
significantly faster and better performance than the LMS.
In the KRLS, by introducing:

D(k) = [d(1), d(2), . . . , d(k)]T

Φ(k) = [ϕ(x(1)), ϕ(x(2)), . . . , ϕ(x(k))]T
, (11)

we can get:
w(k) = [ηI + Φ(k)Φ(k)T ]−1Φ(k)D(k). (12)
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Since [A+BC]−1B=B[A+CB]−1, (12) can be transformed to:

w(k) = Φ(k)[ηI + Φ(k)TΦ(k)]−1D(k). (13)

Defining P(k)=[ηI+Φ(k)T Φ(k)]−1,

P(k)−1 =


P(k − 1)−1 Φ(k − 1)Tϕ(x(k))

ϕ(x(k))TΦ(k − 1) η + ϕ(x(k))Tϕ(x(k))

 . (14)

By introducing 
z(k) = P(k − 1)Φ(k − 1)Tϕ(x(k))

r(k) = η + ϕ(x(k))Tϕ(x(k)) − z(k)TΦ(k − 1)ϕ(x(k))
, (15)

P(k) can be presented as:

P(k) = r(k)−1


P(k − 1)r(k) + z(k)z(k)T −z(k)

−z(k)T 1

 . (16)

Defining β(k)=P(k)D(k), we can get:

β(k) = r(k)−1


P(k − 1)r(k) + z(k)z(k)T −z(k)

−z(k)T 1




D(k − 1)

x(k)

 .
=


β(k − 1) − z(k)r(k)−1e(k)

r(k)−1e(k)


(17)
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Here, e(k) is the prediction error. The KRLS scheme at the k-th iteration is expressed as follows:

f k−1(x(k)) = ϕ(x(k))TΦ(k − 1)β(k − 1)

=

k−1∑
i
βi(k − 1)κ(x(i), x(k)),

(18a)

e(k) = d(k) − f k−1(x(k)), (18b)

f k(·) = f k−1(·) + r(k)−1[κ(x(k), ·) −
∑k−1

i=1
zi(k)κ(x(i), ·)]e(k). (18c)

Similar as the RLS algorithm, (18a) is a mapping function, (18b) is an error function and (18c) is
an updating function. The signal processing flow of the KRLS is shown as in Algorithm 2.

3. Experimental setup

To quantify the benefits of using kernel trick on optical short-reach communication systems,
a high-speed IM/DD system is experimentally carried out. The experimental setup is shown
in Fig. 3, the digital signal processing (DSP) flow of DMT modulation and demodulation is
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also included in Fig. 3. The DMT signals are generated offline in MATLAB and loaded into
a 92-GSa/s digital to analog converter (DAC). The length of the inverse fast Fourier transform
(IFFT) points and cyclic prefix (CP) length of the DMT signal are set to 1024 and 16, respectively.

Fig. 3. (a) Experimental setup, and (b) measured system frequency response.

In the experiments, the VCSEL die is electrically driven via a 100-µm GSG 50-GHz probe.
The light generated in the VCSEL is coupled into a single-mode fiber. There is no temperature
controller (TEC) used in the setup. The VCSEL bias current is set to 7.8-mA. The measured
central wavelength of the probed VCSEL is 1543.2-nm and the captured output optical power
is 1-dBm. The maximum 3-dB bandwidth of VCSEL is about 22-GHz. The signal is split in
a fan-in module of the 10-km 7-core multi-core fiber (MCF), using a 1:8 optical coupler. An
Erbium-doped fiber amplifier (EDFA) with 14.8-dBm output power is used before the fan-in
module to compensate for an extra loss from de-correlation. The optical delay lines are used
to de-correlate the signals to emulate a practical system using seven independently modulated
VCSELs. After the 10-km 7-core MCF, signals are detected individually after a fan-out module.
The inter-core crosstalk is −45 dB/100 km, and therefore the cores of MCFs can be treated almost
independently considering the typical reach within datacenters [21].

The 7 branches connected with 7 cores of MCF is connected to a DCF (−159 ps/nm) and the
rest one is treated as the optical back-to-back (OBtB) transmission demonstration. The signal is
amplified by a pre-amplifier EDFA and an optical tunable filter (OTF) is utilized to filter out
the amplified spontaneous emission (ASE) noise. A 90-GHz PIN photo-detector (PD) is used
at the receiver. A variable optical attenuator (VOA) is used before the PD. The signal after
direct-detection is amplified by a 65-GHz linear electrical amplifier and captured by a 160-GSa/s
digital storage oscilloscope (DSO). After DSO, the captured signal is processed offline.

The measured system frequency response with both OBtB transmission and MCF transmission
is shown in Fig. 3(b). The response for the MCF based system is with DCF, which could reduce
the influence of chromatic dispersion induced power fading and increase the system bandwidth.
However, for short-reach optical communication systems where the fiber length is typically up
to a few kilometers, the DCF is not always preferred because of extra deployment cost. In the
OBtB case, 220 subcarriers are loaded. Here, bit-power loading [22] is used to improve the
system capacity and spectrum efficiency. The quadrature amplitude modulation (QAM) orders
vary from 64QAM to 16QAM are employed. In the 10-km MCF case where 210 subcarriers are
loaded, bit-power loading is also employed.
The system nonlinear impairments mainly come from the VCSEL’s chirp and its iterations

with the fiber dispersion. Besides, some other factors, such as the high peak-to-average ratio of
the DMT signal, inter-subcarrier mixing in square-law detection of photo detector, and saturation
of the electrical amplifiers, also contribute to the nonlinearities of the short-reach optical link.
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4. Experimental results and discussions

The kernel mapping is firstly used to optimize OBtB case, which is shown in Fig. 4. The original
BER is measured with linear channel equalization. Here, Volterra filtering considers both the
nonlinear distortions up to the 2nd-, 3rd- and 4th- order are compared. In the Volterra filtering, the
tap numbers of the 2nd-, 3rd- and 4th-order nonlinear kernels are set to 15, 9 and 11, respectively.
In the KLMS and the KRLS, the tap number is 3. With the 2nd- order Volterra filtering, the BER
is reduced with an increased number of training overhead NL and the BER is still higher than
the continuously-interleaved Bose–Chaudhuri–Hocquenghem FEC (CI-BCH (1020, 988)) [23]
with a BER-limit of 4.52×10−3 [24]. Volterra filtering reaches the CI-BCH FEC limit when the
3rd- nonlinear distortions are considered. When the Volterra filtering keeps up to the 4th- order,
the BER performance improvement is limited but at the expense of much higher computational
complexity. Thus, the Volterra filtering with nonlinear distortions up to the 3rd- order is included
in the following experimental results. In contrast, KLMS and KRLS reaches BER lower than
the CI-BCH FEC limit with 4096 training samples. The 3rd- order Volterra filtering slightly
outperforms the KLMS, and the KRLS outperforms the Volterra filtering.

Fig. 4. The BER versus training overhead NL

The BER performance versus the received optical power at OBtB case is shown in Fig. 5.
The achieved line rate at OBtB is 91.72-Gbps. The linear equalization compensates the linear
impairment and reduces the BER to ∼ 3×10−2. The system performance is greatly improved
with Volterra, and the BER is reduced to CI-BCH FEC limit at 4.52×10−3. The KLMS reaches
the similar performance as Volterra filtering, and the KRLS outperforms the Volterra filtering.

Fig. 5. BER for optical back-to-back case as a function of the received optical power.
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The BER performance after 10-km MCF is shown in Fig. 6. The received optical power
is 7-dBm. With kernel mapping, the BER of all 7 cores can be reduced under the CI-BCH
FEC limit, the KLMS performs similar as the Volterra filtering, while the KRLS gets better
performance. The achieved line-rates for 7 cores are 80.51-Gbps, 72.86-Gbps, 73.36-Gbps,
87.91-Gbps, 78.24-Gbps, 71.77-Gbps, and 76.03-Gbps, respectively. The total system capacity
with 10-km 7-core fiber is 540.68-Gbps (net-rate 505.31-Gbps).

Fig. 6. BER after 10km 7-core fiber for different cores with 7-dBm received optical power.

The kernel mapping carries out infinite dimension calculation from HS to RKHS, which
avoid the proposed KLMS and KRLS truncating operations. It is the main reason that the
kernel mapping based methods could achieve similar or even better performance than the
Volterra filtering scheme, which needs truncation operations in HS to guarantee the acceptable
implementation complexity. When the modulation format changes from multi-carrier modulation
to single-carrier modulation, such as the pulse amplitude modulation, the kernel mapping based
equalization is still experimentally proved to be an effective method [25]. It is worth noticing
that the kernel mapping method has a training process to optimize the parameters. The training
process needs to be carried out when channel state changes, which do not frequently occur in
static channels like the optical fiber channels.

Considering the storage complexity of kernel methods, the KLMS algorithm uses the stochastic
gradient descent to obtain coefficients, and it has linear storage complexity in terms of the number
of iterations, NL, i.e. O(NL) [17,26]. The KRLS algorithm, on the other hand, calculates the
coefficients by solving a least-square problem, involving the inversion of a kernel matrix, whose
dimension depends on the number of iterations. Thus, it has quadratic storage complexity in
terms of NL, i.e. O(NL

2) [17,26]. Moreover, the number of multiplications of the kernel methods
mainly depends on the size of the feature space F that is composed of feature vectors ϕ (.) of
the RKHS. A factor that influences the size of F is the number of training overhead NL. For
the KLMS, its number of multiplications is equal to NL, while the KRLS has the number of
multiplications as NL

2 [17,27,28]. Comparatively, the number of multiplications of the Volterra
series equalizer is

∑P
p=1 (Mp)

p, where Mp is the tap number (i.e. memory length) of the p-th
order nonlinear kernels. Table 1 shows the number of multiplications of different algorithms.
According to the experimental results shown in Fig. 4, the BER performance becomes statured
when the training overhead is more than 4096 for both the KLMS and KRLS. Therefore, we take
this value to compare the kernel methods with the Volterra filtering.
It can be seen that when the feature space increases the kernel functions requires a higher

number of multiplication operations that directly reflect the computation complexity. Although the
KRLS always requires less training overhead for a given level of the BER, its higher computation
complexity may hinder the practical viability. In [17,29], the authors have analyzed sparsification
techniques, such as the novelty criterion (NC), the coherence criterion, the quantization criterion
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Table 1. Comparison of number of multiplications of Volterra filtering, KLMS and KRLS algorithm.

Algorithm Number of multiplications

Formula The case for comparison

Volterra
∑P

p=1 (Mp)
p 15595 (M2=15, M3=9, M4=11)

KLMS NL 4096 (NL=4096)

KRLS NL
2 16777216 (NL=4096)

and surprise criterion, to reduce the size of feature space and thus decrease NL. The theoretical
analysis has shown sparsification techniques can greatly reduce the complexity of kernel mapping
based equalization techniques. In [28], the number of multiplications of the KLMS has decreased
from 5000 to 150 after NC sparsification. Therefore, sparsification techniques could be an
interesting direction to develop kernel mapping for channel equalization in short-reach optical
links. Moreover, the mapping process in Eq. (4a) uses exponentiation, which might require
application specific integrated circuit (ASIC) design in the implementation. The authors in [30]
exploited an exponentially large quantum state space through controllable entanglement and
interference to use the quantum state space as the feature space. It is envisioned the exponentiation
of the kernel mapping process could be well treated in the future quantum computers [30].

5. Conclusions

To conclude, we introduce ‘kernel trick’ to optical short-reach communication systems to
efficiently mitigate nonlinear impairments. From the signal processing perspective, the kernel
mapping uses inner production calculation instead of direct high-dimensional mapping scheme,
addressing the nonlinear impairments in a high-dimensional manner while avoiding the ‘curse
of dimension’ efficiently. For a short-reach IM/DD system, the experimental results have
demonstrated that introducing kernel mapping achieves performance of the BER under the
CI-BCH FEC limit that is comparable with the Volterra filtering scheme.

A. Appendix

A.1. Hilbert space (HS)

Considering an inner product signal space H with infinite orthonormal basis set {xbi }i=1−>∞, the
signal vector x in H can be expressed as:

x =
∑∞

i=1
aixbi , (19)

where ai is the coefficient. Once ai meets the following conditions:∑n

i = m + 1
a2i → 0, |∀m, n ∈ R + , m<n & m, n→ +∞, (20a)∑n

i = 1
a2i <∞, (20b)

the distance between the two vectors in the inner product space H becomes meaningful and the
matrix norm is orthonormal. Such an inner product space H is complete and also referred to as
HS. The conventional signal analysis and processing in optical communications are normally
performed in the HS. The training data set at the k-th sampling point in time is assumed as {x(k),
d(k)}|k=1,2,...N, where x(k) is the received signal vector at the k-th sampling point in the HS and
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d(k) is the transmitted signal at the k-th sampling point, N is the training data size. The target of
the recovered transmitted signal over a fiber link at the receiver in the HS is:

min | |d(k) −W(k) · x(k)| |, (21)

where W(k) is the linear transformation (i.e. coefficient matrix) of the received signal vector x(k).

A.2. Reproducing kernel Hilbert space (RKHS)

Different from the conventional equalization methods, when introducing the kernel mapping
in optical short-reach communications the signal space is changed to the RKHS. We define a
function κ(xi, xj), for which inputs are two t-dimension vectors xi and xj in H, and an output is
a real number. κ(xi, xj)is a kernel function if and only if the Gram matrix shown in (22a) is a
positive semi-definitive matrix, which is defined as (22b).

K =


κ(x1, x1) . . . κ(x1, xm)

. . . . . . . . .

κ(xm, x1) . . . κ(xm, xm)


, |∀m ∈ N, (22a)

∑m

i=1

∑m

j=1
aiajκ(xi, xj) ≥ 0, |∀m ∈ N,∀x1 . . . xm ∈ H,∀a1 . . . am ∈ R. (22b)

As a result, the kernel function κ is a continuous, symmetric and positive function defined in the
space H, also referred to as ‘Mercer kernel’. Gaussian kernel [17] is one of representative kernel
functions and can be expressed as:

κ(xi, xj) = exp(−||xi − xj | |2/2σ2). (23)

The parameter σ is the bandwidth of the Gaussian kernel. Assume H to be any vector space of all
real-valued functions generated by the kernel κ. Functions f and g from H are defined as follow:

f =
∑n

i=1
aiκ(xi, ·), g =

∑m

j=1
βjκ(xj, ·),∀n, m ∈ N, (24)

where αi and βj are the coefficients of the vectors xi and xj defined in the domain H. The bilinear
form of f and g is defined as:

〈f , g〉 =
∑n

i=1

∑m

j=1
aiβjκ(xi, xj). (25)

Since the bilinear form in (25) satisfies the symmetry, linearity and positive definitive properties
[20], (25) can be considered as the inner product belonging to the space H. Besides, it also meets
the condition of the ‘reproducing’ property, expressed as:

〈f , κ(·, xj)〉 =
∑n

i=1
aiκ(xi, xj) = f (xj). (26)

Thus, the kernel function defined in the spaceH meets the conditions of both the inner product and
the ‘reproducing’ property. Such a function is recognized as the ‘reproducing kernel function’,
and the space composed by the kernel functions is called RKHS. The vector signal x in the HS is
mapped to the RKHS by the kernel function κ (., x), and the linear processing mechanism f+ g is
transformed to an inner product calculation< f, g> . Instead of (21), in the RKHS the target of
recovered signal over a fiber link at the k-th sampling point is:

min | |d(k) − f (x(k))| |. (27)

The optimal solution for solving (27) can be expressed as:

f =
∑N

k=1
akκ(·, x(k)), (28)

where αi is the optimized coefficients, and N is the length of training data {x(k), d(k)}|k=1,2,...N.
Although the functions in the RKHS are expansions with an arbitrary number of variables, the
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result can be expressed only with the training data set [10,12]. Hence, the optimization problem
with an arbitrary number of variables is transformed into the one with N variables. Finally, we
reach to (1) in Section II to continue the derivations.
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