429 research outputs found

    Helmholtz solitons in power-law optical materials

    Get PDF
    A nonlinear Helmholtz equation for optical materials with regimes of power-law type of nonlinearity is proposed. This model captures broad beam evolution at any angle with respect to the reference direction in a wide range of media, including some semiconductors, doped glasses and liquid crystals. Novel exact analytical soliton solutions are presented for a generic nonlinearity, within which known Kerr solitons comprise a subset. Three conservation laws are also reported and numerical simulations examine the stability of the Helmholtz power-law solitons. These simulations have led to the identification of a new propagation feature associated with spatial solitons in power-law media, constituting a new class of oscillatory solution

    Problem of a quantum particle in a random potential on a line revisited

    Full text link
    The density of states for a particle moving in a random potential with a Gaussian correlator is calculated exactly using the functional integral technique. It is achieved by expressing the functional degrees of freedom in terms of the spectral variables and the parameters of isospectral transformations of the potential. These transformations are given explicitly by the flows of the Korteweg-de Vries hierarchy which deform the potential leaving all its spectral properties invariant. Making use of conservation laws reduces the initial Feynman integral to a combination of quadratures which can be readily calculated. Different formulations of the problem are analyzed.Comment: 11 pages, RevTex, preprint ANU-RSPhySE-20994 (comment added

    Maxwell-Drude-Bloch dissipative few-cycle optical solitons

    Get PDF
    We study the propagation of few-cycle pulses in two-component medium consisting of nonlinear amplifying and absorbing two-level centers embedded into a linear and conductive host material. First we present a linear theory of propagation of short pulses in a purely conductive material, and demonstrate the diffusive behavior for the evolution of the low-frequency components of the magnetic field in the case of relatively strong conductivity. Then, numerical simulations carried out in the frame of the full nonlinear theory involving the Maxwell-Drude-Bloch model reveal the stable creation and propagation of few-cycle dissipative solitons under excitation by incident femtosecond optical pulses of relatively high energies. The broadband losses that are introduced by the medium conductivity represent the main stabilization mechanism for the dissipative few-cycle solitons.Comment: 38 pages, 10 figures. submitted to Physical Review

    On the Integrability of the Discrete Nonlinear Schroedinger Equation

    Full text link
    In this letter we present an analytic evidence of the non-integrability of the discrete nonlinear Schroedinger equation, a well-known discrete evolution equation which has been obtained in various contexts of physics and biology. We use a reductive perturbation technique to show an obstruction to its integrability.Comment: 4 pages, accepted in EP

    Applications of Solvable Lie Algebras to a Class of Third Order Equations

    Get PDF
    A family of third-order partial differential equations (PDEs) is analyzed. This family broadens out well-known PDEs such as the Korteweg-de Vries equation, the Gardner equation, and the Burgers equation, which model many real-world phenomena. Furthermore, several macroscopic models for semiconductors considering quantum effects—for example, models for the transmission of electrical lines and quantum hydrodynamic models—are governed by third-order PDEs of this family. For this family, all point symmetries have been derived. These symmetries are used to determine group-invariant solutions from three-dimensional solvable subgroups of the complete symmetry group, which allow us to reduce the given PDE to a first-order nonlinear ordinary differential equation (ODE). Finally, exact solutions are obtained by solving the first-order nonlinear ODEs or by taking into account the Type-II hidden symmetries that appear in the reduced second-order ODEs

    Multiscale reduction of discrete nonlinear Schroedinger equations

    Full text link
    We use a discrete multiscale analysis to study the asymptotic integrability of differential-difference equations. In particular, we show that multiscale perturbation techniques provide an analytic tool to derive necessary integrability conditions for two well-known discretizations of the nonlinear Schroedinger equation.Comment: 12 page
    • …
    corecore