Abstract

We use a discrete multiscale analysis to study the asymptotic integrability of differential-difference equations. In particular, we show that multiscale perturbation techniques provide an analytic tool to derive necessary integrability conditions for two well-known discretizations of the nonlinear Schroedinger equation.Comment: 12 page

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 06/12/2019