98,865 research outputs found

    Human adaptation to adaptive machines converges to game-theoretic equilibria

    Full text link
    Adaptive machines have the potential to assist or interfere with human behavior in a range of contexts, from cognitive decision-making to physical device assistance. Therefore it is critical to understand how machine learning algorithms can influence human actions, particularly in situations where machine goals are misaligned with those of people. Since humans continually adapt to their environment using a combination of explicit and implicit strategies, when the environment contains an adaptive machine, the human and machine play a game. Game theory is an established framework for modeling interactions between two or more decision-makers that has been applied extensively in economic markets and machine algorithms. However, existing approaches make assumptions about, rather than empirically test, how adaptation by individual humans is affected by interaction with an adaptive machine. Here we tested learning algorithms for machines playing general-sum games with human subjects. Our algorithms enable the machine to select the outcome of the co-adaptive interaction from a constellation of game-theoretic equilibria in action and policy spaces. Importantly, the machine learning algorithms work directly from observations of human actions without solving an inverse problem to estimate the human's utility function as in prior work. Surprisingly, one algorithm can steer the human-machine interaction to the machine's optimum, effectively controlling the human's actions even while the human responds optimally to their perceived cost landscape. Our results show that game theory can be used to predict and design outcomes of co-adaptive interactions between intelligent humans and machines

    Cheating for Problem Solving: A Genetic Algorithm with Social Interactions

    Get PDF
    We propose a variation of the standard genetic algorithm that incorporates social interaction between the individuals in the population. Our goal is to understand the evolutionary role of social systems and its possible application as a non-genetic new step in evolutionary algorithms. In biological populations, ie animals, even human beings and microorganisms, social interactions often affect the fitness of individuals. It is conceivable that the perturbation of the fitness via social interactions is an evolutionary strategy to avoid trapping into local optimum, thus avoiding a fast convergence of the population. We model the social interactions according to Game Theory. The population is, therefore, composed by cooperator and defector individuals whose interactions produce payoffs according to well known game models (prisoner's dilemma, chicken game, and others). Our results on Knapsack problems show, for some game models, a significant performance improvement as compared to a standard genetic algorithm.Comment: 7 pages, 5 Figures, 5 Tables, Proceedings of Genetic and Evolutionary Computation Conference (GECCO 2009), Montreal, Canad

    Game Theory Solutions in Sensor-Based Human Activity Recognition: A Review

    Full text link
    The Human Activity Recognition (HAR) tasks automatically identify human activities using the sensor data, which has numerous applications in healthcare, sports, security, and human-computer interaction. Despite significant advances in HAR, critical challenges still exist. Game theory has emerged as a promising solution to address these challenges in machine learning problems including HAR. However, there is a lack of research work on applying game theory solutions to the HAR problems. This review paper explores the potential of game theory as a solution for HAR tasks, and bridges the gap between game theory and HAR research work by suggesting novel game-theoretic approaches for HAR problems. The contributions of this work include exploring how game theory can improve the accuracy and robustness of HAR models, investigating how game-theoretic concepts can optimize recognition algorithms, and discussing the game-theoretic approaches against the existing HAR methods. The objective is to provide insights into the potential of game theory as a solution for sensor-based HAR, and contribute to develop a more accurate and efficient recognition system in the future research directions

    Paradigm Shift in Game Theory : Sociological Re-Conceptualization of Human Agency, Social Structure, and Agents’ Cognitive-Normative Frameworks and Action Determination Modalities

    Get PDF
    This article aims to present some of the initial work of developing a social science grounded game theory—as a clear alternative to classical game theory. Two distinct independent initiatives in Sociology are presented: One, a systems approach, social systems game theory (SGT), and the other, Erving Goffman’s interactionist approach (IGT). These approaches are presented and contrasted with classical theory. They focus on the social rules, norms, roles, role relationships, and institutional arrangements, which structure and regulate human behavior. While strategic judgment and instrumental rationality play an important part in the sociological approaches, they are not a universal or dominant modality of social action determination. Rule following is considered, generally speaking, more characteristic and more general. Sociological approaches, such as those outlined in this article provide a language and conceptual tools to more adequately and effectively than the classical theory describe, model, and analyze the diversity and complexity of human interaction conditions and processes: (1) complex cognitive rule based models of the interaction situation with which actors understand and analyze their situations; (2) value complex(es) with which actors operate, often with multiple values and norms applying in interaction situations; (3) action repertoires (rule complexes) with simple and complex action alternatives—plans, programs, established (sometimes highly elaborated) algorithms, and rituals; (4) a rule complex of action determination modalities for actors to generate and/or select actions in game situations; three action modalities are considered here; each modality consists of one or more procedures or algorithms for action determination: (I) following or implementing a rule or rule complex, norm, role, ritual, or social relation; (II) selecting or choosing among given or institutionalized alternatives according to a rule or principle; and (III) constructing or adopting one or more alternatives according to a value, guideline, or set of criteria. Such determinations are often carried out collectively. The paper identifies and illustrates in a concluding table several of the key differences between classical theory and the sociological approaches on a number of dimensions relating to human agency; social structure, norms, institutions, and cultural forms; patterns of game interaction and outcomes, the conditions of cooperation and conflict, game restructuring and transformation, and empirical relevance. Sociologically based game theory, such as the contributions outlined in this article suggest a language and conceptual tools to more adequately and effectively than the classical theory describe, model, and analyze the diversity, complexity, and dynamics of human interaction conditions and processes and, therefore, promises greater empirical relevance and scientific power. An Appendix provides an elaboration of SGT, concluding that one of SGT’s major contributions is the rule based conceptualization of games as socially embedded with agents in social roles and role relationships and subject to cognitive-normative and agential regulation. SGT rules and rule complexes are based on contemporary developments relating to granular computing and Artificial Intelligence in general.Peer reviewe

    Cheating for problem solving: a genetic algorithm with social interactions

    Get PDF
    We propose a variation of the standard genetic algorithm that incorporates social interaction between the individuals in the population. Our goal is to understand the evolutionary role of social systems and its possible application as a non-genetic new step in evolutionary algorithms. In biological populations, i.e. animals, even human beings and microorganisms, social interactions often affect the fitness of individuals. It is conceivable that the perturbation of the fitness via social interactions is an evolutionary strategy to avoid trapping into local optimum, thus avoiding a fast convergence of the population. We model the social interactions according to Game Theory. The population is, therefore, composed by cooperator and defector individuals whose interactions produce payoffs according to well known game models (prisoner's dilemma, chicken game, and others). Our results on Knapsack problems show, for some game models, a significant performance improvement as compared to a standard genetic algorithm

    Using Multi-Agent Reinforcement Learning in Auction Simulations

    Full text link
    Game theory has been developed by scientists as a theory of strategic interaction among players who are supposed to be perfectly rational. These strategic interactions might have been presented in an auction, a business negotiation, a chess game, or even in a political conflict aroused between different agents. In this study, the strategic (rational) agents created by reinforcement learning algorithms are supposed to be bidder agents in various types of auction mechanisms such as British Auction, Sealed Bid Auction, and Vickrey Auction designs. Next, the equilibrium points determined by the agents are compared with the outcomes of the Nash equilibrium points for these environments. The bidding strategy of the agents is analyzed in terms of individual rationality, truthfulness (strategy-proof), and computational efficiency. The results show that using a multi-agent reinforcement learning strategy improves the outcomes of the auction simulations

    Peer-to-peer energy trading in a prosumer based community microgrid: a game-theoretic model

    Get PDF
    This paper proposes a novel game-theoretic model for peer-to-peer (P2P) energy trading among the prosumers in a community. The buyers can adjust the energy consumption behavior based on the price and quantity of the energy offered by the sellers. There exist two separate competitions during the trading process: 1) price competition among the sellers; and 2) seller selection competition among the buyers. The price competition among the sellers is modeled as a noncooperative game. The evolutionary game theory is used to model the dynamics of the buyers for selecting sellers. Moreover, an M-leader and N-follower Stackelberg game approach is used to model the interaction between buyers and sellers. Two iterative algorithms are proposed for the implementation of the games such that an equilibrium state exists in each of the games. The proposed method is applied to a small community microgrid with photo-voltaic and energy storage systems. Simulation results show the convergence of the algorithms and the effectiveness of the proposed model to handle P2P energy trading. The results also show that P2P energy trading provides significant financial and technical benefits to the community, and it is emerging as an alternative to cost-intensive energy storage systems

    Game Theory Based Privacy Protection for Context-Aware Services

    Get PDF
    In the era of context-aware services, users are enjoying remarkable services based on data collected from a multitude of users. To receive services, they are at risk of leaking private information from adversaries possibly eavesdropping on the data and/or the un--trusted service platform selling off its data. Malicious adversaries may use leaked information to violate users\u27 privacy in unpredictable ways. To protect users\u27 privacy, many algorithms are proposed to protect users\u27 sensitive information by adding noise, thus causing context-aware service quality loss. Game theory has been utilized as a powerful tool to balance the tradeoff between privacy protection level and service quality. However, most of the existing schemes fail to depict the mutual relationship between any two parties involved: user, platform, and adversary. There is also an oversight to formulate the interaction occurring between multiple users, as well as the interaction between any two attributes. To solve these issues, this dissertation firstly proposes a three-party game framework to formulate the mutual interaction between three parties and study the optimal privacy protection level for context-aware services, thus optimize the service quality. Next, this dissertation extends the framework to a multi-user scenario and proposes a two-layer three-party game framework. This makes the proposed framework more realistic by further exploring the interaction, not only between different parties, but also between users. Finally, we focus on analyzing the impact of long-term time-serial data and the active actions of the platform and adversary. To achieve this objective, we design a three-party Stackelberg game model to help the user to decide whether to update information and the granularity of updated information

    Learning to Generate Equitable Text in Dialogue from Biased Training Data

    Full text link
    The ingrained principles of fairness in a dialogue system's decision-making process and generated responses are crucial for user engagement, satisfaction, and task achievement. Absence of equitable and inclusive principles can hinder the formation of common ground, which in turn negatively impacts the overall performance of the system. For example, misusing pronouns in a user interaction may cause ambiguity about the intended subject. Yet, there is no comprehensive study of equitable text generation in dialogue. Aptly, in this work, we use theories of computational learning to study this problem. We provide formal definitions of equity in text generation, and further, prove formal connections between learning human-likeness and learning equity: algorithms for improving equity ultimately reduce to algorithms for improving human-likeness (on augmented data). With this insight, we also formulate reasonable conditions under which text generation algorithms can learn to generate equitable text without any modifications to the biased training data on which they learn. To exemplify our theory in practice, we look at a group of algorithms for the GuessWhat?! visual dialogue game and, using this example, test our theory empirically. Our theory accurately predicts relative-performance of multiple algorithms in generating equitable text as measured by both human and automated evaluation

    Cheating for problem solving: a genetic algorithm with social interactions

    Get PDF
    We propose a variation of the standard genetic algorithm that incorporates social interaction between the individuals in the population. Our goal is to understand the evolutionary role of social systems and its possible application as a non-genetic new step in evolutionary algorithms. In biological populations, i.e. animals, even human beings and microorganisms, social interactions often affect the fitness of individuals. It is conceivable that the perturbation of the fitness via social interactions is an evolutionary strategy to avoid trapping into local optimum, thus avoiding a fast convergence of the population. We model the social interactions according to Game Theory. The population is, therefore, composed by cooperator and defector individuals whose interactions produce payoffs according to well known game models (prisoner's dilemma, chicken game, and others). Our results on Knapsack problems show, for some game models, a significant performance improvement as compared to a standard genetic algorithm
    • …
    corecore