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GAME THEORY BASED PRIVACY PROTECTION

FOR CONTEXT-AWARE SERVICES

by

YAN HUANG

Under the Direction of Anu G. Bourgeois, Ph.D. and Zhipeng Cai, Ph.D.

ABSTRACT

In the era of context-aware services, users are enjoying remarkable services based on data

collected from a multitude of users. To receive services, they are at risk of leaking private

information from adversaries possibly eavesdropping on the data and/or the un–trusted

service platform selling off its data. Malicious adversaries may use leaked information to

violate users’ privacy in unpredictable ways. To protect users’ privacy, many algorithms

are proposed to protect users’ sensitive information by adding noise, thus causing context-

aware service quality loss. Game theory has been utilized as a powerful tool to balance

the tradeoff between privacy protection level and service quality. However, most of the

existing schemes fail to depict the mutual relationship between any two parties involved: user,

platform, and adversary. There is also an oversight to formulate the interaction occurring

between multiple users, as well as the interaction between any two attributes. To solve

these issues, this dissertation firstly proposes a three-party game framework to formulate



the mutual interaction between three parties and study the optimal privacy protection level

for context-aware services, thus optimize the service quality. Next, this dissertation extends

the framework to a multi-user scenario and proposes a two-layer three-party game framework.

This makes the proposed framework more realistic by further exploring the interaction, not

only between different parties, but also between users. Finally, we focus on analyzing the

impact of long-term time-serial data and the active actions of the platform and adversary.

To achieve this objective, we design a three-party Stackelberg game model to help the user

to decide whether to update information and the granularity of updated information.

INDEX WORDS: Privacy Protection, Game Theory, Nash Equilibrium, Three-
Party Game, Context-Aware Services
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Chapter 1

INTRODUCTION

People are enjoying a huge convenience from context-aware services, such as navigation

services provided by Google Map, reviews and recommendations services provided by Yelp,

ride-sharing services by Uber and Lyft, online social media services provided by Facebook,

etc. However, people are suffering from privacy leakage while enjoying these convenient ser-

vices. According to the statistics from [1], 55% of iOS applications and 59.7% of Android

applications surreptitiously leak user’s data. In recent news, we learned of Facebook improp-

erly sharing data that impacted 87 million users [2] and Equifax [3] compromised private

information of 143 million users.

This has led to considerable research on techniques to protect a user’s private data from

being leaked and/or sold. Most of the privacy protection algorithms, e.g. k-anonymity [4],

l-diversity [5], t-closeness [6], and differential privacy [7], protect the data by adding noise.

However, the added noise in existing work will decrease the quality of provided services [8].

To maximize the service quality while satisfying the privacy protection demands, researchers

made the efforts on two aspects: (i) optimizing the privacy protection algorithm to maintain

as much usable information under the privacy protection restriction, and (ii) utilizing Game

Theory to find the optimized privacy protection setting for the algorithms by balancing

privacy loss and service quality. However, each aspect has its drawbacks.

Current k-anonymity, l-diversity, t-closeness based algorithms suffer from differential

attack [9]. In October 2006, Netflix, the worlds largest online Digital Versatile Disc (DVD)

rental service, publicly released a data set containing 100 million anonymized movie rat-

ings, created by 500,000 users of Netflix. Narayanan and Shmatikov demonstrated that an

adversary could identify the users information with less background knowledge about indi-

vidual users. They revealed the users sensitive information by using IMDb as the source
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of the background knowledge [10]. Differential Privacy based algorithms can prevent users

from differential attacks [11]. The limitation of Differential Privacy based algorithm is that

it cannot be used in the scenario with only one user. To solve this problem, [12] mixed

differential privacy and k-anonymity proposed a perturbation method based on local en-

forcement of differential privacy. However, both k-Anonymity and differential privacy will

lead to unavoidable inaccurate service.

To maximize the service quality in the privacy protected context-aware services, many

researchers utilize Game Theory to find the best privacy protection level setting by balancing

the tradeoff between privacy loss and service quality. Most of the existing game theory

based work investigates the interaction between two parties: user/data owner and adversary.

In [13–18], games are based on a two-player model, i.e., one-against-one. When there are

multiple users trying to maintain a certain privacy preserving level, the user-adversary game

can be modeled as an n-player game [19–24], but with the drawback that all users must

have the same settings. Another drawback is that the two-party game cannot depict the

interactions among three antithetic parties. Recently, three-party game models have been

proposed to study complicated privacy issues among user/data owner, service provider/data

requester, and adversary. In [25], Li et. al. designed a hierarchical game, incorporating

a user-service provider game and a user-attacker game, to maximize the service provider’s

utility while assisting the user in defending the attacker. Adl et. al. [26] proposed a three-

party sequential game to analyze the interactions among a data provider, a data collector, and

a data user (i.e., the adversary), which can guide the data provider and the data collector to

find the optimal strategies deciding whether to cooperate with the data user. In [27,28], Wang

et. al. studied the interactions among a user, an application, and an adversary to answer two

questions: whether the user should submit data and whether the application should resell

the user’s data? To resolve the trade-off between sharing advantages and privacy exposure

of cybersecurity information exchange system, Vakilinia et. al. [29] designed a three-party

game for privacy-preserving cybersecurity information exchange framework consisting of an

attacker, an organization, and a cybersecurity information exchange system. However, the
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three-party games in [25–29] fail to build the mutual interaction between any two of the three

parties, and the strategy of each party in [26–28] is coarse-grained, or binary, by indicating

“whether to cooperate with opponents or not”.

These drawbacks and challenges have not been properly solved. Contrasting from the

existing work, we establish our research by proposing a three-party game model to capture

the mutual interaction between any two of the three antithetic parties (including user/data

owner, service provider/data requester, and adversary) and aim to identify their strategies

on “how to defend (or cooperate with) others”, which can offer fine-grained guidance to the

three parties. The main contribution of each part includes:

In the first part, we design a privacy-preserving game to quantify the three parties’

concerns and capture interactions between any two of them. We also identify the best

strategy for each party at a fine-grained level, i.e. specific settings, not simply binary. Via

both theoretical analysis and real-data experiments, the performance of our proposed game

model is validated.

In the second part, we propose a platform-centric two-layer three-party game model to

protect the users’ privacy and provide quality of service. One layer focuses on the interactions

among the multiple asymmetric users and the second layer considers the influence between

any two of the three parties (user, platform, and adversary). We prove that the Nash

Equilibrium exists in the proposed game and find the optimal strategy for the platform

to provide quality service, while protecting private data, along with interactions with the

adversary. Using real datasets, we present simulations to validate our theoretical analysis.

The third part analyzes the influence of time-serial data and the possible feedback from

a platform with diverse reward for data according to the feedback in three-party game based

framework. This work enhances the three-party game based framework by making it more

realistic, thus providing more practical application scenario.

The rest of this dissertation proposal is organized as follows. Chapter 2 summarizes

the related literature. Chapter 3 studies the problem of “Privacy Protection among Three

Antithetic-Party for Context-Aware Services”. This work has been submitted to the 39th
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IEEE International Conference on Distributed Computing Systems (ICDCS 2019). Chap-

ter 4 “Privacy Protection for Context-Aware Services: A Two-Layer Three-Party Game

Model” expands the work in Chapter 3. This work has been accepted by the 14th Inter-

national conference on algorithms, systems, and applications of wireless networks (WASA

2019). In chapter 5, we introduce game theory based privacy protection for context-aware

services with the long-term time series data. Finally, in Chapter 6, we provide future direc-

tion and Chapter 7 concludes our work.
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Chapter 2

BACKGROUND

Context-aware services has been protected by privacy protection techniques [30–38].

Game Theory is a popular and efficient tool to find out the optimal privacy protection level

for the purpose of improve service quality under the protection algorithms. In this section,

we survey existing privacy protection level selection based on game theory .

2.1 Two Parties Game model

Two-party game models have two categories: single user centric game model and user

group centric game model.

Single user centric game models provide optimal local privacy protection strategy locally

by the user. Chorppath and Alpcan [13] propose a game theoretic approach to formulate

the interaction between users and companies for mobile commerce. In their game model,

users report their locations with granularity to protect privacy. The proposed game is uti-

lized to find the optimal anonymity level for mobile users and the optimal incentive strategy

for companies. To balance the service data quality and location privacy preservation in

location-based services (LBSs), Shokri [14] et. al. propose a methodology to utilize Stack-

elberg Bayesian game to enable a designer to find the optimal location-privacy preserving

mechanism (LPPM). Given the service quality constraint of the user, the optimal LPPM

can provide the best privacy protection. Shokri et. al. improve their work by taking lo-

cation correlation into account to protect the trajectory privacy of users [16]. The authors

use zero-sum Stackelberg Bayesian game to find the optimal LPPM to against adversary

subject to a service quality constraint. Sfar et. al. [17] propose a privacy preserving model

for retail applications. They utilize a Markov game model to reach a compromise between

privacy concessions of users and incentive motivations of data requester. To preserve privacy
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on mobile phone, Wang and Zhang [39] construct a zero-sum stochastic game to formulate

the strategic and dynamic competition between a smart phone user and a malicious adver-

sary. According to the Nash Equilibrium (NE) of the game, the user can find the optimal

defense strategy. The users in single user centric game can achieve the privacy protection

by themselves. They do not need to consider the affection from other users and do not need

to corporate with other users. However, single user centric game models cannot provide

theoretical privacy protection guarantees like k-anonymization and differential privacy.

2.2 User Group centric Game Model

A group user based game model needs users in the group working together to maintain

a certain anonymization level.

Halkidi and Koutsipoulos [40] propose a game theoretic framework data privacy preser-

vation in recommender systems. In the recommender system, the quality of recommenda-

tions depends on the submitted data from all users. Each user prefers to submit less data

to preserve data privacy. However, the quality of recommendation will decay if all the users

choose to reveal less information to the platform. In [40], the authors propose a game based

framework to balance the trade-off between privacy preservation and quality of recommen-

dation. The Nash Equilibrium Point of the proposed game provides the optimal strategy for

each user. Wu et. al. [19] utilize game theory to balance the trade-off between privacy and

utility for correlated data publication. They find out the payoff of each user is dependent

on both its parameters and its neighbors’ privacy parameters. Therefore, they build a game

model of multiple players to analyze the optimal privacy parameters of data publication of

each user. When a user employs k-Anonymity in LBS, it needs to generate fake location

records, known as dummy users, to protection its location privacy. However, due to the high

cost of dummy user generation, self-interested users do not want generate dummy users but

free-ride on other’s efforts. Liu et. al [20] propose a distributed approach to guide users to

generate dummies according to their privacy demands and utilize Bayesian game model to

balance the cost of dummies generation and privacy protection and find the optimal dummy
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user generation strategy. To protect the pseudonyms used for authentication in mobile net-

works, users in a mix zone should collectively change their pseudonyms. A Sef-interested

user may not cooperate due to the high cost of pseudonym change. Freudiger et. al. [21]

define a game theoretical model to help each user in a mix zone to find the optimal time to

change their pseudonym by balancing the privacy protection and cost of pseudonym change.

Kumari and Chakravarthy [41] propose a Cooperative Game to achieve privacy preserving

before data publishing. The proposed game can incentivize users to stay in the coalition to

achieve k-anonymity. By using the optimal strategy from Nash Equilibrium, each user can

preserve its privacy and also contribute to preserving privacy of other users.

The user group centric game model is utilized to find the optimal strategy of each user

or incentivize users to stay in the group. Users in the group can have theoretical privacy

protection guarantee. However, they need to consider the interaction between users and need

a scheme to ensure all the users in the group are honest.

2.3 Three Parties Game Model

Most existing research only discusses the interaction between two parties: users and

adversaries or user and platforms (or service providers). However, privacy issues include

three parties: user, platform and adversary.

Adl et. al [26] analyze the trade-off between privacy and utility among three parties:

data provider (user), data collector (platform) and data user (adversary). They utilize a

sequential game to formulate the action of each party. In their game model, they assume the

data user is the leader of the game and can choose the privacy parameter. Data collector

and data provider has binary strategy: accept or reject. Obviously, their assumption is not

suitable in the real world. Wang et. al. [27] investigate the interaction between three parties:

user, application and adversary. They utilize a game model to find out the condition that can

make the three parties have good behavior. However, in their game model, the three parties

have only binary strategies. In another work of Wang et. al [28], they build a application

ecosystem based on quantum game model. The proposed application ecosystem contains
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three parties: user, application and adversary. However, as the game model in [27], each

party only has two states: cooperation state and defection state. The simple strategy space

of each party is unpractical in a real scenario.

We build a three-party game model in this dissertation. The strategy of each party is

formulated according to their practical actions. Therefore, the proposed model in this paper

is more comprehensive and practical than existing works.
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Chapter 3

PRIVACY PROTECTION AMONG THREE ANTITHETIC-PARTY FOR

CONTEXT-AWARE SERVICES

In this chapter, we study the issues in existing game theory based research on privacy

protection for context-aware services and propose a three party game model based framework

to solve these issues.

3.1 Motivation

In the past years, privacy-preserving mechanisms have received a lot of attention from re-

searchers. Besides cryptography, game theory has been widely applied as a strategic method-

ology to search for optimal strategies balancing the trade-off between the benefit of sharing

data and cost of privacy disclosure [13–17, 19–29, 42, 43]. Notice that most of the existing

research only focuses on the interaction between two opposite parties [13–17, 19–21], i.e.,

defender-attacker game model. In [25–29], various three-party game models are proposed.

But, the game models of [25–29] are not “real” three-party models because they fail to de-

pict the interaction between any two of the three parties, i.e. they considered either data

resale by the platform or attacks by the adversary. Additionally, the schemes in [26–28] only

provide a binary solution, specifically whether or not the user should submit their data to

receive services.

Further exploring the mutual relationships among user, platform, and adversary would

be more helpful for the user to defend against both the untrusted platform and the adversary.

Moreover, it would be beneficial to produce a more fine-grained solution, so that a user could

possibly provide obscured data and still receive adequate service. For this purpose, this

chapter aims to design a three-party game model among the three antithetic parties for users

to simultaneously protect their privacy from untrusted service platforms and adversaries.
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Personal data

Service

Payment
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Detection

Figure 3.1. Structure of thee-party game.

Such a realistic and complicated game model challenges us in the following aspects: (i)

Complicated game structure. As shown in Fig. 3.1, the interaction occurs between any two

of the three parties, increasing difficulty in addressing the three parties’ individual concerns –

how does the user assess the potential risk of privacy loss and determine the granularity when

submitting personal data; how does the platform determine data resale with consideration of

the risk of reputation loss; and how does the adversary make a choice between purchase and

eavesdropping? (ii) Joint threats. In such a complicated game, the user has to defend the

joint threats from both the platform and the adversary, which may be hard to accomplish.

(iii) Multiple data attributes. For many services, it is common that users need to submit

multiple data attributes that could be correlated together. Any obscurity applied to one

attribute would need to be correlated accordingly. (iv) Theoretical analysis & solution.

Designing, analyzing, and solving the proposed three-party game are destined to be difficult

due to the complexity of the game structure and correlated data attributes.

Our research endeavor to overcome the above challenges is briefly introduced as follows.

Firstly, in our game model, we link the three parties elaborately quantifying their concerns

and mutual interactions such that they are inseparable. Secondly, based on our game model,

we perform a theoretical analysis to rigorously prove the optimal strategies of the three
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parties, including the optimal data release granularity for the user, the optimal data resale

strategy for the platform, and the optimal probability to purchase data (or launch attack)

for the adversary. Finally, we conduct simulations with real datasets under various settings

to validate the effectiveness of our proposed game model.

To the best of our knowledge, we are the first to provide a fine-grained analysis on the

behaviors and interactions for the user, platform, and adversary with considering resistance

to the joint threats. Our major contributions are summarized as below:

• A three-party game is designed to capture the complicated interactions among user,

platform, and adversary targeting defending the joint threats from both untrusted

platform and adversary.

• An in-depth theoretical analysis is presented to identify the best strategy of each party.

• Comprehensive simulations with real datasets are exploited to evaluate the performance

of our game model, regarding optimal strategy, cost, and utility of the three parties.

The rest of this chapter is organized as follows. Our game model is introduced in

Section 3.2. The optimal strategy of each party and the performance of our game are

analyzed in Section 3.3 and Section 3.4, respectively. Finally, Section 3.5 briefly concludes

this chapter and discusses our future work.

3.2 Three-Party Game Model

In this section, the interaction among user, platform, and adversary is modeled as a

three-party game, in which their strategies, benefits, and costs are mathematically formu-

lated.

3.2.1 User Model

We consider the following scenario: a user submits personal dataset, denoted by D =

{d1, d2, ..., dn}, to a platform to acquire data-based service, where the dataset could contain
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one or more attributes and di (1 ≤ i ≤ n) is the data of attribute i. Due to privacy concerns,

the user may report data attributes with different data release granularity. Formally, the

data release granularity of attribute i is defined as gi ∈ [0, 1], and the corresponding data

granularity set is G = {g1, g2, . . . , gi, . . . , gn}. Specifically, with a larger gi, the data of

attribute i is less obscured, revealing more personal/sensitive information; for examples,

gi = 0 if di does not contain any personal data, and gi = 1 if di is fully accurate. In this

chapter, we use data granularity as a measurement of data quality/obscurity.

As the data release granularity increases, the quality of user’s requested service is in-

creased with diminishing marginal benefit [44]. Suppose that the quality of attribute i-based

service can achieve a maximum value qi when gi = 1. Then, the relationship between the

quality of attribute i-based service and data release granularity gi can be formulated to be

2qigi− qi(gi)2. In addition, any two data attributes may correlate with each other, and such

correlation can be exploited to infer more sensitive information [45,46]. Let eij represent the

correlation between attribute i and attribute j. Due to correlations among data attributes,

the data of attribute i not only contributes to the quality of attribute i-based service, but

also contributes to the quality of attribute j-based service. Thus, given the user’s dataset

D, data release granularity set G, and data correlation {eij}, the overall service quality can

be estimated as follows.

n∑
i=1

1 +
n∑

j=1,j 6=i
eijgj

(2qigi − qi(gi)2) . (3.1)

While enjoying the service provided by the platform, privacy leakage incurred by data

submission brings privacy loss to the user. One possible method for this privacy loss could

be due to a malicious attack by an adversary that eavesdrops on the data submitted by

the user. In real-world scenarios, the working efficiency of information retrieval is restricted

by many factors, such as equipment performance and retrieval technique. The working

efficiency of eavesdropping at the adversary side is denoted by φ ∈ [0, 1], so the granularity

of eavesdropped data is φgi. Assume the adversary purchases data from the platform with

probability b and the probability of eavesdropping is 1− b. Then, the expected cost due to
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eavesdropping of dataset D is defined as

(1− b)
n∑
i=1

ciφgi,

where ci is the unit privacy cost when gi = 1.

Another possible method for privacy loss could be that the user’s submitted data is

resold by the platform to a third-party (e.g., adversary) for more profit. We define the set of

platform’s resale strategy as S = {s1, s2, ..., sn}, where si ∈ [0, 1] and sigi is the resold data

granularity of attribute i. The platform does not resell di if si = 0 but resells all collected di

if si = 1. The expected privacy cost due to data resale at the platform side can be computed

by

b
n∑
i=1

cisigi.

By combining the received service quality and the experienced privacy cost, the user’s

utility can be calculated in Eq. (3.2).

Uu =λ
n∑
i=1

1 +
n∑

j=1,j 6=i
eijgj

(2qigi − qi(gi)2)− (1− b)
n∑
i=1

ciφgi − b
n∑
i=1

cisigi, (3.2)

where λ is the convention rate between service quality and privacy cost, i.e., one unit of

privacy cost is equivalent to λ units of service quality loss. Moreover, λ is also used to

measure the user’s privacy preference; that is, the user would care more about privacy cost

than service quality if λ is large, and the service quality outweighs the privacy cost if λ is

small.

In our proposed three-party game, the user aims to maximize its utility by balancing

the trade-off between service quality and privacy cost by strategically setting the granularity

set G. Accordingly, the optimization problem at the user side is

max
G

Uu,

s.t. gi ∈ [0, 1], i ∈ [1, n].

3.2.2 Platform Model

The platform provides users with requested services based on their submitted data. For

instance, Google provides navigation service to users based on their input location.
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While providing service to the user, the platform has its private valuation, defined to

be Vp, for the collected data from the user. With user’s data, the platform can obtain profit

from data-based production, such as data statistic analysis and new product development.

From the viewpoint that data is a type of potential productivity, the value of data can be

computed according to the standard form of Cobb-Douglas production function [47] as

θp

(
n∑
i=1

gi

)ζp

,

where θp is the total value productivity of the platform, and ζp ∈ (0, 1) is the platform’s

value output elasticities of G.

To get extra benefits, the platform may resell the collected data to a third party (i.e.,

the adversary) [48, 49]. Assume that pi is the unit data price of attributes i with gi = 1, so

the expected payment received from the adversary is

b

n∑
i=1

pisigi, (3.3)

in which b is the adversary’s purchase probability and si represents the platform’s resale

strategy.

However, reselling the user’s data may cause the risk of reputation loss at the user side

and/or in public. According to the instantaneous risk function [50, 51], we can define the

risk of reputation loss due to data resale of attribute i as

l1sigi + l2 (sigi)
2 ,

where l1 and l2 are constant parameters of the risk estimation function. Since there may

exist a correlation between two data attributes [52], the adversary can infer more per-

sonal/sensitive information from one data attribute to another, leading to an increase in

the reputation loss at the platform side. Accordingly, the risk of reputation loss can be

estimated as
n∑
i=1

(
1 +

n∑
j=1,j 6=i

eijsjgj

)(
l1sigi + l2 (sigi)

2) .
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In addition, there exists a data processing cost cp at the platform side. Since the data

processing cost may be determined by the processing technology, which is out of the scope

of this chapter, we assume cp is a system parameter for simplicity. Therefore, the platform’s

utility, denoted by Up, can be defined to be

Up =b
n∑
i=1

pisigi + θp

(
n∑
i=1

gi

)ζp
− cp −

n∑
i=1

1 +
n∑

j=1,j 6=i
eijsjgj

(l1sigi + l2 (sigi)
2
)
. (3.4)

One can see that the platform faces a struggle between benefit and reputation cost from

data resale. More specifically, reselling more accurate data can enhance the profit while

damaging reputation, but reselling less accurate data can reduce reputation loss while losing

attractiveness of data resale. Thus, to improve utility via balancing the trade-off between

benefit and cost, the platform needs to choose a proper resale strategy S. Formally, the

optimization problem of the platform is formulated as

max
S

Up,

s.t. si ∈ [0, 1], i ∈ [1, n].

3.2.3 Adversary Model

To retrieve the user’s private information, the adversary could purchase data from the

platform with probability b or eavesdrop on the communication between the user and the

platform with probability 1 − b. With respect to each data attribute i, the granularity of

purchased data is sigi, and that of the eavesdropped data is φgi.

The adversary also has private valuation for the obtained data. With the analysis similar

to that in Section 3.2.2, we can utilize Cobb-Douglas production function [47] to compute

adversary’s private valuation as

bθa

n∑
i=1

(sigi)
ζa + (1− b)θa

n∑
i=1

(φgi)
ζa ,

where θa is the data productivity of the adversary and ζa ∈ (0, 1) is the adversary’s value

output elasticities of data.

We suppose that the adversary can obtain all the data in D through eavesdropping at a

cost (e.g., equipment and time) that can be quantified by a quadratic cost function [53,54],
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i.e.,

σ1(1− b)2 + σ2(1− b) + σ3,

where σ1 > 0, σ2 ≥ 0, and σ3 ≥ 0 are constant parameters of the quadratic cost function.

Note that when the adversary does not eavesdrop, there still is a cost because it needs to

purchase equipment and resources for eavesdropping. If the adversary chooses to purchase

data from the platform, the expected payment paid to the platform is formulated in Eq. (3.3).

To sum up, the utility of the adversary, denoted by Ua, can be computed to be

Ua =bθa

(
n∑
i=1

sigi

)ζa
+ (1− b)θa

(
n∑
i=1

φgi

)ζa
− b

n∑
i=1

pisigi −
(
σ1(1− b)2 + σ2(1− b) + σ3

)
.

(3.5)

In the three-party game, the adversary faces the trade-off between data purchase and

data eavesdropping, i.e., the probability to purchase/eavesdrop data. Therefore, to improve

utility, the adversary has to choose a proper purchase probability b to maximize its utility,

which can be formulated as the following optimization problem.

max
b

Ua,

s.t. b ∈ [0, 1].

3.3 Nash Equilibrium Analysis

In this section, we conduct in-depth theoretical analysis of the three parties’ strategies

and the relationships among their strategies.

3.3.1 Nash Equilibrium

In game theory, a Nash equilibrium is a strategy profile E∗ with the property that no

party can unilaterally do better by choosing an action different from E∗, given that other

parties adhere to E∗ [53]. Accordingly, the Nash equilibrium of our proposed three-party

game can be defined in the following Definition.
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Definition 1. A strategy profile E∗ = (G∗, S∗, b∗) is called Nash Equilibrium for the proposed

three-party game if the following properties simultaneously hold:

Uu(G
∗, S∗, b∗) ≥ Uu(G,S∗, b∗);

Up(G
∗, S∗, b∗) ≥ Up(G∗, S, b∗);

Ua(G
∗, S∗, b∗) ≥ Ua(G∗, S∗, b).

3.3.2 Strategy Analysis of User

To solve the optimization problem of the user, we analyze the concavity of its util-

ity function. The first-order partial derivative and the second-order partial derivatives of

Eq. (3.2) are obtained, respectively.

∂

∂gi
Uu =− (1− b)ciφ− bcisi + λ

n∑
j=1,j 6=i

eij
(
−qj(gj)2 + 2qjgj

)

+ λ

1 +
n∑

j=1,j 6=i
eijgj

 (−2qigi + 2qi) .

∂2

∂g2i
Uu =− 2qiλ

1 +
n∑

j=1,j 6=i
eijgj

 .

∂2

∂gigj
Uu = λeij (−2qjgj + 2qj) + λeij (−2qigi + 2qi) .

To find the maximum value, we need to solve the following system of equations.

∂
∂g1

Uu = 0;

∂
∂g2

Uu = 0;

...

∂
∂gn

Uu = 0.

(3.6)

All the solutions of the system of equations are the extreme points of user’s utility. To

find the global maximum value, we create the corresponding Hessian matrix:

Hu =

∣∣∣∣∣∣∣∣∣∣∣∣∣

∂2

∂g12
Uu

∂2

∂g1∂g2
Uu ... ∂2

∂g1∂gn
Uu

∂2

∂g2∂g1
Uu

∂2

∂g22
Uu ... ∂2

∂g2∂gn
Uu

...
... ...

...;

∂2

∂gn∂g1
Uu

∂2

∂gn∂g2
Uu ... ∂2

∂gn2Uu

∣∣∣∣∣∣∣∣∣∣∣∣∣
.
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The user has a maximum utility only if the matrix is a negative definite matrix. When

either of the following two conditions holds, a matrix is negative definite [55]: (1) all its

eigenvalues are less than 0; and (2) the even order principal minors are larger than 0 and

odd order principal minors are less than 0. In other words, when the Hessian matrix of

the user’s utility function can meet anyone of the above two conditions, the user’s optimal

strategy can be found by solving Eq. (3.6).

We take the scenario where eij = 0 for i, j ∈ [1, n] as an illustrative example. In this

scenario, the first-order partial derivative and the second-order partial derivatives of the

utility function are as follows.

∂

∂gi
Uu = λ (−2qigi + 2qi)− (1− b)ciφ− bcisi.

∂2

∂g2i
Uu = −2qiλ.

∂2

∂gigj
Uu = 0.

Then we derive the corresponding Hessian matrix, i.e.,

Hu =

∣∣∣∣∣∣∣∣∣∣∣∣∣

−2q1λ 0 ... 0

0 −2q2λ ... 0

...
... ...

...

0 0 ... −2qnλ

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Because the even order principal minors are larger than 0 and the odd order principal minors

are less than 0, the matrix Hu is a negative definite matrix. Therefore, the utility function

has a maximum value and the maximum points can be calculated by solving Eq. (3.6), i.e.,



g1 =
−c1φ+(φ−s1)bc1+2q1λ

2q1λ
;

g2 =
−c2φ+(φ−s2)bc2+2q2λ

2q2λ
;

...

gn = −cnφ+(φ−sn)bcn+2qnλ
2qnλ

.
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Since gi ∈ [0, 1], the best data release granularity for attribute i is g∗i = max{min{gi, 1}, 0}.

From the results, to preserve data privacy, the user should decrease the data granularity

gi of attribute i if the platform increases data resale strategy si.

3.3.3 Strategy Analysis of Platform

We can compute the Hessian matrix to analyze the concavity of the platform’s utility

function as follows.

Hp =

∣∣∣∣∣∣∣∣∣∣∣∣∣

∂2

∂s12
Up

∂2

∂s1∂s2
Up ... ∂2

∂s1∂sn
Up

∂2

∂s2∂s1
Up

∂2

∂s22
Up ... ∂2

∂s2∂sn
Up

...
... ...

...

∂2

∂sn∂s1
Up

∂2

∂sn∂s2
Up ... ∂2

∂sn2Up

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

where
∂2

∂si2
Up = −2l2g

2
i

(
1 +

n∑
j=1,j 6=i

eijsjgj

)
,

and
∂2

∂si∂gj
Up = −eijgj

(
l1gi + 2l2g

2
i si
)
− eijgi

(
l1gj + 2l2g

2
j sj
)
.

The platform has a maximum utility only if the Hessian matrix is a negative definite

matrix that can satisfy either of the following two conditions [55]:

(1) all eigenvalues of Hp are less than 0; and (2) the even order principal minors of Hp are

larger than 0 and odd order principal minors of Hp are less than 0.

If the maximum value exists, we can find the best strategy of the platform by solving

the system of equations as shown below.

∂
∂s1
Up = 0;

∂
∂s2
Up = 0;

...

∂
∂sn

Up = 0.

(3.7)

In Eq. (3.7), we have

∂

∂si
Up =bpigi −

1 +

n∑
j=1,j 6=i

eijsjgj

(l1gi + 2l2g
2
i si
)
−

n∑
j=1,j 6=i

eijgi

(
l1sjgj + l2 (sjgj)

2
)
.
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We use the scenario when eij = 0 (i, j ∈ [0, 1]) as an example for demonstration. In

this scenario, the first-order partial derivative and the second-order partial derivatives of the

utility function are obtained in the following.

∂

∂si
Up = bpigi − l1gi − 2l2g

2
i si.

∂2

∂si2
Up = −2l2g2i .

∂2

∂si∂gj
Up = 0.

Then we derive the Hessian matrix as:

Hu =

∣∣∣∣∣∣∣∣∣∣∣∣∣

−2l2g21 0 ... 0

0 −2l2g22 ... 0

...
... ...

...

0 0 ... −2l2g2n

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Because the even order principal minors are larger than 0 and the odd order principal

minors are less than 0, the matrix Hp is a negative definite matrix. Thus, the platform’s

utility function has a maximum value and the maximum points can be calculated by solving

Eq. (3.7), i.e., 

s1 =
bp1−l1
2l2g1

;

s2 =
bp2−l1
2l2g2

;

...

sn = bpn−l1
2l2gn

.

As si ∈ [0, 1], the best resale strategy for attribute i is s∗i = max{min{si, 1}, 0}.

According to the above analysis, to avoid too much reputation loss, the platform should

decrease the value of si if the user increases gi. Nevertheless, the granularity of resold data,

sigi, may be increased, bringing a profit increase to the platform. On the other hand, if

the adversary prefers to purchase data rather than eavesdropping (i.e., enhance purchase

probability b to a sufficiently large value), the platform can increase the value of si to earn
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more profit, in which the reputation loss maybe compensated by the payment from the

adversary.

3.3.4 Strategy Analysis of Adversary

To maximize the utility, the adversary has to find the best strategy b∗. The first-

order partial derivative and the second-order partial derivative of U with respect to b are

respectively calculated by

dUa
db

= θa

(
n∑
i=1

sigi

)ζa
− θa

(
n∑
i=1

φgi

)ζa
−

n∑
i=1

pisigi − σ1(2b− 2) + σ2

and

d2Ua
db2

= −2σ1.

Since d2Ua

db2
= −2σ1 < 0, the utility function of the adversary is a concave function,

which means the maximum value is achievable when dUa

db
= 0. Thus, by setting dUa

db
= 0, the

solution is

b =

θa

(
n∑
i=1

sigi

)ζa
− θa

(
n∑
i=1

φgi

)ζa
−

n∑
i=1

pisigi + 2σ1 + σ2

2σ1
.

Because b ∈ [0, 1], the best purchase probability is b∗ = max{min{b, 1}, 0}.

According to the above result, one can find that the purchase probability b is reduced

when the working efficiency of eavesdropping φ and/or data price pi increases. This is

because the adversary prefers to eavesdrop rather than buying data for cost reduction if the

granularity of eavesdropped data is higher than that of the purchased data. However, the

relationship between the adversary’s strategy and the platform’s strategy and the relationship

between the adversary’s strategy and the user’s strategy are not straightforward, because the

purchase probability is also affected by the working efficiency φ, the price pi for attribute i,

the data productivity of the adversary θa, and the data value output elasticities of adversary

ζa. These complicated relationships will be investigated in our simulations.
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3.4 Simulation

In this section, we study the interactions among the user, the platform, and the ad-

versary via intensive simulations. In this chapter, we assume that the user has multiple

attributes in its dataset. However, in some cases, the user’s dataset has only one attribute.

To provide a detailed simulation result, we study the interactions among three parties in

two scenarios: i) the user has one attribute in its dataset; ii) the user has more than one

attribute in its dataset.

3.4.1 Interactions Among Three Parties with One Attribute

We first discuss the interaction among the three parties when the user’s dataset has

only one attribute, D = {d1}. We select default settings for the parameters as follows:

The granularity of d1 is g1 = 0.6. The unit privacy cost due to leakage of d1 is c1 = 3.

Based on d1, the user can get maximum service quality q1 = 50. The convention rate λ of

the user is 0.1. The platform resells d1 by using reselling strategy s1 = 0.6 with the price

p1 = 20. The other parameters in the platform’s utility function are: θp = 15, ζp = 0.6, l1 =

5, l2 = 10, cp = 1. The adversary has a purchase probability b = 0.6 and working efficiency

φ = 0.2. The other parameters in the adversary’s utility function are: σ1 = 1.5, σ2 = 1, σ3 =

1, θa = 15, ζa = 0.6. The value of these parameters are chosen to reveal plain interactions

among three parties.

The simulations that follow depict different strategies by varying certain parameters

from the perspective of each of the three parties.

Simulation Result of User’s Utility and Optimal Strategy The utility and

optimal response of the user are investigated in this subsection. Fig. 3.2 to Fig. 3.4 reveal

the simulation result of the user.

The results of the user’s utility are presented in Fig. 3.2 and Fig. 3.3, from which we

observe that the utility increases at first and then decreases as the granularity increases. The

reason lies in two aspects: (i) when the granularity g1 increases from 0 to a certain value
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(e.g., 3.46 in line s1 = 0.8 of Fig. 3.2 and 3.55 in line b1 = 0.8 of Fig. 3.3), the increase rate

of privacy cost is smaller than that of received service quality, therefore the utility increases;

and (ii) when g1 continues increasing from such a certain value, the increase rate of privacy

cost is larger than that of received service quality, leading to a decrease in the utility. In

fact, such a certain value corresponds to the optimal granularity.

Besides, as shown in Fig. 3.2, the user’s utility Uu decreases as the platform increases

the value of its reselling strategy s1. This is because when the platform increases the value

of reselling strategy s1, the granularity of the reselling data increases. That increases user’s

privacy cost, resulting in decreasing of user’s utility.

Furthermore, the user’s utility Uu also decreases as adversary increases its purchase

probability as shown in Fig. 3.3. Because the purchased data of the adversary has a higher

granularity than eavesdropped data, when the adversary increases the probability of purchase

and decreases the probability of eavesdropping, the user has more privacy cost, leading to a

decrease in the user’s utility.

Fig. 3.4 states the optimal strategy of the user. We can see that the user decreases data

granularity if the platform increases the value of reselling strategy s1. When the platform

increases the value of reselling strategy s1, the granularity of the reselling data increases,

thus increasing user’s privacy cost. To reduce privacy cost, the user should decrease data

granularity as shown in Fig. 3.4.

Fig. 3.4 also reveals how the user adjusts its strategy when the adversary uses different

strategies. In Fig. 3.4, we can see that the three lines (b1 = 0.4, b1 = 0.6, and b1 = 0.8)

intersect at the point where s1 = φ = 0.2. When s1 = φ, the adversary’s purchased data

has the same data granularity with eavesdropped data, the user has the same privacy cost

no matter what the adversary prefers, purchase or eavesdropping. Thus, the user does not

need to change its data granularity as the adversary change its strategy when s1 = φ.

Fig. 3.4 shows that the user adjusts its strategy according to the adversary’s strategy

as well as the platform’s strategy: (i) the user decreases the granularity of the data as the

adversary decreases the probability of data purchase and increases the probability of eaves-
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dropping when the platform resells data with strategy s1 < φ. (ii) the user decreases the

granularity of the data as the adversary increases the probability of data purchase and de-

creases the probability of eavesdropping when the platform resells data with strategy s1 > φ.

The reason lies in two aspects: (i) when s1 < φ, the adversary’s eavesdropped data has a

higher granularity than purchased data. Thus, the eavesdropping causes more privacy cost

than data reselling to the user. To decrease privacy cost, the user should decrease the data

granularity if the adversary increases the probability of eavesdropping and decreases the

probability of data purchase.

(ii) On the contrary, when s1 > φ, the adversary’s purchased data has a higher granularity

than eavesdropped data. Thus, the data reselling causes more privacy cost than eavesdrop-

ping to the user. To decrease privacy cost, the user should decrease the data granularity

if the adversary decreases the probability of eavesdropping and increases the probability of

data purchase.

Simulation Result of Platform’s Utility and Optimal Strategy We then study

the utility and best response of the platform. The results are shown in Fig. 3.5 and Fig. 3.6.

From Fig. 3.5, we can tell that the platform’s utility increases at first and then decreases

with the increase of reselling strategy S = {s1}. When s1 increases from 0 to a certain value

(e.g., 13.34 in line g1 = 0.8), the increase rate of the cost is smaller than that of the profit,

resulting in an improvement of utility; however, when s1 continues increasing from such a

certain value, the increase rate of the cost is larger than that of the profit, further reducing

the utility. In other words, there is an optimal value of s1 for the platform to balance the

profit of data resale and cost of reputation loss.

In Fig. 3.5, when the data granularity g1 increases, the granularity of reselling data

increases and brings more profit to the platform, leading to the increase of utility of the

platform.

Fig. 3.6 reveals how the platform adjusts its optimal strategy when the user and adver-

sary choose different strategies. When the user’s granularity increases, the optimal strategy
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of the platform decreases. Both the profit and the reputation loss increase if the user in-

creases granularity. However, the higher profit cannot make up the increased reputation loss.

Thus, the platform should decrease the value of s1 to reduce reputation loss.

Moreover, Fig. 3.6 reveals that the optimal strategy of the platform increases if the

adversary increases its purchase probability b and decreases its eavesdropping probability

1 − b. When the adversary increases the purchase probability b, the expected payment to

the platform increases. Thus, to earn more profit, the platform increases the value of s1 as

the adversary increases the purchase probability b, as shown in Fig. 3.6.

Simulation Result of Adversary’s Optimal Strategy The study of the adver-

sary’s optimal strategy is shown in Fig. 3.7. From this figure, we can see that the optimal

strategy of the adversary decreases as the user increases the granularity g1 or the platform

increases the value of its reselling strategy s1. When the user increases the granularity g1

or the platform increases the value of its reselling strategy s1, the granularity of reselling

data increases correspondingly, resulting in the increasing of data’s price. To decrease the

payment, the adversary decreases the probability of data purchase (which also increases the

probability of eavesdropping) when the user increases the granularity g1, or the platform

increases the value of its reselling strategy s1 as shown in Fig. 3.7.

3.4.2 Interactions Among Three Parties with Multiple Attributes

According the aforementioned analysis, the theoretical optimal strategies of the user

and the platform may not always exist. For computation feasibility, we utilize a parallel

machine learning algorithm termed Particle Swarm Optimization (PSO) [56], to find the

quazi-optimal strategies for the user and the platform, which is performed in the following

manner: (i) we run the simulation 100 times; (ii) in each time, each initial strategy and

the update vector in each iteration are randomly generated. and (iii) we use the strategy

which has the largest utility as the final output. The results derived from PSO are consistent
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Table 3.1. Extracted strategies

Application Strategy setting of {Income, Age, Race}
Retail Gr={0.2, 0.3, 0.4}, Sr={0.5, 0.7, 0.8}

Healthcare Gh={0.3, 0.4, 0.5}, Sh={0.4, 0.6, 0.7}
Government Gg={0.4, 0.5, 0.7}, Sg={0.3, 0.5, 0.6}

Financial Gf={0.6, 0.7, 0.8}, Sf={0.2, 0.4, 0.5}

with that in single attribute scenario, thus validating the simulation result. For more details

about the implementation of PSO, please refer to [57].

We use real datasets as the inputs of the user and platform. More specifically, based

on the privacy survey published by IBM [58] and Data Protection Survey published by

SANA [59], we extract four user’s strategies and four platform’s strategies. As shown in

Table 3.1, Gr, Gh, Gg, and Gf , are the user’s strategies used for Retail applications, Health-

care applications, Government applications, and Financial applications, respectively. Corre-

spondingly, in Table 3.1, Sr, Sh, Sg, and Sf are the strategies of Retail platforms, Healthcare

platforms, Government platforms, and Financial platforms, respectively.

Each extracted strategy contains three data attributes, including income, age, and race.

We set the correlation coefficient between income and age as 0.1, the correlation coefficient

between income and race as 0.01, and the correlation coefficient between age and race as 0.

For the three data attributes, the values of maximum service quality are q1 = 60, q2 = 50,

and q3 = 40, the unit privacy costs are c1 = 15, c2 = 10, and c3 = 5, and the unit data prices

are p1 = 20, p2 = 15, and p3 = 10. The convention rate λ in Eq. (3.2) is 0.1. The other

parameters in the platform’s utility function are: θp = 15, ζp = 0.6, l1 = 5, l2 = 10, and

cp = 1. The adversary has a purchase probability b = 0.6 and working efficiency φ = 0.2.

The other parameters in the adversary’s utility function are: σ1 = 1.5, σ2 = 1, σ3 = 1,

θa = 15, and ζa = 0.6.

The simulations that follow depict different strategies by varying certain parameters

from the perspective of each of the three parties.
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Table 3.2. Strategy simulation setting

Notation Strategy Setting
G0, S0 {0.0, 0.1, 0.2}
G1, S1 {0.1, 0.2, 0.3}
G2, S2 {0.2, 0.3, 0.4}
G3, S3 {0.3, 0.4, 0.5}
G4, S4 {0.4, 0.5, 0.6}
G5, S5 {0.5, 0.6, 0.7}
G6, S6 {0.6, 0.7, 0.8}
G7, S7 {0.7, 0.8, 0.9}
G7, S7 {0.8, 0.9, 1.0}

Results of User’s Utility and Optimal Strategy The utility and optimal response

of the user are investigated through Fig. 3.8 to Fig. 3.10 in this subsection.

We analyze user’s utility by using real platform’s strategy Sr, Sh, Sg, and Sf and

increasing the granularity of each attribute from G0 to G8 as shown in Table 3.2. The

results of the user’s utility are presented in Fig. 3.8, from which we observe that the utility

increases at first and then decreases as the granularity increases. The reason lies in two

aspects: (i) when the granularity of each attribute in user’s granularity set G increases from

G0 to a certain granularity set (e.g., G6 in line S = Sg), the increase rate of privacy cost is

smaller than that of received service quality, therefore the user’s utility increases; and (ii)

when the granularity of each attribute in user’s granularity set G continues increasing from

such a certain strategy set, the increase rate of privacy cost is larger than that of received

service quality, leading to a decrease in the utility. In fact, such a certain granularity set

corresponds to the optimal granularity set among granularity sets from G0 to G8.

Also, as shown in Fig. 3.8, the user’s utility Uu decreases as the platform increases the

value of resale strategy of each attribute from Sr to Sf . This is because when the platform

increases the value of resale strategy, the granularity of the resale data increases, enhancing

user’s privacy cost and reducing user’s utility. In particular, the user can gain a larger utility

when using Financial Application than other applications because Financial Platform resells

user’s data with the lowest granularity.
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The user’s best strategies defending against the platform’s different strategies and ad-

versary’s different strategies are respectively shown in Fig. 3.9 and Fig. 3.10, where each

line indicates the user’s optimal data release granularity for one attribute. The results of

Fig. 3.9 are obtained when the platform uses the strategies s1 = 0.2, s2 = 0.4, and s3 = 0.6.

The results of Fig. 3.10 are obtained when the adversary adopts the data resale strategies

b = 0.2, 0.4, 0.6.

Fig. 3.9 shows that the user decreases data release granularity to protect data privacy as

the platform increases the data resale granularity from S0 to S8. On the other hand, when the

value of resale strategy is small (e.g., S0, S1, S2), the user’s optimal release granularity of data

attribute 1 (corresponding to g1) is larger than those of attributes 2 and 3 (corresponding

to g2 and g3, respectively). Since data attribute 1 has the largest service quality value q1,

the user can get more profit from submitting data attribute 1, which can compensate the

cost of privacy loss. On the contrary, when the value of resale strategy becomes large (e.g.,

S3, S4, S5, S6, S7, S8), releasing attribute 1 causes more privacy cost as data attribute 1 has

the largest unit privacy cost c1. As a result, to reduce privacy cost, the user releases less

information regarding data attribute 1, i.e., the optimal release granularity of attribute 1 is

less than those of other two attributes.

From Fig. 3.10, we can see that the optimal release granularity g1 does not change as

the adversary changes its strategy, and the optimal release granularities g2 and g3 decreases

when the adversary increases the data purchase probability and decreases the eavesdropping

probability.

When the platform resells attribute 1 (i.e., the line corresponds to g1), the platform

uses resale strategy s1 = 0.2 that is the same as the working efficiency of eavesdropping φ.

This means the granularity of purchased data and that of eavesdropped data are equal at the

adversary side. Thus, the change of the adversary’s strategy will not affect the user’s utility.

This is the reason why the best release granularity of data attribute 1 does not change when

the adversary changes its strategy b under the scenario s1 = φ as we discussed for Fig. 3.4.
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On the other hand, the adversary can get higher data granularities of attribute 2 and 3

(corresponding to g2 and g3, respectively) via purchasing rather than eavesdropping because

s2 > φ and s3 > φ. Thus, the data resale from the platform causes more privacy cost than

eavesdropping to the user. As a result, the best data release granularities g2 and g3 decreases

as the adversary increases the data purchase probability and decreases the eavesdropping

probability.

The changes of user’s optimal release strategies in Fig. 3.9 and Fig. 3.10 confirm that

data release strategy is also affected by data diversity (e.g., different data attributes have

different privacy costs and resale prices).

Results of Platform’s Utility and Optimal Strategy Fig. 3.11 reports the results

of the platform’s utility, in which the platform’s strategies are set to be S0 to S8 according

to Table 3.2 with user’s strategy being Gr, Gh, Gg, and Gf as listed in Table 3.1. From

Fig. 3.11, we can tell that the platform’s utility increases at first and then decreases over the

increase of the value of user’s data release granularity, as we discussed for Fig. 3.5. When

the data resale granularity of each attribute increases from the value in S0 to the value in a

certain resale strategy set (e.g., S2 in line G = Gg), the increase rate of the cost is smaller

than that of the profit, resulting in an improvement of utility to the platform; however, when

the data resale granularity of each attribute continues increasing from the value in such a

certain strategy set, the increase rate of the cost is larger than that of the profit, further

reducing the platform’s utility. In other words, there is an optimal resale strategy set for the

platform to balance the profit of data resale and cost of reputation loss.

Besides, the platform’s utility increases as the user increases the release granularity of

each attribute from Gr to Gf . This is because the platform can get more accurate data and

more resale profit if the user increases the data release granularity. Particularly, the Financial

platform can the highest utility because the user submits data with higher granularity to

the Financial platform than other three platforms.
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The optimal strategy for reselling each data attribute at the platform side are drawn in

Fig. 3.12, from which one can observe that the optimal resale granularity of each attribute

decreases when the corresponding data release granularity rises. Notice that as the data

release granularity of each attribute increases, the growth rate of reputation cost from data

resale becomes larger than the growth rate of the profit from data resale. Therefore, to

reduce reputation cost, the platform decreases the resale granularity of each attribute.

Fig. 3.13 presents the changes of platform’s strategy when the adversary enhances the

purchase probability. We can see that the optimal resale strategy for each attribute in-

creases as the purchase probability is increased (i.e., the eavesdropping probability is re-

duced). When the adversary increases the probability of purchase (decreases the probability

of eavesdropping), the increase rate of data resale profit is larger than the cost of reputation

loss. Thus, to get more profit, the platform increases the data resale granularity.

In Fig. 3.12 and Fig. 3.13, the value of optimal resale strategy of attribute 1 is higher

than that of other attributes, for which the reasons lie in two aspects: (i) more information

regarding data attribute 1 is released from the user (see Fig. 3.10), indicating that less

obscured data is available for resale; and (ii) the unit price of attribute 1 is larger than those

of other two attributes, implying that more payment can be received by reselling data of

attribute 1. These results reflect the fact that a platform may adopt different resale strategies

for different data attributes due to data diversity.

Simulation Result of Adversary’s Optimal Strategy Fig. 3.14 shows the adver-

sary’s optimal strategy when the user and the platform use the strategies from Table 3.1.

As shown in Fig. 3.14, the adversary decreases the data purchase probability (i.e., increases

the eavesdropping probability) when the user increases the data release granularity of each

attribute in the dataset from Gr to Gf , or the platform increases the data resale strategy of

each attribute in the dataset from Sf to Sr. The increase of data release/resale granularity

will raise the data price, so the adversary need to decreases the data purchase probability to

save cost, which is the same as shown in Fig. 3.7.
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Comparison with Two-Party Game In this subsection, a comparison between our

proposed three-party game and the existing two-party game is performed. According to

current research [13–17], there are two types of platforms in two-party game: (i) trusted

platform that never resells user’s data, and (ii) untrusted platform that resells all collected

data.

Fig. 3.15 and Fig. 3.16 show the user’s utilities and costs, respectively. On one hand,

the user has the highest utility and the lowest cost when the platform is trusted because the

potential privacy risk of data resale is ignored and the privacy cost is underestimated. On the

other hand, the user has the lowest utility and highest cost when the platform is untrusted

because the untrusted platform resells all its collected data and brings more privacy loss to

the user. However, the trusted platform is an ideal model, and the untrusted platform, which

sells off all data is rare in real life. A more realistic model is a platform that chooses the

optimal strategy by balancing the tradeoff between profit and cost. Our three-party game

model, captures the actions of this more realistic model.

From the comparison of platform’s utility in Fig. 3.17, it can be seen that a platform

can get the highest utility by adaptively reselling user’s data; specifically, by adaptively

reselling user’s data, a platform can get more profit than the trusted platform and suffers less

reputation cost than the untrusted platform. This is consistent with the fact that a platform

usually owns the ability to adjust its strategy for enhancing profit, further confirming the

effectiveness of our proposed game model.

3.5 Conclusion

This chapter studies privacy preservation for context-aware services. To provide realistic

optimal strategies for both the user and the platform, we propose a three-party game model

that captures the interactions between any two of the parties: user, platform and adversary.

Interactions include privacy leakage and data resale at the platform side, as well as malicious

attacks at the adversary side. Our solution determines an optimal fine-grained strategy for

the user and platform, so that the user can choose an optimal data granularity to balance



35

service quality and privacy leakage and that the platform can choose the optimal reselling

strategy to balance profit and reputation loss. Our model also accounts for the correlations

between multiple data attributes provided by a user.

To find out the best strategy for each party, we conduct a rigorous theoretical analysis.

We also perform simulations using real datasets to validate the effectiveness of our proposed

game model.

In the next chapter, we extend this work to an m-user scenario, where the interconnected

behaviors of the multiple users, the platform, and the adversary become more complex than

the proposed model. This extension will also need to involve another layer of interactions

between the users themselves, further complicating the model.
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Chapter 4

PRIVACY PROTECTION FOR CONTEXT-AWARE SERVICES:

A TWO-LAYER THREE-PARTY GAME MODEL

In this chapter, we extend our work to a more realistic model which considers the interac-

tion between multiple users [60–63], thus providing more practical guidance for context-aware

service users.

4.1 Motivation

We have studied the three party interaction in the previous chapter. However, in most

context-aware services, there are multiple users using a service at the same time. The

current n-player game models (those with n users) [19–24] only consider the interaction

between the users and other parties (either the platform or adversary). They fail to represent

the interaction between asymmetric users, where users have individual privacy protection

expectations. To demonstrate the impact, let us consider a transportation application. A

user is able to get accurate traffic status without submitting any personal information to the

platform, provided other users do submit their information. If multiple users stop submitting

their information, the service quality will decrease, and if no users submit their information,

minimal service can be provided. Thus multiple users must submit their data to provide

enough context to the platform for better quality service.

In this chapter, we design a platform centric two-layer three-party game model to provide

a balanced fine-grained strategy for the platform, while minimizing users’ privacy loss and

maximizing quality of service (shown in Fig. 4.1). To avoid the drawbacks of the existing

work, we need to overcome the following challenges: (i) Interaction among asymmetric users.

Users of the same service have interactions and each user has a different privacy protection

expectation. Thus, the interactions among the users increase the difficulty in addressing the
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Figure 4.1. Two-layer three-party Game model

users’ strategy selection. (ii) Complicated game structure. Users’ strategies are not only

influenced by other users, but also by the platform’s strategy, as well as the adversary’s

strategy. We formulate this by using two game layers for the game model a game among

asymmetric users and a game among users, platform and adversary. (iii) Theoretical analysis

and solution. The complicated game structure and asymmetric users increases the difficulty

to perform a theoretical analysis of Nash equilibrium and determining proper strategies for

users and platforms.

The following methods are implemented to address the above challenges in this chapter.

Firstly, we utilize a quasi-aggregative game model to formulate the interactions between

asymmetric users and utilize a contract model to formulate the interactions between the

platform and adversary. Secondly, based on the proposed two-layer three-party game model,

we analyze the Nash equilibrium to find the proper fine-grained strategies for all users and the

platform. Finally, we perform simulations based on real datasets to validate the theoretical

analysis.

To the best of our knowledge, we are the first to provide a privacy protection framework

from the perspective of the platform, since the platform is in the dominate position, as

described above. The main contributions of this chapter are summarized as follows:

• A platform-centric two-layer three-party game model to capture the interactions among

asymmetric users, and the interactions between users, the platform, and adversary.

This will provide proper guidance for both the users and platforms.
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• The theoretical Nash equilibrium analysis to find the proper fine-grained guidance for

all the asymmetric users and the platform.

• Simulations with real datasets to validate the theoretical analysis and evaluate the

performance of the proposed two-layer three-party game.

The rest of the chapter is organized to introduce the system model in Section 5.3. We analyze

the optimal strategies for asymmetric users and platforms in Section 4.4. Section 5.5 presents

the simulations to validate the theoretical analysis and we conclude the chapter in Section 5.6.

4.2 Preliminary

Let Γ = (π̃i, Si)i∈I denote a non-cooperative, pure strategy game with a finite set of

players I = {1, ..., I}, and finite dimensional strategy sets Si ⊂ RN , si ∈ Si. The joint

strategy set S =
∏

i∈I Si, is assumed to be a compact metric space, and payoff functions

π̃i : S → R, i ∈ I , are assumed to be upper semi-continuous. Then the Quasi-Aggregative

Game can be defined as follows.

Definition 2. (Quasi-Aggregative Game) [64] The game Γ = (π̃i, Si)i∈I is a quasi-

aggregative game with aggregator g : S → R, if there exist continuous functions Fi : R×Si →

R (the shift functions), and σi : S−i → X−i ⊂ R, i ∈ I (the interaction functions) such that

each of the payoff functions i ∈ I can be written:

π̃i = πi (σi (s−i, si) , si) , (4.1)

where πi : X−i × Si → R, and:

g(s) = Fi (σi(s−i), si)),∀s ∈ S, i ∈ I . (4.2)

Agent i’s best-replies, depend on x−i = σi(s−i), is given by Ri(x−i) = argmaxπi(x−i, si) : si ∈ Si.

Theorem 1. The quasi-aggregative game has a Pure Strategy Nash Equilibrium (PSNE) the

following two assumptions holds.
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Assumption 1. Each of the correspondences Ri : X−i → 2Si is strictly decreasing.

Assumption 2. The shift-function Fi, i ∈ I , all exhibit strictly increasing differences in

x−i and si.

4.3 System Model

In this section, we formulate the interactions between asymmetric users, as well as the

interactions among the three parties and introduce the proposed game model.

4.3.1 Users Model

Assume a set of users N = {1, 2, ..., n} use a client of a platform to get context-based

service. Each user i ∈ N will submit a dataset Di = {di1, di2, ..., dim} with m attributes to

the platform. The client has a local privacy protection algorithm installed which satisfies

strict privacy protection standards, such as Local Differential Privacy [7]. Thus, the platform

can only get anonymized data or noise-added data from users.

Even if the client has a privacy protection algorithm installed, the anonymized data or

noise-added data can still leak some information to the platform, the privacy leakage level

depends on the privacy protection setting of the client. Without loss of generality, we define

the privacy protection level of attribute j as δj ∈ [0, 1].

When δj = 1, the platform cannot retrieve any information about users’ attribute j.

When δj = 0, the platform can retrieve all the information about users’ attribute j. To

get statistical result from users, the platform has to set the same ~δ = {δ1, δ2, ..., δm} for all

the users [65–68]. According to privacy protection laws, such as General Data Protection

Regulation within the European Union and the European Economic Area, the platform

should use strongest privacy protection strength in the client by default. Thus, the default

setting of privacy protection level vector is ~δ = {1, 1, ..., 1}.

However, by using the strongest privacy protection strength, the platform cannot collect

usable information from users, resulting in worst service quality. Thus, to collect information

from users, the platform has to offer a ~δ with lower privacy protection level.
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Users have the right to accept or reject the platform’s offer ~δ. We define user i’s strategy

for attribute j as aij ∈ [0, 1], which defines the probability of user i accept the privacy leakage

level δj. Therefore, the strategy vector of user i is ~ai = {ai1, ai2, ..., aim} and the strategy

vector of all users is ~a = {~ai, ~aj, ..., ~an}.

The service quality depends on the users’ strategy, and one user’s strategy has a marginal

impact on service quality. The service quality of user i received from the platform depends

not only on its strategy ~ai, but also on the strategy of other users ~a−i. Formally, for a specific

privacy protection level, the expected received service quality of user i is determined by the

strategy of user i and other users’ strategy, which can be defined as Qi (~a−i,~ai).

Meanwhile, the platform may resell users’ data to an adversary resulting in privacy

loss to the users. Assume each user has a constant privacy cost estimation vector ~ci =

{ci1, ci2, ..., cim}, where cij defines the privacy cost of attribute j’s privacy leakage. We can

define the total cost estimation of user i as follows:

Cu
i (~ai) =

m∑
j=1

cijaij (sj + (1− δj)) , (4.3)

where sj ≤ δj is privacy leakage level when the platform resells the users’ dataset.

Thus, we can derive the expected utility function of user i as follows.

Uu
i (~ai,~a−i) = Qi (~a−i,~ai)− Cu

i (~ai) . (4.4)

4.3.2 Platform Model

The quality of service depends upon the number of users that accept the privacy pro-

tection level of attributes. For this reason, the platform entices users to accept the offer with

higher privacy leakage level by providing more accurate service quality. We define σj(~a) as

the expected number of users that accept the information leakage level δj for attribute j,

and calculate σj(~a) as

σj(~a) =
n∑
i=1

aij. (4.5)
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The value of δj reveals the privacy leakage of users’ attribute j and also reveals the

information that can be retrieved by the platform. According to the research of privacy

protection algorithms [65,69,70], the service quality based on attribute j can be defined as a

logarithmic function of privacy leakage level δj, and is affected by the number of users that

accept the privacy leakage level δj as a law of diminishing marginal utility. Therefore, we

can derive that the service quality depends on a single attribute j as

log((1− δj) + 1)σbj(~a), (4.6)

where 0 < b < 1 is the parameter revealing the impact of σbj(~a). The value of b is decided

by the local privacy protection algorithm.

Meanwhile, attribute i and attribute j may have a correlation. Thus, the information

of attribute i not only contributes to the service which is based on attribute i but also

contributes to the service which is based on attribute j, if there is a correlation between

attribute i and j. We define the correlation between attribute i and attribute j as eij.

Therefore, the information of attribute i also contributes to the expected service quality

which is based on attribute j with the correlation coefficient eij. Accordingly, we can define

the total expected service quality Q as

Q
(
~δ,~a
)

=
m∑
j=1

(
1 +

m∑
k=1,k 6=j

ejk

)
log((1− δj) + 1)σbj(~a). (4.7)

The collected dataset from users can generate income for the platform. The expected

income form data is also affected by the privacy leakage level ~δ and the number of users who

accept the platform’s offer. According to data aggregation research [71] and the standard

form of Cobb-Douglas production function [47], the expected data value to the platform can

be defined as

V p
(
~δ,~a
)

= α
m∑
j=1

(1− δ)ζjσbj(~a), (4.8)
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where α is the total value productivity of the platform, and ζ ∈ (0, 1) is the platform’s value

output elasticities of each attribute.

To get extra profit, the platform could sell the collected data to an adversary. The

platform may choose a different privacy leakage level vector ~s = {s1, s2, ..., sm} for the resale

dataset. And for each unit of privacy leakage level of attribute j, the platform asks for a price

pj for each user’s data. The price vector of the dataset is defined as ~p = {p1, p2, ...pm}, which

is determined in a contract with the adversary. Thus, the total expected price is defined as

P (~s, ~p,~a) =
m∑
j=1

pjsjσ
b
j(~a). (4.9)

However, the data resale incurs a cost due to reputation loss to the platform. If we

define rj is the unit cost for reselling one user’s attribute j with privacy leakage level sj, we

can derive the expected cost due to reputation loss as

m∑
j=1

rjsjσ
b
j(~a). (4.10)

Meanwhile, the platform has a constant running cost cp. Thus, the total expected cost

of the platform is

Cp (~s,~a) =
m∑
j=1

rjsjσ
b
j(~a) + cp. (4.11)

To sum up, the expected utility of the platform is

Up
(
~δ, ~s, ~p,~a

)
= V p

(
~δ,~a
)

+ P (~s, ~p,~a)− Cp (~s,~a) . (4.12)

The platform will maximize its utility by achieving a Nash Equilibrium with the users and

adversary.
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4.3.3 Adversary Model

To get users information, the third party can purchase data from the platform. By using

purchased data, the adversary can generate value according to its type γ, where θ is its value

productivity, and γ is its value output elasticities of each attribute. According to data

aggregation research [71] and the standard form of Cobb-Douglas production function [47],

the expected data value to the adversary can be defined as

Vt (~s,~a) = θ

m∑
j=1

sγjσ
b
j(~a). (4.13)

Thus, the expected utility function of the third party is

U t ((~p(γ), ~s),~a) = Vt (~s,~a)− P ((~p(γ), ~s),~a) . (4.14)

4.4 Game Model

In this section, we formulate the problem with a two-layer three-party game and analyze

its Nash Equilibrium.

4.4.1 Aggregative Game Model

In this chapter, we assume users do not exchange information with the other users.

However, each user’s action influences the other users’ utility. With a specific privacy leakage

level ~δ, we can use quasi-aggregative game model to formulate the interactions among users.

To maximize utility, a user chooses a proper privacy leakage level for each attribute.

According to [64], we define the interactions among users as m quasi-aggregative games, e.g.,

Γj = (π̃ij, Ai),∀j = 1, 2, ...m, where Ai is user i’s strategy space. The payoff function of each

player in this game can be defined as

π̃ij = Uu
ij(σij(~a−i), aij); (4.15)
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the aggregator can be defined as

gj(~a) = Fij(σij(~a−i), aij) = σij(~a−i) + aij; (4.16)

the interaction functions vector can be defined as

σij(~a−i) =
∑

k∈N,k 6=i

akj. (4.17)

User i in the game Γj aims to maximize its utility by properly choosing a strategy vector

~ai such that

~ai = argmax
aij

Uu
i (~σi(~a−i), aij). (4.18)

According to the property of quasi-aggregative game theory [64], we can derive the

following theorem.

Theorem 2. The game Γu = (π̃i, Ai)i∈N has a PSNE for any privacy leakage level ~δ.

Proof. When the integrated value σ−i increases, user i can get increased payoff. Thus,

user i can increase its payoff by decreasing the value of strategy si. As a result, the best-

reply correspondence of user i is strictly decreasing. It is obvious that the shift function

Fi (Eq. 4.16) exhibits strictly increasing differences in x−i and si. According to [64], the

theorem is proved.

4.4.2 Contract Model

The platform makes a contract with the adversary. Assume the adversary announces

its type is γ, γ ∈ (0, 1). The platform provides a menu of contracts {(~p(γ), ~s)} to the

adversary. According to contract theory [72], to incentivize the adversary to accept the

contract designated for him rather than choosing other contracts or refusing any contract, the

menu of contracts should satisfy both the individual rationality condition and the incentive

compatibility condition defined below.
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Condition 1. (Individual Rationality (IR)) A menu of contracts {(~p(γ), ~s)} satisfies the

individual rationality constraints if it yields to the adversary a non-negative payoff, i.e.,

∀γ ∈ (0, 1),

U t(~p(γ), ~s) ≥ 0, (4.19)

where U t(~p(γ), ~s) is the utility of adversary with type γ.

Condition 2. (Incentive Compatibility (IC)) A menu of contracts {(~p(γ), ~δ)} satisfies the

individual compatibility constraints if the best response for the adversary with type γ is to

choose the contract (~p(γ), ~s) rather than other contracts, i.e., ∀γ, γ̂ ∈ (0, 1),

U t(~p(γ), ~δ) ≥ U t(~p(γ̂), ~s). (4.20)

Therefore, the objective of the platform is to maximize its utility by properly creating

a menu of contracts. We formalize the optimization problem of the platform as follows.

max
{(~p(γ),~s)}

Up
(
~δ, ~s, ~p(γ),~a

)
,

subject to Condition 1 and 2.

(4.21)

According to the aggregative model and contract model, we can see that the platform

needs to properly choose the privacy leakage level ~δ for all users and create the contract menu

for the adversary to maximize its utility. Therefore, the Nash Equilibrium can be derived

by solving the combined optimization problem:

max
(~δ,{(~p(γ),~s)})

Up
(
~δ, ~s, ~p(γ),~a∗

)
,

subject to Condition 1 and 2.

(4.22)

where ~a∗ is the PSNE of the aggregative game.
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of user under various.

Table 4.1. Extracted strategies

Application {Income, Age,
Race}

Retail ~δ1={0.2, 0.3, 0.4}
Healthcare ~δ2={0.3, 0.4, 0.5}

Government ~δ3={0.4, 0.5, 0.7}
Financial ~δ4={0.6, 0.7, 0.8}

4.5 Simulation

In this section, we study the interactions in the proposed two-layer three-party game.

In the simulation, we utilize a parallel machining learning algorithm termed Particle Swarm

Optimization (PSO) [73] to find the optimal strategies for the user and the platform.

4.5.1 Simulation Setting

We use real datasets as the inputs of the user and platform. More specifically, based

on the Data Protection Survey published by SANA [59], we extract four protection levels

for income, age, and race. As shown in Table 4.1, ~δ1, ~δ2, ~δ3, and ~δ4, are the protection

levels used by Retail platforms, Healthcare platforms, Government platforms, and Financial

platforms, respectively. We set the correlation coefficient between income and age as 0.1,

the correlation coefficient between income and race as 0.01, and the correlation coefficient

between age and race as 0. We also tried the other correlation coefficient values and find out
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that the correlation coefficient is not a key factor. The privacy costs of users have normal

distribution with parameters: µincome = 10, µage = 6, µrace = 2 and σ2 = 1. The total value

productivity of the platform is α = 6 and the output elasticity is ζ = 0.6. The total value

productivity of the adversary is θ = 8 and the output elasticity is b = 0.6. The reputation

cost for the attributes are rincome = 3, rage = 2,rrace = 1. The value of these parameters are

chosen to reveal plain interactions among three parties. We choose the best strategy from

running the algorithm 100 times, where each run consists of 10,000 iterations.

4.5.2 Users Interaction

Fig. 4.2 shows the utility of user i when it performs different actions under different

privacy protection levels. The x axis is the protection level, where ~δ0 = {0, 0, 0} is the lowest

protection level and ~δ5 = {1, 1, 1} is the highest protection level. ~δ1 to ~δ4 are the increasing

protection levels, as in Table 4.1. The solid red line in Fig. 4.2 shows the utility of user i

when it stays in the Nash Equilibrium, and the dashed green line is when it leaves the Nash

Equilibrium. As we can see, the user’s utility increases at first and then decreases as the

protection level increases. The reason for utility increasing, is that the rate of the user’s

privacy loss decreasing is larger than that of service quality decreasing. However, the user’s

utility decreases after the maximum point, because the rate of service quality decreasing is

larger than that of privacy loss decreasing. User i has utility 0 with the strongest protection

level ~δ5 because the user cannot get any service quality and has no privacy loss. Fig. 4.2 also

shows us that the utility of user i when it stays in NE is higher than that when it leaves NE.

This demonstrates the existence of NE in the aggregative model and that users cannot get

higher utility if they use non-Nash Equilibrium strategies.

4.5.3 Platform Comparison

We compare the proposed platform with a trusted platform and an untrusted platform.

We assume the trusted platform keeps users’ data safe and will not trade the data, while the

untrusted platform sells all its collected data to the adversary.
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As shown in Fig. 4.3, the utility of the proposed platform (solid red line) increases

at first and then decreases as the protection level increases. The utility increases because

the rate of payoff increasing is larger than that of reputation loss increasing and the utility

decreases because the rate of payoff increasing is less that of reputation loss increasing. This

demonstrate the Nash Equilibrium existence of the two-layer three-party game because the

platform cannot increase its utility by simply decreasing the privacy protection level. The

platform needs to balance the tradeoff between payoff (from data collection and selling data)

and reputation loss.

Fig. 4.3 and Fig. 4.4 compare the utility of three types of platforms with different

protection levels and different adversary types, respectively. As shown in Fig. 4.3, the trusted

platform has higher utility than the untrusted platform with protection level ~δ0 to ~δ1 because

the trusted platform has no reputation loss and the selling profit of untrusted platform cannot

make up its reputation loss. The untrusted platform has higher utility than the trusted

platform with protection level ~δ2 to ~δ5 because the payment from selling data can dominate

the reputation loss, thus has more profit than the trusted platform. This explains why the

platforms usually sell users data in real life.

However, the platform does not need to sell all the users’ data to maximize its utility.

From Fig. 4.3 and Fig. 4.4, we can see that the proposed platform in this chapter has the

highest utility because it balances the tradeoff between payoff (from data collection and

selling data) and reputation loss. It will choose a proper protection level and selling strategy

to maximize its utility. Therefore, we can conclude that the proposed framework can provide

balanced strategies for the platform. By using the proposed model, the platform will properly

choose the data selling strategy, thus decreasing users’ privacy loss.

4.6 Conclusion

The use of context-aware services are integrated into the majority of people’s daily lives.

By utilizing these services, one must provide certain private information in order to receive

better outcomes. Users risk leaking private data, as service platforms are sometimes willing
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to sell this information to a third party, or adversary to gain more profit, thus resulting in

conflicting goals.

This chapter studies the interactions among the three parties by proposing a platform-

centric two-layer three party game. In the proposed game model, we theoretically formulate

the behaviors of each party and the interactions among the three parties by using an aggre-

gate game model and contract model. We run simulations with real datasets to validate the

effectiveness of the proposed game model. We show that the proposed model can provide

the proper strategy for the platform to balance the payoff and reputation loss, thus increas-

ing privacy protection of the users. This work will enable platforms, such as Facebook, to

provide quality service and protection to its users, but also provide a means to profit from

a balanced strategy. To further investigate more realistic privacy protection issues, we next

extend this work to a model that considers the influence of temporal data. Therefore, the

users and platform need to consider the privacy protection for not only the current status,

but also previous and future conditions.
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Chapter 5

GAME THEORY BASED PRIVACY PROTECTION FOR

CONTEXT-AWARE SERVICES WITH LONG-TERM TIME SERIES DATA

In this chapter, we investigate the influence of long-term time series data and propose

a three-party Stackelberg game model with consideration of active actions of platform and

adversary.

5.1 Motivation

In context aware services, services providers require accurate personal information from

users. However, users’ information usually changes as time passes. For example, education

information will change after graduation. The income information also changes over time

with promotion or employment changes. That is the reason why some applications want

users to update their personal information periodically. We can define this kind of data

as long-term time-series data. When we consider the long-term time-series data, it is very

different from fixed data because the data value is not only influenced by data granularity

and data accuracy but also influenced by data freshness. The data value will decay as the

time passed which means the fresher data has more value than the older data. There is

a paradox on the time series data update frequency. If a user updates their personal data

frequently, it will submit its data with high data freshness which means more accurate private

information leaked to the platform. On the contrary, if a user refuses upload its information

as its status changes, the service provider cannot provide service with good quality. Thus,

it is very important to set a proper update frequency for each attribute in addition to the

privacy protection level for each update.

Besides, in this kind scenarios, adversaries may not only eavesdrop or purchase users’

submitted data, but also actively request users’ information by sending surveys, advertise-
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ments or giving more reward for specific information. By sending customized mobile adver-

tisements, adversaries can trace a user’s location [74]. There is also a possibility to infer

users’ information from their reaction to different kinds of advertisements [75]. Therefore,

to protect users long-term information, we need to consider the active-attack adversaries.

Many researchers propose different game models to protect users’ privacy with consid-

eration of time-series data [16, 17, 76–84]. However, all the work only focuses on short-term

time series data like location and retail application usage. They investigate the privacy is-

sues from the connection between locations. Different to the short-term time series data, the

data freshness is the key privacy issue of long-term time series data. Besides, all the existing

work only study the optimal defense strategy in two-party game model without considering

the active-attack adversaries.

Therefore, a normal game theory based model cannot be used to formulate the long-term

time-series data based context-aware services. To further investigate more realistic privacy

protection issues, we extend our work to a model that considers the influence of long-term

time-series data and an active-attack adversary.

To design a proper game model to adapt to the scenario with long-term time-series data,

we need to consider the influence that does not exist in a scenario without time-series data

such as data freshness, active-attack adversary, and decision making for each time phase.

(i) Data freshness. The user may consider the data freshness for the long-term time-series

data. The data freshness determines the privacy leakage as well as the service quality. (ii)

Active-attack adversary. We should also care about the feedback for previous time phase from

platform and adversary. The platform and adversary may have different needs of special data

for the future according to the data category they have and the freshness of current data. To

make the game model more practical, we need to consider the dynamic and heterogeneous

reward for different attributes in the dataset from active-attack adversary. (iii) Decision

making for each time phase. Because we consider different time phases in the game model,

the user needs to make a decision for each time phase about the data submission privacy
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protection level. That means we need to find the NE strategy for all the parties for each

time phase.

To solve the above challenges for the scenario with consideration of long-term series data

and active-attack adversaries, we design a three-party Stackelberg game with the following

efforts. (i) We divide time into time slots. In each time slot, to encourage user update fresh

data in current time slot. The adversary can actively choose the data purchase price and

the platform can actively choose the reward for submitted data. (ii) We use the theta decay

formula to take the data freshness into consideration. (iii) The Stackelberg Game model is

utilized to formulate the interaction among user, platform and adversary.

The main contributions are concluded as follows:

• We propose a three-party Stackelberg Game model especially for the long-term time

series data scenario.

• In the proposed game model, we consider the influence of data freshness and active

adversary and platform.

• We utilize machine learning techniques to find the quasi-Nash Equilibrium for the

complex game model and provide insight privacy protection guidance for users.

The rest of the chapter is organized as follows. Section 5.2 reviews and compare existing

works. We introduce the system model in Section 5.3. The optimal strategies for the user

and platform is analyzed in Section 5.4. Section 5.5 presents the simulations to validate the

theoretical analysis and we conclude this chapter in Section 5.6.

5.2 Related Work

Many researchers study how time-series data influence the privacy protection strategies

in a game model. Cardenas et al. [76] propose a system to detect electricity theft by using

data from smart meter which is continuously collect users’ electricity usage data. To satisfy

users privacy protection demands, they also propose an algorithm based on game theory to
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decide the proper uploading interval. Rottondi et al. [77] design a Game-theoretic Demand

side management system which uses a decentralized approach for collaboratively scheduling

the usage of domestic electrical appliances. It requires each user to communicate his/her

own energy consumption patterns. By using game theory, the proposed system can decide

the proper amount of added noise and the number of users for the purpose of privacy pro-

tection. Tefera and Yang [84] propose a framework to preserve location information privacy

in location-based service applications by considering both historical access data and current

location-based service access scenario, thus determining the probability that the visitors ac-

cess is honest or not. To protect privacy of mobile users in location-based services, Shokri et

al. [16] propose a Game-theoretic framework to alter users’ real trace based on Stackelberg

Bayesian game. With the purpose of preserving privacy in IoT-based transportation [82],

Sfar et al. proposes a algorithm relying on a game theory model between two party (data

holder and data requester) to reach a compromise between privacy protection and incentive

motivation. Qu et al. [81] design a hybrid privacy-preserving scheme with consideration of

both location and identity privacy to against continuous attacks from a dynamic adversary.

They establish a game-based Markov decision process model to maximize data utility with

high-level privacy protection. Alese et al. [80] propose a game model to protect users loca-

tion privacy by considering continuous location information from n-users, thus each user can

maximize its location privacy at minimum cost by strategically choosing series of actions in

the game. In [17], Sfar et al. propose a Markov game privacy preserving model for retail

applications. The proposed model considers the privacy leakage issues from diverse compo-

nents in retail applications and provide detailed states, actions, strategies and transitions

for data holder to balance the tradeoff between privacy protection and incentive motivation

of data requester. In [79], Xiao et al. design a Stackelberg game model to prevent Mobile

crowdsensing server from fake sensing users. The Nash Equilibrium (NE) ensures the smart-

phone users provide real sensing task with consideration of sensing cost and privacy leakage.

The author utilize deep Q-network to find the NE of the proposed Stackelberg game model.

Pawlick and Zhu [78] model the conflict between machine learning and data obfuscation with
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Figure 5.1. Structure of thee-party Stackelberg game model.

a Stackelberg Game. They also analyze the interaction between N+1 users by considering

the influence of each user’s perturbation. Wang and Zhang [83] study the context privacy

problem in the scenario has dynamic context and malicious adversaries with capabilities of

attacking adjustment. They use a competitive Markov decision process to model the inter-

active competition between users and adversaries in a long-term defense. The authors also

propose an minimax learning algorithm to calculate the optimal strategies for the users and

prove the propose algorithm can converges to the unique Nash equilibrium point quickly.

However, all the existing work only consider the short-term time series data with passive

third-party (platform or adversary). In this work, we will focus on the scenario of long-term

time-series data with active platform and adversary.

5.3 System Model

In this section, we formulate the interactions between all the three parties with the

consideration of data freshness in the scenario of active-attack adversary.

5.3.1 Framework

In this game model, as shown in Fig. 5.1 we assume there are three parties: user,

platform, adversary. We consider the adversary can actively change the purchase price of

different attributes. That means the adversary can increase the purchase price for needed

attributes.
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The platform can also actively request information and adjust the reward for different

attributes for each time slot. Therefore, the user has to choose a proper data submit/update

strategy to maximize its utility with consideration of data freshness. Because user’s data d

will change as time goes by, the data d may not ”fresh” if the user did not update it after

it changed. We divide time into time slots. The freshness of attributes is decided by how

many time slots has no attributes update, which is defined by ∆.

In this game, we can see that the adversary will choose its strategy first and then the

platform. The user will give response to the adversary and platform’s strategy. Thus, the

adversary is the leader in this game, and the platform is the follower of the adversary and

leader of the user. The user is the follower of the platform. We can use Stackelberg Game

model to formulate the interaction among user, platform and adversary.

In the following sections, we introduce the model of each party according to the order

of play in the Stackelberg Game model.

5.3.2 Adversary Model

As we discussed in former chapters, an adversary can purchase data from platform.

According to Cobb-Douglas production function [47], we can derive the expected value of

the new purchased data for the adversary:

Va = γa(sg)αa . (5.1)

where s is the platforms selling strategy decides the selling data granularity sg, γa is its

value productivity of the adversary, αa is adversary’s output elasticities of purchased data

granularity of sg.

Due to time passing, the data my not fresh anymore. If the user does not update in one

slot, the adversary can still generate value by using previous collected data as

V̄a = γa ¯(sg)
αa

(∆ + 1)βa , (5.2)
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where s̄ denotes the last purchased data granularity and and βa is adversary’s output elas-

ticities of ∆.

As time slot increases, the value derived decreases. Thus, the adversary would like to

actively change the purchase price to encourage the platform to request fresh data from

users. The price for one unit data granularity is p, thus purchase price is ps, where s is the

granularity of purchased data from the platform. Then, we can derive the utility function of

the adversary as follows.

Ua = Va − psg. (5.3)

The adversary will adjust the price p to maximize its utility. We formalize the optimization

problem as follows.

max
p

Ua

subject to Ua > V̄a.
(5.4)

.

5.3.3 Platform Model

After the adversary decides the price for the data, the platform may also change its

selling strategy as well as the reward provided to user. The unit granularity reward provided

to the user can be defined as r. The total reward provided to the user will be rg, where g is

the granularity of user submitted granularity. Meanwhile, the platform will provide service

to users according to the submitted data granularity and freshness. The service quality is

determined not only by data granularity, but also by data freshness. The data freshness

will decay as the time goes by. We can define the service quality lose as option theta decay

formulation. Thus, the service quality can be defined as

Q = log(g + 1). (5.5)
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With increasing time slot, the service quality will decay if there is no new data collected.

The service quality decay can be formulated by using time decay function as

Q̄ = log(ḡ + 1)− θ∆. (5.6)

The function of θ is decided by the type of the data.

The platform can also get value from the data as well. Similarly, according to Cobb-

Douglas production function [47], the platform can get value from data as

Vp = γpg
αp , (5.7)

where γp is its value productivity of the platform, αp is platform’s output elasticities of g.

If there is no new data collected from the user, the generated value by using previous

data is

V̄p = γpḡ
αp(∆ + 1)βp , (5.8)

where βp is platform’s output elasticities of ∆.

Meanwhile, the platform has reputation loss for selling data to adversary. If c is the unit

reputation loss for selling data, the total reputation loss for selling data is cs. The platform

can also pay unit reward r for submitted data to the user with a total reward rg. Besides,

the platform has a reputation loss because selling user’s data. We use a exponential function

sε to formulate the risk of reputation loss.

Thus, the platform has a utility

Up = Vp − rg + psg − sε (5.9)
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As a rational platform, it will choose a proper unit reward r and selling strategy s to

maximize its utility as the following optimization problem.

max
s,r

Up

subject to Up > V̄p, and s ≤ g.
(5.10)

.

5.3.4 User Model

The user can get service with quality Q and reward rg from the platform. However, the

user will suffer the joint privacy leakage from both platform and adversary. We define the

unit risk cost of privacy leakage is l, the joint privacy leakage is l(s+ g).

Thus, the utility of the user is

Uu = Q+ rg − l(s+ g) (5.11)

Thus, the user has to choose a proper submission granularity to maximize its utility as

max
g

Uu

subject to Uu > Q̄
(5.12)

5.4 Nash Equilibrium

To find the best strategy for the user, we need to analyze the interaction among the

three parties and find the stable status which is the Nash Equilibrium. Accordingly, the

Nash equilibrium can be defined as

Definition 3. A strategy profile S∗ = (g∗, r∗, s∗, p∗) is called Nash Equilibrium if the follow-

ing properties simultaneously hold:

Uu(g
∗, r∗, s∗, p∗) ≥ Uu(g, r

∗, s∗, p∗), ∀g ∈ Su;
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Up(g
∗, r∗, s∗, p∗) ≥ Up(g

∗, r, s, p∗),∀(r, s) ∈ Sp;

Ua(g
∗, r∗, s∗, p∗) ≥ Ua(g

∗, r∗, s∗, p),∀p ∈ Sa;

subject to U∗p > V̄p, U∗a > V̄a, and Uu > Q̄, where Su, Sp, Sa are the strategy space of the

user, platform, and adversary.

The Stackelberg Game model can be solved by backward induction. However, for most

parameters of αa, αp, there is no set equation for solving directly, instead we can use machine

learning techniques to find the quasi-NE.

5.5 Simulation

In this section, we study the interactions in the proposed two-layer three-party game.

In the simulation, we utilize a parallel machining learning algorithm termed Particle Swarm

Optimization (PSO) [73] to find the optimal strategies for the user and the platform like

previous chapters.

5.5.1 Simulation Setting

To get a obvious result, we set the productivity of the adversary γa = 4, the adversary’s

output elasticities of purchased data granularity αa = 0.2. We set the productivity of the

platform γp = 6, the platform’s output elasticities of collected data granularity αp = 0.3, and

the parameter ε for platform’s risk function is 2. In the simulation, to analyze the influence

of each party’s strategy, we set different value of strategies as p1 = 6, p2 = 4, p3 = 2 and

r1 = 3, r2 = 2, r3 = 1. The values for these parameter is choose to show a legible interaction

among three parties and the existence of NE. For some other values, the NE may not exist.

We choose the best strategy from running the algorithm 100 times, where each run consists

of 10,000 iterations.
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Figure 5.2. Platform Utility vs. Reward.
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5.5.2 Nash Equilibrium

From the simulation result in Fig. 5.2 and Fig. 5.3, we can see that there is a strategy

that can lead to maximum utility for both the user and platform. This can demonstrate that

the Nash Equilibrium exists in the proposed game model for the chosen parameters. For a

specific domain, the user, platform, and the adversary can run simulation under different

parameters to analyze the parameter range that can make the existence of NE.

As shown in Fig. 5.2, the platform’s utility increases as the reward increases before the

maximum point (solid dot) and decreases as the reward increases after the maximum point.

The utility increases as the reward increases because the increased reward will encourage

the user to increase the granularity of submitted data. But, if the platform gives too much

reward to the user, the payoff from the collected data cannot make up the paid reward. That

is the reason why the utility decreases as the reward increases after the maximum point. As

shown in Fig. 5.3, the user’ utility increases as the granularity increases before the maximum

point (solid point) and then decreases as the granularity increases. The utility increases as
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the granularity increases because the increased granularity can bring more service quality

and reward. However, a higher granularity can also cause more privacy leakage risk. That

is the reason why the utility decreases with the granularity after the maximum point.

From both Fig. 5.2 and Fig. 5.3, we can see that for a given strategy of the other two

parties, the platform and the user can find a optimal strategy to get maximum utility. This

validates that the NE exist for certain value of parameter.

5.5.3 Interactions Among Three Parties

Fig. 5.2 reveals the interaction between the adversary and the platform. We can states

that a higher unit price p will encourage the platform increase the reward given to the user.

This is because a higher data granularity will increase the payment from the adversary.

Thus, to pursue more payment, the platform would like to increase the reward to get data

with high granularity.

Fig. 5.3 and Fig. 5.4 reveals the interaction between the platform and the user. As

shown in Fig. 5.3, the higher reward will increase the utility of the user. Thus, the user is

willing to increase the data granularity to get higher service quality and higher reward. As

shown in Fig. 5.4, the optimal strategy of the user decreases as the platform increases its

selling strategy s. This is because the increased selling strategy of the platform will increase

the risk of privacy leakage. The user has to decrease the data granularity to avoid to much

privacy leakage.

Fig. 5.4 also reveals the indirect interaction between the adversary and the user. We can

tell that, a higher purchase unit price p of the adversary leads to a higher data granularity.

The reason behind the result is a high unit price encourages the platform increase the reward

(as shown in Fig. 5.2), thus encouraging the user to increase the data granularity (as shown

in Fig. 5.3).
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5.5.4 Significance of Three-Party Game Model

To validate the significance of the proposed three party Stackelberg game model, we

calculate the utility of the user in two different scenarios: (i) the user assumes the platform

is malicious and selling all the collected data. (ii) the user assume the platform is honest and

will not sell any collected data. From Fig. 5.5, we can see that the user will choose a higher

granularity (as the solid red dot) for submitted data when it assumes the platform is honest.

When the user assumes the platform is malicious, it will choose to decrease the granularity

(as the solid green diamond) for the submitted data to avoid risk of privacy leakage. However,

in the real world, most of the platforms are the type proposed in the game model. Thus,

neither the optimal strategy (left green circle) when assume the platform is malicious nor

the strategy (right red circle) when assume the platform is honest can make the user get

maximum utility. Therefore, the proposed three-party Stackelberg game model is significant

to guide the user to choose the optimal strategy to protect its privacy.

5.6 Conclusion

In this chapter, we consider the long-term time-series data and formulate the influence of

time decay of data. In this scenario, we assume both the adversary and platform have active

actions to request data. We design a three-party Stackelberg game model to formulate the

interactions among user, platform, and adversary. The machine learning based simulation

validate the proposed game model and the existence of NE. By using the proposed framework,

users can have guidance for whether to submit data for the current time slot and what the

proper granularity should be for the submitted data.
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Chapter 6

FUTURE WORK

In this dissertation, we propose three-party game models for three different general

scenarios. These works provide theoretical guidance for users to protect their privacy while

enjoying context-aware services. To apply the derived theoretical result into specific practical

scenarios, we need to adjust the general structure and formulations to fit in the target

scenario. Furthermore, it is very hard for users to calculate the NE and then choose a

proper action based on the theoretical value. Thus, an AI (Artificial Intelligence) based

Middleware Powered by Game Theory is necessary for users to automatically apply the

theoretical result derived from three-party game model.

Therefore, in the future, we would like to design game model based applications for

specific domains such as Smart Healthcare 85–95, Industry 4.0 [96–106], Big Data [107–119],

Smart City [120–125], Cloud Computing [126–150], Croudsourcing [151–169], Cognitive

Radio Network [170–174], Mobile Network [175–193], Wireless Sensor Network [194–235],

Vehicular Network [236–252], Social Network [253–262], 5G Network [263–270], Smart

City [271–281], BlockChain [282], etc. We also want to build AI based Middlewares to

detect the strategy of platforms (from coupon, survey, advertisement, etc) and adversaries

(from advertisement, fraud messages, etc), thus choosing the proper strategy for users auto-

matically based on the result derived from game model.

6.1 Game Theory Based Application for Specific Domain

With the development of CPS (Cyber-Physical System) [283–288] and IoT (Internet of

Things) [289, 290], context-aware services has been split to diverse specific scenarios such

as Healthcare, Smart City (includes smart grid, water and waste management, traffic and
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transportation management, Cognitive Radio Network, Mobile Network, Wireless Sensor

Network, etc.), Industry 4.0, Retail etc.

As we can see, different scenarios have different type of context and different valuation

functions. Thus, to apply the general framework work, we have to go deeper to investigate

the risk and valuation functions. Because of the importance of people’s health information

and the popularity of health related wearable devices, we will investigate the specific needs

for healthcare domain in our future work. We will study the common context types collected

from users’ wearable devices, the services provided from different kind of platform, and possi-

ble attacks from adversaries. Besides, we will also investigate the valuation functions for the

service quality, risk estimation, and data valuation as well as the proper parameters in these

formulations especially for healthcare scenario. Furthermore, according to the interaction in

healthcare service, we may modify one of the proposed general three party game model or

combine them together. We intend to derive a result which can be easily embedded to the

healthcare privacy protection system.

6.2 Privacy Protection Middleware Powered by Game Theory

In this dissertation, we derive the theoretical result of the propose strategy of users.

However, the theoretical result like “set granularity to 0.6” is meaningless for the user.

Thus, there is a gap between the theoretical result derived from this dissertation and real

application. To fill this gap, we would like to build a middleware for context-aware services

by utilizing DL techniques [291]. From the coupon, survey and advertisement sent from the

platform and adversary, we can use DL based keyword detection and image detection to

detect the strategy of the platform and the adversary. Based on the proposed game model,

the algorithm can calculate the proper strategy of the user. We can use fuzzy set to map the

numerical strategy to proper meaningful strategy. As a privacy protector installed in user’s

devices, the middleware will not leak precious information to any platform. Therefore, for

any type of data, it will submit data with proper granularity to data requester with respect

to users’ utility.
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Chapter 7

CONCLUSION

In this dissertation, we study the problems of privacy protection for context-aware

services based on game theory. We build three party game models for three different general

scenarios and provide privacy guidance for users accordingly.

Firstly, this dissertation provides realistic optimal strategies for both the user and the

platform. We propose a three-party game model that captures the interactions between any

two of the parties: user, platform and adversary. Our solution determines an optimal fine-

grained strategy for the user and platform, so that the user can choose an optimal data

granularity to balance service quality and privacy leakage and that the platform can choose

the optimal reselling strategy to balance profit and reputation loss. Our model also accounts

for the correlations between multiple data attributes provided by a user.

Secondly, this dissertation studies the interactions among the three parties by proposing

a platform-centric two-layer three party game. In the proposed game model, we theoretically

formulate the behaviors of each party and the interactions among the three parties by using

an aggregate game model and contract model. This work will enable platforms, such as

Facebook, to provide quality service and protection to its users, but also provide a means to

profit from a balanced strategy.

Thirdly, this dissertation consider the long-term time-series data and formulates the

influence of time decay of data as well as the active action of the platform and adversary.

We design a three-party Stackelberg game model to formulate the interactions among user,

platform, and adversary. By using the proposed framework, users can have guidance for

whether to submit data for current time and what the proper granularity for data submitting.

All the proposed game models and solutions are thoroughly discussed and validated

through simulation. We also discuss some topics for future study in our dissertation. Gen-
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erally, our dissertation provides a body of solutions for the purpose of privacy protection in

diverse context-aware services base on game theory. These solutions could comprehensively

provide guidance for user to choose a proper strategy to preserve privacy while enjoy the

context-aware services. We believe the work in this dissertation will serve as a core of privacy

protection algorithms. Finally, this dissertation will also inspire subsequent research towards

the publication of privacy protection in specific applications.
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