17,147 research outputs found

    Identifying Anticyclonic Vortex Features Produced by the Rossby Wave Instability in Protoplanetary Disks

    Full text link
    Several nearby protoplanetary disks have been observed to display large scale crescents in the (sub)millimeter dust continuum emission. One interpretation is that these structures correspond to anticyclonic vortices generated by the Rossby wave instability within the gaseous disk. Such vortices have local gas over-densities and are expected to concentrate dust particles with Stokes number around unity. This process might catalyze the formation of planetesimals. Whereas recent observations showed that dust crescent are indeed regions where millimeter-size particles have abnormally high concentration relative to the gas and smaller grains, no observations have yet shown that the gas within the crescent region counter-rotates with respect to the protoplanetary disk. Here we investigate the detectability of anticyclonic features through measurement of the line-of-sight component of the gas velocity obtained with ALMA. We carry out 2D hydrodynamic simulations and 3D radiative transfer calculation of a protoplanetary disk characterized by a vortex created by the tidal interaction with a massive planet. As a case study, the disk parameters are chosen to mimic the IRS 48 system, which has the most prominent crescent observed to date. We generate synthetic ALMA observations of both the dust continuum and 12CO emission around the frequency of 345 GHz. We find that the anticyclonic features of vortex are weak but can be detected if both the source and the observational setup are properly chosen. We provide a recipe for maximizing the probability to detect such vortex features and present an analysis procedure to infer their kinematic properties.Comment: 14 pages, 8 figures, Accepted for publication in Astrophysical Journa

    AstroGrid-D: Grid Technology for Astronomical Science

    Full text link
    We present status and results of AstroGrid-D, a joint effort of astrophysicists and computer scientists to employ grid technology for scientific applications. AstroGrid-D provides access to a network of distributed machines with a set of commands as well as software interfaces. It allows simple use of computer and storage facilities and to schedule or monitor compute tasks and data management. It is based on the Globus Toolkit middleware (GT4). Chapter 1 describes the context which led to the demand for advanced software solutions in Astrophysics, and we state the goals of the project. We then present characteristic astrophysical applications that have been implemented on AstroGrid-D in chapter 2. We describe simulations of different complexity, compute-intensive calculations running on multiple sites, and advanced applications for specific scientific purposes, such as a connection to robotic telescopes. We can show from these examples how grid execution improves e.g. the scientific workflow. Chapter 3 explains the software tools and services that we adapted or newly developed. Section 3.1 is focused on the administrative aspects of the infrastructure, to manage users and monitor activity. Section 3.2 characterises the central components of our architecture: The AstroGrid-D information service to collect and store metadata, a file management system, the data management system, and a job manager for automatic submission of compute tasks. We summarise the successfully established infrastructure in chapter 4, concluding with our future plans to establish AstroGrid-D as a platform of modern e-Astronomy.Comment: 14 pages, 12 figures Subjects: data analysis, image processing, robotic telescopes, simulations, grid. Accepted for publication in New Astronom

    Workshop proceedings: Information Systems for Space Astrophysics in the 21st Century, volume 1

    Get PDF
    The Astrophysical Information Systems Workshop was one of the three Integrated Technology Planning workshops. Its objectives were to develop an understanding of future mission requirements for information systems, the potential role of technology in meeting these requirements, and the areas in which NASA investment might have the greatest impact. Workshop participants were briefed on the astrophysical mission set with an emphasis on those missions that drive information systems technology, the existing NASA space-science operations infrastructure, and the ongoing and planned NASA information systems technology programs. Program plans and recommendations were prepared in five technical areas: Mission Planning and Operations; Space-Borne Data Processing; Space-to-Earth Communications; Science Data Systems; and Data Analysis, Integration, and Visualization

    Miniature exoplanet radial velocity array I: design, commissioning, and early photometric results

    Get PDF
    The MINiature Exoplanet Radial Velocity Array (MINERVA) is a US-based observational facility dedicated to the discovery and characterization of exoplanets around a nearby sample of bright stars. MINERVA employs a robotic array of four 0.7 m telescopes outfitted for both high-resolution spec- troscopy and photometry, and is designed for completely autonomous operation. The primary science program is a dedicated radial velocity survey and the secondary science objective is to obtain high precision transit light curves. The modular design of the facility and the flexibility of our hardware allows for both science programs to be pursued simultaneously, while the robotic control software provides a robust and efficient means to carry out nightly observations. In this article, we describe the design of MINERVA including major hardware components, software, and science goals. The telescopes and photometry cameras are characterized at our test facility on the Caltech campus in Pasadena, CA, and their on-sky performance is validated. New observations from our test facility demonstrate sub-mmag photometric precision of one of our radial velocity survey targets, and we present new transit observations and fits of WASP-52b—a known hot-Jupiter with an inflated radius and misaligned orbit. The process of relocating the MINERVA hardware to its final destination at the Fred Lawrence Whipple Observatory in southern Arizona has begun, and science operations are expected to commence within 2015

    Digital receivers for low-frequency radio telescopes UTR-2, URAN, GURT

    Full text link
    This paper describes digital radio astronomical receivers used for decameter and meter wavelength observations. This paper describes digital radio astronomical receivers used for decameter and meter wavelength observations. Since 1998, digital receivers performing on-the-fly dynamic spectrum calculations or waveform data recording without data loss have been used at the UTR-2 radio telescope, the URAN VLBI system, and the GURT new generation radio telescope. Here we detail these receivers developed for operation in the strong interference environment that prevails in the decameter wavelength range. Data collected with these receivers allowed us to discover numerous radio astronomical objects and phenomena at low frequencies, a summary of which is also presented.Comment: 24 pages, 15 figure

    The Robo-AO-2 facility for rapid visible/near-infrared AO imaging and the demonstration of hybrid techniques

    Get PDF
    We are building a next-generation laser adaptive optics system, Robo-AO-2, for the UH 2.2-m telescope that will deliver robotic, diffraction-limited observations at visible and near-infrared wavelengths in unprecedented numbers. The superior Maunakea observing site, expanded spectral range and rapid response to high-priority events represent a significant advance over the prototype. Robo-AO-2 will include a new reconfigurable natural guide star sensor for exquisite wavefront correction on bright targets and the demonstration of potentially transformative hybrid AO techniques that promise to extend the faintness limit on current and future exoplanet adaptive optics systems.Comment: 15 page

    Astrophysics datamining in the classroom: Exploring real data with new software tools and robotic telescopes

    Full text link
    Within the efforts to bring frontline interactive astrophysics and astronomy to the classroom, the Hands on Universe (HOU) developed a set of exercises and platform using real data obtained by some of the most advanced ground and space observatories. The backbone of this endeavour is a new free software Web tool - Such a Lovely Software for Astronomy based on Image J (Salsa J). It is student-friendly and developed specifically for the HOU project and targets middle and high schools. It allows students to display, analyze, and explore professionally obtained astronomical images, while learning concepts on gravitational dynamics, kinematics, nuclear fusion, electromagnetism. The continuous evolving set of exercises and tutorials is being completed with real (professionally obtained) data to download and detailed tutorials. The flexibility of the Salsa J platform tool enables students and teachers to extend the exercises with their own observations. The software developed for the HOU program has been designed to be a multi-platform, multi-lingual experience for image manipulation and analysis in the classroom. Its design enables easy implementation of new facilities (extensions and plugins), minimal in-situ maintenance and flexibility for exercise plugin. Here, we describe some of the most advanced exercises about astrophysics in the classroom, addressing particular examples on gravitational dynamics, concepts currently introduced in most sciences curricula in middle and high schools.Comment: 10 pages, 12 images, submitted to the special theme issue Using Astronomy and Space Science Research in Physics Courses of the American Journal of Physic

    Shape: A 3D Modeling Tool for Astrophysics

    Full text link
    We present a flexible interactive 3D morpho-kinematical modeling application for astrophysics. Compared to other systems, our application reduces the restrictions on the physical assumptions, data type and amount that is required for a reconstruction of an object's morphology. It is one of the first publicly available tools to apply interactive graphics to astrophysical modeling. The tool allows astrophysicists to provide a-priori knowledge about the object by interactively defining 3D structural elements. By direct comparison of model prediction with observational data, model parameters can then be automatically optimized to fit the observation. The tool has already been successfully used in a number of astrophysical research projects.Comment: 13 pages, 11 figures, accepted for publication in the "IEEE Transactions on Visualization and Computer Graphics
    corecore