305 research outputs found

    Resolution in Linguistic Propositional Logic based on Linear Symmetrical Hedge Algebra

    Full text link
    The paper introduces a propositional linguistic logic that serves as the basis for automated uncertain reasoning with linguistic information. First, we build a linguistic logic system with truth value domain based on a linear symmetrical hedge algebra. Then, we consider G\"{o}del's t-norm and t-conorm to define the logical connectives for our logic. Next, we present a resolution inference rule, in which two clauses having contradictory linguistic truth values can be resolved. We also give the concept of reliability in order to capture the approximative nature of the resolution inference rule. Finally, we propose a resolution procedure with the maximal reliability.Comment: KSE 2013 conferenc

    Non-clausal multi-ary alpha-generalized resolution calculus for a finite lattice-valued logic

    Get PDF
    Due to the need of the logical foundation for uncertain information processing, development of efficient automated reasoning system based on non-classical logics is always an active research area. The present paper focuses on the resolution-based automated reasoning theory in a many-valued logic with truth-values defined in a lattice-ordered many-valued algebraic structure - lattice implication algebras (LIA). Specifically, as a continuation and extension of the established work on binary resolution at a certain truth-value level α (called α-resolution), a non-clausal multi-ary α-generalized resolution calculus is introduced for a lattice-valued propositional logic LP(X) based on LIA, which is essentially a non-clausal generalized resolution avoiding reduction to normal clausal form. The new resolution calculus in LP(X) is then proved to be sound and complete. The concepts and theoretical results are further extended and established in the corresponding lattice-valued first-order logic LF(X) based on LIA

    (<b><i>α, β</i></b>) - Lock Resolution Method of Linguistic Truth-Valued Intuitionistic Fuzzy First-order Logic

    Get PDF
    Automated reasoning is an important research direction in artificial intelligence, and resolution method is an efficient logical reasoning tool, it deserves to be studied. This paper establishes linguistic truth-valued intuitionistic fuzzy first-order logic (LTV-IFFL) system. To improve the resolution efficiency, the (αβ)-lock resolution method is introduced into LTV-IFFL system and requires that the resolution literal is the literal with the smallest lock number. Its soundness and completeness are proved. Finally, we give the (αβ) -locked resolution of the LTV-IFFL and apply it to the example.</p

    Fuzzy Logic

    Get PDF
    Fuzzy Logic is becoming an essential method of solving problems in all domains. It gives tremendous impact on the design of autonomous intelligent systems. The purpose of this book is to introduce Hybrid Algorithms, Techniques, and Implementations of Fuzzy Logic. The book consists of thirteen chapters highlighting models and principles of fuzzy logic and issues on its techniques and implementations. The intended readers of this book are engineers, researchers, and graduate students interested in fuzzy logic systems

    Advances and Applications of Dezert-Smarandache Theory (DSmT) for Information Fusion (Collected works), Vol. 2

    Get PDF
    This second volume dedicated to Dezert-Smarandache Theory (DSmT) in Information Fusion brings in new fusion quantitative rules (such as the PCR1-6, where PCR5 for two sources does the most mathematically exact redistribution of conflicting masses to the non-empty sets in the fusion literature), qualitative fusion rules, and the Belief Conditioning Rule (BCR) which is different from the classical conditioning rule used by the fusion community working with the Mathematical Theory of Evidence. Other fusion rules are constructed based on T-norm and T-conorm (hence using fuzzy logic and fuzzy set in information fusion), or more general fusion rules based on N-norm and N-conorm (hence using neutrosophic logic and neutrosophic set in information fusion), and an attempt to unify the fusion rules and fusion theories. The known fusion rules are extended from the power set to the hyper-power set and comparison between rules are made on many examples. One defines the degree of intersection of two sets, degree of union of two sets, and degree of inclusion of two sets which all help in improving the all existing fusion rules as well as the credibility, plausibility, and communality functions. The book chapters are written by Frederic Dambreville, Milan Daniel, Jean Dezert, Pascal Djiknavorian, Dominic Grenier, Xinhan Huang, Pavlina Dimitrova Konstantinova, Xinde Li, Arnaud Martin, Christophe Osswald, Andrew Schumann, Tzvetan Atanasov Semerdjiev, Florentin Smarandache, Albena Tchamova, and Min Wang
    corecore