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Abstract In this paper, α-paramodulation and α-GH paramodulation methods are
proposed for handling logical formulas with equality in a lattice-valued logic LnF(X),
which has unique ability for representing and reasoning uncertain information from
a logical point of view. As an extension of the work of [10,11], a new form of α-
equality axioms set is proposed. The equivalence between α-equality axioms set and
Eα -interpretation in LnF(X) with an appropriate level is also established, which may
provide a key foundation for equality reasoning in lattice-valued logic. Based on its
equivalence, Eα -unsatisfiability equivalent transformation is given. Furthermore, α-
paramodulation and its restricted method, i.e., α-GH paramodulation are given. The
soundness and completeness of the proposed methods are also obtained.

Keywords Lattice-valued logic · Equality · α-Equality axioms · α-Paramodulation ·
α-GH paramodulation

1 Introduction

The general aim of decision making in big data is to reduce large-scale problems to
a scale that humans can comprehend and act upon [21]. The credibility of the data
is also an important issue to be guaranteed. Some methods or branches are proposed
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to solve this problem such as deductive methods by mathematics or formal logics,
empirical methods by statistical analysis, and computational methods by large scale
simulations or data driven methods. Among them, automated reasoning can provide
a strict and theoretical foundation for validating its correctness from a formal way.

Resolution in classical logic [24], due to its simplicity and completeness for un-
satisfiability validation, is a main inference rule used in many famous automated the-
orem provers (ATPs) such as Prover9 [17], E [25], Vampire [22], etc. In these ATPs,
saturation algorithm and its extended forms are their main frameworks for imple-
mentation resolution methods. Due to no restriction in literals and clauses selection,
many redundant clauses generates. To solve this problem, many restricted resolution
methods [7] are proposed, for instance, lock resolution, hyper-resolution, semantic
resolution, extension rule[19], etc. Different from restrictions on literals and clauses,
contradiction separation based automated deduction [28] is an extension of binary
resolution, where dynamic and multiple (two or more) clauses and literals involving
in every deductive step, and its implementation CSE-E[6] also has a good perfor-
mance among others[5,26].

Equality is very common and well known to be useful in many subjects such as
mathematics, logic, computer science, etc. Strictly, equality is a congruence relation
between two quantities, or more generally two mathematical expressions, asserting
that these quantities have the same value, or that the expressions represent the same
mathematical object. Unfortunately, the E-unsatisfiability [4,7], which is the unsat-
isfiability of logical formula S with equality, cannot be judged if we only use the
resolution like methods including contradiction separation based methods. There ex-
ist two solutions for this problem. The first way is to add the equality axioms set to
S, and a new logical formula S1 is obtained. Then the E-unsatisfiability of S is equiv-
alent to the unsatisfiability of S1, and hence it can be judged by the resolution and
its extended methods. However, the increasing size of S1 will cause searching space
explosion if S includes many function or predicate symbols. The alternative way is
called paramodulation [1–3,8,18,23], which is a new inference rule in which the
equality symbol satisfies the congruence relation by means of reasoning. Compared
with the former method, the paramodulation method can decrease the complexity of
logical formula.

As we know, the mental activities of humans are often involved in uncertain infor-
mation processing, and it is difficult to represent and reason this kind of phenomena
of real world in classical logic [16]. To deal with uncertainty especially for incom-
parability in the intelligent information processing from a symbolism point of view,
lattice implication algebra (LIA) [27] and lattice-valued logic [31] based on LIA are
proposed by extending the classical logic in many ways such as the truth-valued field,
the implication connective and language. Uncertainty reasoning and automated rea-
soning [29,30] in lattice-valued logic based on LIA is given, and applied in many
areas [20,31] such as rule bases, decision making, natural language processing, etc.
Concretely, for the automated reasoning aspect, the α-resolution principle is devel-
oped in lattice-valued propositional logic LP(X) [15,30] and lattice-valued first-order
logic LF(X) [29] as well as their soundness and weak completeness. Its approximate
reasoning scheme was also investigated and reported in [9,12–14,31–34].
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The equality in lattice-valued logic based on LIA is also an important and spe-
cial predicate symbol. If we treat the equation as an ordinary one, and only use the
α-resolution methods to judge the α-unsatisfiability of S, then the completeness of α-
resolution does not hold. Similar to classical logic, for judging the α-unsatisfiability
of logical formula S with equality in lattice-valued logic, two main alternatives ex-
ist. One is adding the α-equality axioms to the original clauses set S, and get a new
clauses set S1. Then the Eα -unsatisfiability of S is equivalent to the α-unsatisfiability
of S1, which can be judged by the α-resolution principle. However, this method may
increase the complexity of S by adding the equality axioms set. The clauses set may
become too large if S includes many different predicate symbols or functional sym-
bols. The other is dealing with the logical formula S directly. Of course, it is in-
complete if only α-resolution principle is used. We should extend the α-resolution
method and develop some complete automated reasoning methods for handling the
logical formula with equality in lattice-valued logic.

By combining α-resolution and paramodulation, α-paramodulation was proposed
to handle equality logical formulae directly in [10,11]. Two types of α-equality ax-
ioms sets were respectively given to guarantee the equivalence of α-equality axioms
set Kα and Eα -interpretation for LF(X). However, many conditions should be added
to keep its equivalence, and these conditions are too rigor for logical formulae and
resolution level α . In this sense, we propose a new form of Kα for LnF(X) in this
paper as an extension of the work [10,11], which can keep the equivalence of α-
equality axioms set and α-congruence relation naturally with an appropriate level.
Based on this equivalence, we proposed α-paramodulation and α-GH paramodula-
tion methods. The soundness and completeness of the proposed methods are also
given.

The remained part of this paper is organized as follows. After a brief overview
about lattice-valued logic based on LIA and α-Gv semantic resolution in lattice-
valued logic in Section 2, the αE -unsatisfiability for a lattice-valued logic LnF(X) is
given including equivalence of α-equality axioms set and α-congruence relation, and
αE -unsatisfiability transformation in Section 3. The concepts of α-paramodulation
and α-GH paramodulation are given. Their soundness and completeness are obtained
in Section 4. Section 5 concludes this paper.

2 Preliminaries

In this section, we only recall some elementary definitions and properties needed in
the following discussions, more detailed notations and results about lattice-valued
logic based on LIA and α-resolution principle can be seen in [27,29–31].

2.1 α-Resolution principle in lattice-valued logic based on LIA

Definition 1 [27,31] Let (L,∨,∧,O, I) be a bounded lattice with an order-reversing
involution “′”, I and O the greatest and the smallest element of L, respectively, and
→: L× L −→ L a mapping. L = (L,∨,∧,′ ,→,O, I) is called a lattice implication
algebra (LIA) if the following conditions hold for any x,y,z ∈ L:
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(I1) x→ (y→ z) = y→ (x→ z),
(I2) x→ x = I,
(I3) x→ y = y′→ x′,
(I4) x→ y = y→ x = I implies x = y,
(I5) (x→ y)→ y = (y→ x)→ x,
(L1) (x∨ y)→ z = (x→ z)∧ (y→ z),
(L2) (x∧ y)→ z = (x→ z)∨ (y→ z).

In order to deal with quantifiers, in what follows, we suppose that L is a complete
lattice.

Definition 2 [27,31] (Łukasiewicz implication algebra on a finite chain Ln) Let Ln be
a finite chain, Ln = {ai|1≤ i≤ n} and a1 < a2 < .. . < an, define for any a j,ak ∈ Ln,

a j ∨ak = amax{ j,k},a j ∧ak = amin{ j,k},(a j)′ = an− j+1,a j → ak = amin{n− j+k,n}.

Then Ln = (Ln,∨,∧,′ ,→,a1,an) is an LIA.

Definition 3 [30,31] Let X be a set of propositional variables, T = L∪{′,→} be a
type with ar(′) = 1, ar(→) = 2 and ar(a) = 0 for every a∈ L. The propositional algebra
of the lattice-valued propositional calculus on the set X of propositional variables is
the free T algebra on X and is denoted by LP(X).

Remark 1 Specially, when L = Ln,LP(X) is denoted as LnP(X).

Definition 4 [30,31] Let F ∈ LP(X), α ∈ L. If there exists a valuation γ0 of LP(X)
such that γ0(F) ≥ α , F is satisfiable by a truth-value level α , in short, α-satisfiable.
If γ(F) ≥ α for every valuation γ of LP(X), F is valid by the truth-value level α , in
short, α-valid. If γ(F) ≤ α for every valuation γ of LP(X), F is always false by the
truth-value level α , in short, α-false.

Definition 5 [30,31] F ∈ LP(X) is called an extremely simple form, in short ESF, if
F∗ ∈ LP(X) obtained by deleting any constant or literal or implication term appearing
in F is not equivalent to F .

Definition 6 [30,31] F ∈ LP(X) is called an indecomposable extremely simple form,
in short IESF, if

(1) F is an ESF containing connectives → and ′ at most.
(2) For any G ∈ LP(X), if G ∈ F in LP(X), then G is an ESF containing connectives

→ and ′ at most, where LP(X) = (LP(X)/=,∨,∧,′ ,→) is an LIA, LP(X)/= =
{p | p ∈ LP(X)}, p = {q | q ∈ LP(X),q = p}, for any p,q ∈ LP(X)/=, p∨ q =
p∨q, p∧q = p∧q,(p)′ = p′, p→ q = p→ q.

Definition 7 [30,31] All the constants, literals and IESFs in LP(X) are called gener-
alized literals.

In LP(X), a disjunction of finite generalized literals is called a generalized clause,
and a conjunction of finite generalized clauses is called a generalized conjunctive
normal form.
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Definition 8 [30,31] Let α ∈ L, G1 and G2 be two generalized clauses in LP(X) of
the forms G1 = g1∨ . . .∨gi∨ . . .∨gm and G2 = h1∨ . . .∨h j ∨ . . .∨hn, respectively.
If for any valuation I such that I(gi∧h j)≤ α , then

G = g1∨ . . .∨gi−1∨gi+1∨ . . .∨gm∨h1∨ . . .∨h j−1∨h j+1∨ . . .∨hn

is called an α-resolvent of G1 and G2, denoted by G = Rα(G1,G2), gi and h j form an
α-resolution pair, denoted by (gi,h j)-α . The generation of an α-resolvent from two
clauses, called α-resolution, is the sole rule of the α-resolution principle inference.

Definition 9 [30,31] Suppose a generalized conjunctive normal form S = G1∧G2∧
. . .∧Gn in LP(X), α ∈ L. w = {D1,D2, . . . ,Dm} is called an α-resolution deduction
from S to the generalized clause Dm, if

(1) Di ∈ {G1,G2, . . . ,Gn} or
(2) There exist j,k < i, such that Di = Rα(D j,Dk).

If there exists an α-resolution deduction from S to the empty clause (denoted by
α-@), then w is called an α-refutation of S.

The truth-value domain of lattice-valued first-order logic LF(X) is an LIA. This
logic system can be used to deal with propositions with quantifiers [31]. Specially, if
the valuation field of LF(X) L is Ln, then LF(X) is denoted as LnF(X).

Definition 10 [29] Suppose V and F are the set of variable symbols and that of func-
tional symbols in LF(X), respectively, the set of terms of LF(X) is defined as the
minimal set J satisfying the following conditions:

(1) V ⊆J .
(2) For any n∈N∪{0}, if f (n) ∈F , then f (n)(t0, t1, . . . , tn)∈J for any t0, t1, . . . , tn ∈

J .

Definition 11 [29] Suppose P is the predicate symbol set in LF(X). The set of atoms
of LF(X) is defined as the smallest set At satisfying the following conditions: For
any n ∈ N∪{0}, if P(n) ∈ P, then P(n)(t0, t1, . . . , tn) ∈At for any t0, t1, . . . , tn ∈J .

Definition 12 [29] The set of logical formulae of LF(X) is defined as the smallest
set F satisfying the following conditions:

(1) At ⊆F .
(2) If p,q ∈F , then p→ q ∈F .
(3) If p ∈F , x is a free variable in p, then (∀x)p, (∃x)p ∈F .

Definition 13 [29] A logical formula G in LF(X) is a g-literal, if

(1) G is a literal, or
(2) G is constructed only by some literals and some implication connectives with the

condition that G can not be represented by connectives ∨ or ∧ and G can not be
decomposed into a simpler form (G is called an indecomposable form).

In LF(X), a disjunction of finite g-literals is called a g-clause, and a conjunction
of finite g-clauses is called a g-conjunctive normal form.
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2.2 α-Gv semantic resolution for lattice-valued logic based on LIA

Definition 14 [32] Let S be a set of g-clauses in LF(X), α ∈ L, G an order of g-
literals of S, I an interpretation in LF(X), then (E1,E2, . . . ,Eq,N) is called an α-Gv
semantic clash if it satisfies the following conditions.

(1) I(Ei)≤ α (1≤ i≤ q).
(2) Let R1 = N, for any i = 1,2, . . .q, there exist g-clauses Ri and Ei, such that Ri+1 =

Rα(Ri,Ei).
(3) The resolved g-literal in Ei has the maximal order in Ei with respect to G.
(4) I(Rq+1)≤ α .

Then Rq+1 is called the α-Gv semantic resolvent of (E1,E2, . . . ,Eq,N), i.e., Rq+1 =
Rα−Gv(E1,E2, . . . ,Eq,N).

Definition 15 [32] Suppose S is a set of g-clauses S = G1∧G2∧ ·· ·∧Gn in LF(X),
α ∈ L. w = {D1,D2, . . . ,Dm} is called an α-Gv semantic resolution deduction of S
from D1 to Dm, if

(1) Di ∈ {G1,G2, . . . ,Gn}, or
(2) there exist k1,k1, . . . ,kn < i, such that Di = Rα−Gv(Dk1 ,Dk2 , . . . ,Dkn).

Theorem 1 [32] Let S be a set of g-clauses in LF(X), α ∈ L, {D1,D2, . . . ,Dm} an
α-Gv resolution deduction from S to a g-clause Dm. If Dm ≤ α , then S≤ α .

Theorem 2 [32] Let S be a set of g-clauses in LF(X), α ∈ L, I an interpretation in
LF(X). Then there exists an α-Gv semantic resolution deduction from S to α-@ if S
is α-unsatisfiable and satisfies the following conditions.

(1) For any g-literals g1,g2, . . . ,gn in S, if g1 ∧g2 ∧ ·· · ∧gn ≤ α , then there exist gi
and g j (1≤ i, j ≤ n), such that gi∧g j ≤ α ,

(2) If for any interpretation I, I(gi ∧ g j) ≤ α , then I(gi) ≤ α and I(g j) ≤ α do not
hold simultaneously,

(3) If the g-literal g has the minimal order in S, then I(g)≤ α ,

3 αE -Unsatisfiability for a lattice-valued logic LnF(X)

3.1 Equality relation in LnF(X)

Definition 16 Let S be a set of g-clauses in LnF(X), α ∈ Ln, W the set of all the
interpretations of S, Q ⊆W (Q , /0). Then S is αQ-unsatisfiable if and only if S ≤ α
with the interpretation Q.

Example 1 Let g1 = (∀x)(P1(x)→ a2) be a g-literal in L9F(X), α = a5, where x is a
variable symbol, a2 is a constant symbol, P1 is a predicate symbol. For the predicate
P1, we take a special assignment for partial interpretation W of g1, that is, for any
interpretation field D, W = {IW : assign P1 to a7, that is, for any x ∈ D, IW (P1(x)) =
a7}, assign constant symbol a2 to constant a2 ∈ L9. Therefore, with the interpretation
IW , we have Iw(g1)= a7 → a2 = a4. Therefore, g1 is αw-unsatisfiable in L9F(X).
However, g1 is α-satisfiable in L9F(X).
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Remark 2 The interpretation mentioned in this paper is the Herbrand interpretation
of S in LnF(X) [31].

Equality is an important relation in mathematic logic. Especially, in classical
logic, the equality predicate symbol satisfies the properties of congruence relation
of equality, that is, reflexity, symmetry, transitivity and monotonicity. In [7], a special
partial interpretation, E-interpretation, is given, which satisfies its congruence rela-
tion. Now we extend the concept of E-interpretation in [23] to Eα -interpretation for
LnF(X).

For convenience, we denote the equation s = t as E(s, t), where E is the equality
predicate symbol in LnF(X).

Definition 17 Let S be a set of g-clauses in LnF(X). Then the interpretation I is an
Eα -interpretation if it satisfies the following conditions.

(1) I(E(x1,x1))≥ α .
(2) If I(E(x1,x2))≥ α , then I(E(x2,x1))≥ α .
(3) If I(E(x1,x2))≥ α and I(E(x2,x3))≥ α , then I(E(x1,x3))≥ α .
(4) If I(E(x j,x0)) ≥ α and I(P(x1,x2, . . . ,x j, . . . ,xn)) ≥ α , then I(P(x1,x2, . . . ,x0,

. . . ,xn))≥ α .
(5) If I(E(x j,x0)) ≥ α , then I(E( f (x1,x2, . . . ,x j, . . . ,xn), f (x1,x2, . . . ,x0, . . . ,xn)) ≥

α .

Where x1,x2, . . . ,x0, . . . ,xn are variable symbols in LnF(X), P is an n-ary predicate
symbol in S, f is an n-ary function symbol in S.

Remark 3 It is shown from (1), (2), (3), (4), (5) in Definition 17 that the equality pred-
icate E in LnF(X) should satisfy properties of α-reflexity, α-symmetry, α-transitivity
and α-monotonicity for function and predicate symbols, respectively.

Generally, if a clauses set S in LnF(X) includes equality symbol E, then E should
satisfy appropriate logical formulas. Hence an α-equality axioms set Kα is given,
that is, if I is an Eα -interpretation, then for every formula g ∈ Kα , I(g) ≥ α . On the
other hand, if every formula in Kα is α-valid with the interpretation I, then I is an
Eα -interpretation. In [10,11], two types of α-equality axioms set are given to guar-
antee the equivalence of α-equality axioms set Kα and Eα -interpretation for LF(X).
However, many conditions should be added to keep its equivalence. For example, in
[10], if there exists a valuation I0 such that I0(E(x,y)) = a7, I0(E(y,x)) = a2, then
I0(E(x,y))→ I0(E(y,x)) = a7 → a2 = a4 < a5. Therefore, we should take α = I ∈ Ln.
This condition is too rigor, because if α = I is a resolution level, then all g-clauses
can be resolved. To solve this problem, in this section we propose a new form of
α-equality axioms set for LnF(X), which can keep its equivalence naturally with an
appropriate resolution level.

Definition 18 Let S be a set of g-clauses in LnF(X), α ∈ Ln. Then Kα is an α-
equality axioms set of S if the following logical formulas are α-valid clauses.

e1. E(x1,x1),
e2. (α → E(x1,x2))′∨E(x2,x1),
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e3. (α → E(x1,x2))′∨ (α → E(x2,x3))′∨E(x1,x3),
e4. (α → E(x j,x0))′∨ (α → P(x1,x2, . . . ,x j, . . . ,xn))′∨P(x1,x2, . . . ,x0, . . . ,xn),
e5. (α → E(x j,x0))′∨E( f (x1,x2, . . . ,x j, . . . ,xn), f (x1,x2, . . . ,x0, . . . ,xn)),

where x1,x2, . . . ,x0, . . . ,xn are variable symbols in LnF(X), P is an n-ary predicate
symbol in S, f is an n-ary function symbol in S.

Remark 4 Specially, if α = I, then all formulas in Kα are valid.

To keep the equivalence of α-equality axioms set and Eα -interpretation, we should
consider a special set of resolution level α as shown in Definition 19.

Definition 19 Let (L,∨,∧,′ ,→,O, I) be an LIA. α is called an appropriate level if
satisfies: for any a ∈ L, if a≤ α , then (α → a)′ ≥ α .

Proposition 1 Let (Ln,∨,∧,′ ,→,O, I) be an LIA. Then α ∈ Ln is an appropriate
level if and only if α ∈ {a ∈ Ln|a≤ a[n/2]}.

Proof The sufficiency can be easily validated, we only prove the necessity.
Since α,a∈ Ln, let α = am, a = ai, then α → a = am → ai = amin{m,n−m+i}, hence

α → a = an−min{m,n−m+i}. If α ∈ Ln is an appropriate level, then n−min{m,n−m+
i} ≥m, that is, n−m≥min{m,n−m+ i} for any i≤m. In this sense, two cases exist
as follows.

(1) If m≤ [n/2], then n−m≥ [n/2], hence min{m,n−m+ i}= m, that is, n−m≥
min{m,n−m+ i} for any i≤ m.

(2) If m≥ [n/2], then n−m≤ [n/2], hence min{m,n−m+ i} = m for some i. In this
case, n−m < min{m,n−m+ i}.

Therefore, α ∈ Ln is an appropriate level if and only if α ∈ {a ∈ Ln|a≤ a[n/2]}.

Remark 5 The appropriate levels set {a ∈ Ln|a ≤ a[n/2]} is reasonable because we
can choose a small truth value α in Ln and it satisfies the sense of the definition of
α-resolution.

In the following, we take α as an appropriate level to keep the equivalence of
α-equality axioms and Eα -interpretation.

Theorem 3 Let S be a set of g-clauses in LnF(X), α an appropriate level, Kα an
α-equality axioms set of S. Then IE is an Eα -interpretation if and only if IE(Kα)≥ α .

Proof (Sufficiency) e1) It holds obviously.
e2) For any Eα -interpretation IE , two cases exist.

(i) If IE(E(x,y)) ≥ α , then IE(E(y,x)) ≥ α since IE is an Eα -interpretation. Hence
IE((α →E(x,y))′∨E(y,x)) = IE((α →E(x,y))′)∨IE(E(y,x))≥ IE(E(y,x))≥α .

(ii) If IE(E(x,y))≤α , then IE((α →E(x,y))′∨E(y,x))= IE((α →E(x,y))′)∨IE(E(y,
x)) ≥ IE((α → E(x,y))′). Since α is an appropriate level, we have IE((α →
E(x,y))′∨E(y,x))≥ α .

Therefore, for any Eα -interpretation IE , IE((α → E(x,y))′∨E(y,x))≥ α .
e3) For any Eα -interpretation IE , two cases exist.
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(i) If IE(E(x,y)) ≥ α and IE(E(y,z)) ≥ α , then IE(E(x,z)) ≥ α , and thus IE((α →
E(x,y))′∨ (α → E(y,z))′∨E(x,z))≥ IE(E(x,z))≥ α .

(ii) If IE(E(x,y))≤α or IE(E(y,z))≤α , without loss of generality, let IE(E(x,y))≤
α . Since α is an appropriate level, we have IE((α →E(x,y))′)≤α . Thus we have
IE((α → E(x,y))′ ∨ (α → E(y,z))′ ∨ E(x,z)) = IE((α → E(x,y))′)∨ IE((α →
E(y,z))′)∨ IE(E(x,z))≥ IE((α → E(x,y))′)≥ α .

Therefore, for any Eα -interpretation IE , IE((α → E(x,y))′ ∨ (α → E(y,z))′ ∨
E(x,z))≥ α .
e4) For any Eα -interpretation IE , two cases exist.

(i) If IE(E(x j,x0))≥α and IE(P(x1,x2, . . . ,x j, . . . ,xn))≥α , then IE(P(x1,x2, . . . ,x0,
. . . ,xn)) ≥ α , and thus IE((α → E(x j,x0))′ ∨ (α → P(x1,x2, . . . ,x j, . . . ,xn))′ ∨
P(x1, x2, . . . ,x0, . . . ,xn))≥ IE(P(x1,x2, . . . ,x0, . . . ,xn))≥ α .

(ii) If IE(E(x j,x0)) ≤ α or IE(P(x1,x2, . . . ,x0, . . . ,xn)) ≤ α , without loss of gener-
ality, let IE(E(x j,x0)) ≤ α . Since α is an appropriate level, we have IE((α →
E(x j,x0))′)≥α . Then we have IE((α →E(x j,x0))′ ∨(α →P(x1,x2, . . . ,x0, . . . ,xn))′
∨P(x1,x2, . . . ,x0, . . . ,xn)) = IE(α →E(x j,x0))∨IE((α →P(x1,x2, . . . ,x0, . . . ,xn))′)
∨IE(P(x1,x2, . . . ,x0, . . . ,xn))≥ IE((α → E(x,y))′)≥ α .

Therefore, for any Eα -interpretation IE , IE((α →E(x j,x0))′∨(α →P(x1,x2, . . . ,x0,
. . . ,xn))′∨P(x1,x2, . . . ,x0, . . . ,xn))≥ α .
e5) For any Eα -interpretation IE , two cases exist.

(i) If IE(E(x j,x0))≥α , then IE(E( f (x1,x2, . . . ,x0, . . . ,xn), f (x1,x2, . . . ,x0, . . . , xn)))≥
α . Since IE is an Eα -interpretation, we have IE((α →E(x j,x0)′)∨E( f (x1,x2, . . . ,x0,
. . . ,xn), f (x1,x2, . . . ,x0, . . . ,xn)))≥ IE(E( f (x1,x2, . . . ,x0, . . . ,xn), f (x1,x2, . . . ,x0, . . . ,
xn)))≥ α .

(ii) If IE(E(x j,x0)) ≤ α , then since α is an appropriate level, we have IE((α →
E(x j,x0)′)≥α . Therefore, IE((α →E(x j,x0))′)∨E( f (x1,x2, . . . ,x0, . . . ,xn), f (x1,
x2, . . . ,x0, . . . ,xn)))≥ IE((α → E(x j,x0))′)≥ α .

Therefore, for any Eα -interpretation IE , IE((α → E(x j,x0))′∨E( f (x1,x2, . . . ,x0,
. . . ,xn), f (x1,x2, . . . ,x0, . . . ,xn)))≥ α .

According to the proof of e1), e2), e3), e4) and e5), for any Eα -interpretation IE ,
we have IE(Kα)≥ α .

(Necessity) (1) If I(Kα)≥ α , then I(E(x,x))≥ α .

(2) If I(Kα)≥ α , then I((α → E(x,y))′∨E(y,x))≥ α , that is, I((α → E(x,y))′)∨
I(E(y,x)) ≥ α . If I(E(x,y)) ≥ α , then I((α → E(x,y))′) = O, hence I((α →
E(x,y))′)∨ I(E(y,x)) = I(E(y,x))≥ α , that is, I(E(y,x))≥ α .

(3) If I(Kα) ≥ α , then I((α → E(x,y))′ ∨ (α → E(y,z))′ ∨ E(x,z)) ≥ α , that is,
I((α → E(x,y))′) ∨ I((α → E(y,z))′) ∨I(E(x,z)) ≥ α . If I(E(x,y)) ≥ α and
I(E(y,z)) ≥ α , then I((α → E(x,y))′) = O and I((α → E(y,z))′) = O. Hence
I((α →E(x,y))′)∨I((α →E(y,z))′)∨I(E(x,z)) = I(E(x,z))≥α , that is, I(E(x,z))
≥ α .

(4) If I(Kα)≥α , then I((α →E(x j,x0))′∨(α →P(x1,x2, . . . ,x0, . . . ,xn))′∨P(x1,x2,
. . . ,x0, . . . ,xn))≥α , that is, I((α →E(x j,x0))′)∨I((α →P(x1,x2, . . . ,x0, . . . ,xn))′)∨
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P(x1,x2, . . . ,x0, . . . ,xn))≥α . If I(E(x j,x0))≥α and I(P(x1,x2, . . . ,x0, . . . ,xn))≥
α , then I((α → E(x j,x0))′) = O and I((α → P(x1,x2, . . . ,x0, . . . ,xn))′) = O.
Hence I((α → E(x j,x0))′)∨ I((α → P(x1,x2, . . . ,x0, . . . ,xn))′)∨ I(P(x1,x2, . . . ,
x0, . . . ,xn)) = I(P(x1,x2, . . . ,x0, . . . ,xn))≥α , that is, I(P(x1,x2, . . . ,x0, . . . ,xn))≥
α .

(5) If I(Kα) ≥ α , then I((α → E(x j,x0))′)∨ E( f (x1,x2, . . . ,x0, . . . ,xn), f (x1,x2,
. . . ,x0, . . . ,xn))≥ α , that is, I((α → E(x j,x0))′)∨ I(E( f (x1,x2, . . . ,x0, . . . ,xn),
f (x1,x2, . . . ,x0, . . . ,xn)))≥ α . If I(E(x j,x0))≥ α , then I((α → E(x j,x0))′) = O,
hence I((α →E(x j,x0))′)∨I(E( f ( x1,x2, . . . ,x0, . . . ,xn), f (x1,x2, . . . ,x0, . . . ,xn)))
= I(E( f (x1,x2, . . . ,x0, . . . ,xn), f (x1,x2, . . . ,x0, . . . ,xn)))≥α , that is, I(E( f (x1,x2,
. . . ,x0, . . . ,xn), f (x1,x2, . . . ,x0, . . . ,xn)))≥ α .

According to the proof of (1)− (5), if I(Kα)≥ α , then I is an Eα -interpretation.

3.2 αE -Unsatisfiability for LnF(X)

Definition 20 Let S be a set of g-clauses in LnF(X). S is αE -unsatisfiable if for any
Eα -interpretation IE such that IE(S) ≤ α . S is αE -satisfiable if there exists an Eα -
interpretation IE such that IE(S)≥ α . S is αE -true if for any Eα -interpretation IE such
that IE(S)≥ α .

Theorem 4 Let S be a set of g-clauses in LnF(X), Kα an α-equality axiom set of
S, α ∈ Ln. Then S is αE -unsatisfiable if and only if for any interpretation I, we have
I(S∧Kα)≤ α .

Proof (Necessity) Since S is αE -unsatisfiable in LnF(X), then for any interpretation
IE , we have IE(S)≤ α . If there exists an interpretation I0, such that I0(S∧Kα)≥ α ,
then I0(S)≥α and I0(Kα)≥α . Since I0(Kα)≥α , we have I0 is an Eα -interpretation.
However, I0(S) ≥ α , which is contradictory to the fact that S is αE -unsatisfiable.
Therefore, for any interpretation I, we have I(S∧Kα)≤ α .

(Sufficiency) If for any interpretation I, we have I(S∧Kα) ≤ α . If for the inter-
pretation I, such that I(Kα) > α , then I is an Eα -interpretation by the definition of
Eα -interpretation, and we denote it by IE . Since α ∈ Ln is a dual numerator, hence if
IE(Kα)≥ α , then IE(S)≤ α , that is, for any interpretation IE , IE(S)≤ α . Therefore,
S is αE -unsatisfiable.

Theorem 5 Let S be a set of g-clauses in LnF(X). Then S is αE -unsatisfiable if and
only if there exists a set of finite ground instance S1 of S in LnP(X), such that S1 is
αE -unsatisfiable.

Proof (Necessity) Since S is αE -unsatisfiable in LnF(X), we have S∧Kα ≤α by The-
orem 4. By Herbrand Theorem [29] in LnF(X), there exists a set of finite ground in-
stances S1∧K0

α in LnP(X), such that S1∧K0
α ≤α . By Theorem 4, S1 is αE -unsatisfiable.

(Sufficiency) If there exists a set of finite ground instance S1 in LnP(X), such that
S1 is αE -unsatisfiable, that is, S1 is αE -unsatisfiable with the interpretation IE , i.e.,
IE(S1)≤ α . On the other hand, for any interpretation I, we have I(S)≤ I(S1), hence
IE(S)≤ IE(S1)≤ α . Therefore, S is αE -unsatisfiable.
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Remark 6 By Theorem 4 and 5, validating the αE -unsatisfiability of S can be equiva-
lently converted to discussing the α-unsatisfiability of S∧Kα , but this transformation
process may increase the complexity of validating the α-unsatisfiability because more
clauses are added to S. If S includes too many predicate or functional symbols, then
S∧Kα is relatively complex.

4 α-Paramodulation and α-GH paramodulation for LnF(X)

In this section, we consider an inference rule to avoid adding all logical formulas
in α-equality axioms set to S, that is, the α-paramodulation in LnF(X), and there-
fore αE -unsatisfiability of S can be validated by combining α-resolution and α-
paramodulation. Furthermore, α-GH paramodulation is also proposed to improve the
efficiency of α-paramodulation, its soundness and completeness are also shown.

4.1 α-Paramodulation for LnF(X)

Definition 21 Let G1 and G2 be g-clauses without the same variables in LnF(X),
G1 = g1[t]∨G0

1, G2 = E(s1,s2)∨G0
2, where g1[t] is the g-literal including term t, G0

1
and G0

2 are g-clauses. If t and s1 have an mgu σ , then

PRα(G1,G2) = gσ
1 [sσ

2 ]∨G0σ
1 ∨G0σ

2

is called an α-paramodulator of G1 and G2, where gσ
1 [sσ

2 ] represents that tσ in gσ
1 is

substituted by sσ
2 .

Example 2 Let L9 = {ai|1 ≤ i ≤ 9} be a Łukasiewicz implication algebra, G1 =
(P(y)→ P(x))′∨E( f (a4),x) and G2 = E(a6,a4) g-clauses in L9F(X), α = a5, where
x,y are variable symbols, a4,a6 are constant symbols, f is a function symbol, and P
is a predicate symbol. Then there exist an α-paramodulator PRα(G1,G2) = (P(y)→
P(a6))′∨E( f (a6),a6).

Definition 22 Let G1 and G2 be g-clauses in LnF(X),α ∈ Ln. G1 Eα -implies G2 if
and only if G1 → G2 is αE -true, and denoted by G1 ⇒αE G2.

Theorem 6 Let G1 and G2 be g-clauses in LnF(X),α ∈ Ln, then G1 ∧G2 ⇒αE

PRα(G1,G2).

Proof For any Eα -interpretation IE in LnF(X), if IE(G1 ∧G2) ≥ α , then IE(G1)∧
IE(G2)≥ α , hence IE(G1)≥ α and IE(G2)≥ α . Hence two cases exist.

(1) If IE(G0σ
1 ) ≥ α or IE(G0σ

2 ) ≥ α , then IE(PRα(G1,G2)) = IE(gσ
1 [sσ

2 ]∨G0σ
1 ∨

G0σ
2 )≥ IE(G0σ

i )≥ α , where i = 1,2.
(2) If IE(G0σ

1 )≤α , and IE(G0σ
2 )≤α . Since IE(gσ

1 [tσ ]∨G0σ
1 ) = IE(gσ

1 [tσ ])∨IE(G0σ
1 )≥

α , we have IE(gσ
1 [tσ ]) ≥ α . Similarly, IE(E(sσ

1 ,sσ
2 )) ≥ α . Since IE is an Eα -

interpretation and tσ is equal to sσ
1 , we have IE(gσ

1 [sσ
2 ])≥α . Hence IE(PRα(G1,G2))

≥ α .
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Therefore, for any Eα -interpretation IE , if IE(G1∧G2)≥α , then IE(PRα(G1,G2))
≥ α , that is, G1∧G2 ⇒αE PRα(G1,G2).

Definition 23 Suppose S is a set of g-clauses S = G1 ∧G2 ∧ ·· · ∧Gn in LnF(X),
α ∈ Ln. w = {D1,D2, . . . ,Dm} is called an α-paramodulation deduction of S from D1
to Dm, if

(1) Di ∈ {G1,G2, . . . ,Gn}, or
(2) there exist j,k < i, such that Di = Rα(D j,Dk), or
(3) there exist j,k < i, such that Di = PRα(D j,Dk).

Theorem 7 Suppose S is a set of g-clauses S = G1∧G2∧·· ·∧Gn in LnF(X), α ∈ Ln.
w = {D1,D2, . . . ,Dm} is an α-paramodulation deduction of S from D1 to Dm. If Dm
is αE -unsatisfiable, then S is αE -unsatisfiable.

Proof According to the soundness of α-resolution and Theorem 6 in LnF(X), Theo-
rem 7 follows immediately.

4.2 α-GH paramodulation for LnF(X)

Definition 24 Let S be a set of g-clauses in LnF(X),α ∈ Ln. S is called an α-Gv
complete clauses set if it satisfies conditions of completeness of α-Gv semantic res-
olution.

In what follows, the g-clauses sets mentioned are all α-Gv complete clauses sets
if without any special statement.

Definition 25 (α-GH resolution) In an α-Gv semantic resolution, if the interpreta-
tion I satisfies I(g)≥ α in case g has the form of g = F ′, where F is a g-clause, then
the α-Gv semantic resolution is an α-GH resolution.

Remark 7 Since the conditions of α-Gv complete clauses set only restrict the inter-
pretations for I(g) ≤ α , not for I(g) ≥ α , then the conditions in α-GH resolution
are not conflict with those in α-Gv semantic resolution. Furthermore, from Defini-
tion 25, α-GH resolution is a special case of α-Gv semantic resolution where the
involved g-clauses should be their negative forms.

Definition 26 (α-GH resolution deduction) Suppose S is a set of g-clauses S = G1∧
G2∧·· ·∧Gn in LnF(X), α ∈ Ln. w = {D1,D2, . . . ,Dm} is called an α-GH resolution
deduction of S from D1 to Dm, if

(1) Di ∈ {G1,G2, . . . ,Gn}, or
(2) there exist j1, j2, . . . , jk < i, such that Di = Rα−GH(D j1 ,D j1 , . . . ,D jk).

Theorem 8 (Completeness of α-GH resolution) Let S be a set of g-clauses in LnF(X),
α ∈ Ln. If S is α-unsatisfiable, then there exists an α-GH resolution deduction from
S to α-@.

Proof It immediately follows by Theorem 2.
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Definition 27 (α-GH paramodulation) Suppose G is an order of g-literals in G1 and
G2 in LnF(X), α ∈ Ln. PRα−GH(G1,G2) is called an α-GH paramodulator of G1 and
G2 if it satisfies the following conditions.

(1) G1 and G2 do not include the g-literals with the form F ′, where F is a g-clause.
(2) The α-GH paramodulated literals in G1 and G2 are maximal ones with respect to

G.

Definition 28 (α-GH paramodulation deduction) Suppose S is a set of g-clauses
S = G1∧G2∧ ·· ·∧Gn in LnF(X), α ∈ Ln. w = {D1,D2, . . . ,Dm} is called an α-GH
paramodulation deduction of S from D1 to Dm, if

(1) Di ∈ {G1,G2, . . . ,Gn}, or
(2) there exist j1, j2, . . . , jk < i, such that Di = Rα−GH(D j1 ,D j2 , . . . ,D jk), or
(3) there exist j1, j2, . . . , jk < i, such that Di = PRα−GH(D j1 ,D j2 , . . . ,D jk).

Specially, if w is an α-GH paramodulation deduction from S to α-@, then w is
called an α-GH paramodulation refutation of S.

Theorem 9 (Soundness) Suppose S is a set of g-clauses S = G1 ∧G2 ∧ ·· · ∧Gn in
LnF(X), α ∈ Ln, w = {D1,D2, . . . ,Dm} is an α-GH paramodulation deduction of S
from D1 to Dm. If Dm is αE -unsatisfiable, then S is αE -unsatisfiable.

Proof According to the soundness of α-paramodulationin LnF(X) discussed in The-
orem 7, Theorem 9 follows immediately.

Definition 29 Let S be a set of g-clauses in LnF(X), α ∈ Ln. Fα is called an α-
reflexivity function axioms set if Fα = {E( fi(x1,x2, . . . ,xi), fi(x1,x2, . . . ,xi)) | fi is an
i-ary function symbol of S}.

Theorem 10 (Completeness of α-GH paramodulation deduction) Let S be a set of
g-clauses in LnF(X), α ∈ Ln. If S is αE -unsatisfiable, and S1 is the set by adding to
S∪{E(x,x)}∪Fα , then there exists an α-GH paramodulation deduction from S1 to
α-@.

Proof Since S is αE -unsatisfiable in LnF(X), we have S∪Kα is α-unsatisfiable by
Theorem 4, where Kα is the α-equality axioms set of S. By the completeness of α-
GH resolution discussed in Theorem 8, there exists an α-GH resolution refutation
w = {D1,D2, . . . ,Dn} of S∪Kα . Therefore, we only need to prove that every resolvent
Di(i = 1,2, . . . ,n) can be also derived by α-GH paramodulation deduction of S∪
{E(x,x)}∪Fα . For convenience we denote S1 = S∪{E(x,x)}∪Fα .

For every Di, there exists an α-GH clash of (E1,E2, . . . ,Eq,N). By the definition
of α-GH resolution, we have v(Ei)≤ α(i = 1,2, . . . ,q). Hence Ei has not include the
literals with the form F ′. Therefore, if N ∈ S, then Di is an α-GH resolvent of S1.
Otherwise, N ∈ Kα , then four cases exist as follows.

(1) N is the clause of (α → E(x1,x2))′∨E(x2,x1), then there exists E1 = E(s1,s2)∨
E0

1 , where E0
1 is a g-clause, s1, s2 are terms in HS of S, and we have Rα−GH(N,E1)

= E(sσ
2 ,sσ

1 )∨E0σ
1 , where σ is the most general unifier of x1 and s1, x2 and s2.

On the other hand, PRα−GH(E1,E(x,x)) = E(sσ
2 ,sσ

1 )∨E0σ
1 . Hence, if N = (α →

E(x1,x2))′∨E(x2,x1), then Rα−GH(N,E1) =PRα−GH(E1,E(x,x)).
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(2) Since N is the clause of (α → E(x1,x2))′∨(α → E(x2,x3))′∨E(x1,x3), we know
that there exist E1 = E(t1, t2)∨E0

1 , and E2 = E(t3, t4)∨E0
2 , where E0

1 and E0
2 are

g-clauses, t1, t2, t3 and t4 are terms in HS of S, and we have Rα−GH(N,E1,E2)
= E(tσ

1 , tσ
4 )∨E0σ

1 ∨E0σ
2 , where σ is the most general unifier of t2 and t3. On the

other hand, since σ is the most general unifier of t2 and t3, we have PRα−GH(E1,E2)
= E(tσ

1 , tσ
4 ) ∨ E0σ

1 ∨ E0σ
2 . Hence, if N=(α → E(x1,x2))′ ∨ (α → E(x2,x3))′ ∨

E(x1,x3), then Rα−GH(N,E1,E2) = PRα−GH(E1,E2).
(3) Since N is the clause of (α →E(x j,x0))′ ∨(α →P(x1,x2, . . . ,x j, . . . ,xn))′ ∨P(x1,x2,

. . . ,x0, . . . ,xn), we know that there exist E1 = E(t j, t0)∨E0
1 and E2 = P(s1,s2, . . . ,s j,

. . . ,sn)∨E0
2 , where E0

1 and E0
2 are g-clauses, t j, t0, s1, s2, . . . ,s j, . . . ,sn are terms

in HS of S, and we have Rα−GH(N,E1,E2) = P(sσ
1 ,sσ

2 , . . . , tσ
0 , . . . ,sσ

n )∨E0σ
1 ∨E0σ

2 ,
where σ is the most general unifier of t j and s j. On the other hand, since σ is the
most general unifier of t j and s j, we have PRα−GH(E1,E2)= P(sσ

1 ,sσ
2 , . . . , tσ

0 , . . . ,
sσ

n )∨E0σ
1 ∨E0σ

2 . Hence, if N = (α → E(x j,x0))′∨(α → P(x1,x2, . . . ,x j, . . . ,xn))′
∨P(x1,x2, . . . ,x0, . . . ,xn), then Rα−GH(N,E1,E2) = PRα−GH(E1,E2).

(4) Since N is the clause of (α → E(x j,x0))′ ∨E( f (x1,x2, . . . ,x j, . . . ,xn), f (x1,x2,
. . . ,x0, . . . ,xn)), we know that there exists E1= E(t j, t0)∨E0

1 , where E0
1 is a g-

clause, t j, t0 are terms in HS of S, and we have Rα−GH(N,E1) = E( f (xσ
1 ,xσ

2 ,
. . . , tσ

j , . . . ,xσ
n ), f (xσ

1 , xσ
2 , . . . , tσ

0 , . . . ,xσ
n )) ∨ E0σ

1 , where σ is the most general
unifier of x j and t j. On the other hand, PRα−GH(E1,E( f (x1,x2, . . . ,x j, . . . ,xn),
f (x1,x2, . . . ,x j, . . . ,xn))) = E( f (xσ

1 ,xσ
2 , . . . , tσ

j , . . . ,xσ
n ), f (xσ

1 ,xσ
2 , . . . , tσ

0 , . . . ,xσ
n ))

∨E0
1 . Hence, if N= (α → E(x j,x0))′ ∨E( f (x1,x2, . . . ,x j, . . . ,xn), f (x1,x2, . . . ,x0,

. . . ,xn)), then Rα−GH(N,E1) = PRα−GH(E1,E( f (x1,x2, . . . ,x j, . . . ,xn), f (x1,x2,

. . . ,x j, . . . ,xn))).

Therefore, for every α-GH semantic resolvent Di(i = 1,2, . . . ,n), it can be de-
rived by α-GH paramodulation of S1. Furthermore, w = {D1,D2, . . . ,Dn} is an α-
GH resolution refutation of S, hence we get a corresponding α-GH paramodulation
deduction from S1 to α-@.

Example 3 Let L9 = {ai|1≤ i≤ 9} be a Łukasiewicz implication algebra, S be a set
of g-clauses in L9P(X), α = a5. S = {(y→ x)′∨ (a3 → x)∨E(a6,a4), x∨E(a6,a4),
x→ y, E( f (a6), f (a4))′}, where x and y are propositional variables, a3,a4 and a6 are
constants, and f is a functional symbol in L9F(X). Then we get an α-GH paramod-
ulation refutation of S1 by adding ground term E( f (a4), f (a4)) to S.

(1) (y→ x)′∨ (a3 → x)∨E(a6,a4)
(2) x∨E(a6,a4)
(3) x→ y
(4) E( f (a6), f (a4))′
(5) E( f (a4), f (a4))

——————————-
(6) E(a6,a4) by α-GH resolution of (1), (2) and (3)
(7) E( f (a6), f (a4)) by α-GH paramodulation of (5) and (6)
(8) α-@ by α-GH resolution of (4) and (7)

Example 4 Let L9 = {ai|1≤ i≤ 9} be a Łukasiewicz implication algebra, S a set of g-
clauses in L9F(X), α = a5. S = {E( f (a), f (b))′∨P(x), E( f (c), f (d))′∨(P(x)→ a2),
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(P(y)→ a2)∨E(c,d), E(a,b)∨P(z)}, where a,a2,b,c and d are constant symbols,
x,y,z and w are variable symbols, f is a functional symbol and P is a predicate sym-
bol in L9F(X). Then we get an α-GH paramodulation refutation of S1 by adding
{E(x,x)}∪{E( f (x), f (x))} to S.

(1) E( f (a), f (b))′∨P(x)
(2) E( f (c), f (d))′∨ (P(y)→ a2)
(3) (P(z)→ a2)∨E(c,d)
(4) E(a,b)∨P(w)
(5) E( f (x), f (x))

——————————-
(6) E( f (a), f (b))∨P(x) by α-GH paramodulation of (4) and (5)
(7) P(x) by α-GH resolution of (1) and (6)
(8) (P(x)→ a2)∨E( f (c), f (d)) by α-GH paramodulation of (3) and (5)
(9) P(x)→ a2 by α-GH resolution of (2) and (8)
(10) α-@ by α-GH resolution of (7) and (9)

5 Conclusion

This paper proposed α-paramodulation and α-GH paramodulation in a lattice-valued
logic LnF(X) based on LIA for dealing with lattice-valued logical formula with
equality. Concretely, a new form of α-equality axioms set was presented to keep the
equivalence between α-equality axioms set and Eα -interpretation in LnF(X), and
hence the Eα -unsatisfiability can be transformed. Furthermore, α-paramodulation
and α-GH paramodulation were given including their concepts, properties, sound-
ness and completeness. This work may provide a theoretical foundation for more
efficient resolution and paramodulation algorithms based automated reasoning in
lattice-valued logic with equality since the α-equality axioms set was given. Thus
many reasoning methods can be contrived based on it such as new inference rules,
restricted methods, etc. The further research will be concentrated on other restricted
α-paramodulation methods for handling lattice-valued logical formula with equal-
ity and their hybrid ones to further improve the efficiency of automated reasoning in
lattice-valued logic.
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