17,947 research outputs found

    Numerical homogenization of H(curl)-problems

    Get PDF
    If an elliptic differential operator associated with an H(curl)\mathbf{H}(\mathrm{curl})-problem involves rough (rapidly varying) coefficients, then solutions to the corresponding H(curl)\mathbf{H}(\mathrm{curl})-problem admit typically very low regularity, which leads to arbitrarily bad convergence rates for conventional numerical schemes. The goal of this paper is to show that the missing regularity can be compensated through a corrector operator. More precisely, we consider the lowest order N\'ed\'elec finite element space and show the existence of a linear corrector operator with four central properties: it is computable, H(curl)\mathbf{H}(\mathrm{curl})-stable, quasi-local and allows for a correction of coarse finite element functions so that first-order estimates (in terms of the coarse mesh-size) in the H(curl)\mathbf{H}(\mathrm{curl}) norm are obtained provided the right-hand side belongs to H(div)\mathbf{H}(\mathrm{div}). With these four properties, a practical application is to construct generalized finite element spaces which can be straightforwardly used in a Galerkin method. In particular, this characterizes a homogenized solution and a first order corrector, including corresponding quantitative error estimates without the requirement of scale separation

    Divergent Perturbation Series

    Full text link
    Various perturbation series are factorially divergent. The behavior of their high-order terms can be found by Lipatov's method, according to which they are determined by the saddle-point configurations (instantons) of appropriate functional integrals. When the Lipatov asymptotics is known and several lowest order terms of the perturbation series are found by direct calculation of diagrams, one can gain insight into the behavior of the remaining terms of the series. Summing it, one can solve (in a certain approximation) various strong-coupling problems. This approach is demonstrated by determining the Gell-Mann - Low functions in \phi^4 theory, QED, and QCD for arbitrary coupling constants. An overview of the mathematical theory of divergent series is presented, and interpretation of perturbation series is discussed. Explicit derivations of the Lipatov asymptotic forms are presented for some basic problems in theoretical physics. A solution is proposed to the problem of renormalon contributions, which hampered progress in this field in the late 1970s. Practical schemes for summation of perturbation series are described for a coupling constant of order unity and in the strong-coupling limit. An interpretation of the Borel integral is given for 'non-Borel-summable' series. High-order corrections to the Lipatov asymptotics are discussed.Comment: Review article, 45 pages, PD

    Using hybrid GPU/CPU kernel splitting to accelerate spherical convolutions

    Full text link
    We present a general method for accelerating by more than an order of magnitude the convolution of pixelated functions on the sphere with a radially-symmetric kernel. Our method splits the kernel into a compact real-space component and a compact spherical harmonic space component. These components can then be convolved in parallel using an inexpensive commodity GPU and a CPU. We provide models for the computational cost of both real-space and Fourier space convolutions and an estimate for the approximation error. Using these models we can determine the optimum split that minimizes the wall clock time for the convolution while satisfying the desired error bounds. We apply this technique to the problem of simulating a cosmic microwave background (CMB) anisotropy sky map at the resolution typical of the high resolution maps produced by the Planck mission. For the main Planck CMB science channels we achieve a speedup of over a factor of ten, assuming an acceptable fractional rms error of order 1.e-5 in the power spectrum of the output map.Comment: 9 pages, 11 figures, 1 table, accepted by Astronomy & Computing w/ minor revisions. arXiv admin note: substantial text overlap with arXiv:1211.355

    An extended finite element method with smooth nodal stress

    Full text link
    The enrichment formulation of double-interpolation finite element method (DFEM) is developed in this paper. DFEM is first proposed by Zheng \emph{et al} (2011) and it requires two stages of interpolation to construct the trial function. The first stage of interpolation is the same as the standard finite element interpolation. Then the interpolation is reproduced by an additional procedure using the nodal values and nodal gradients which are derived from the first stage as interpolants. The re-constructed trial functions are now able to produce continuous nodal gradients, smooth nodal stress without post-processing and higher order basis without increasing the total degrees of freedom. Several benchmark numerical examples are performed to investigate accuracy and efficiency of DFEM and enriched DFEM. When compared with standard FEM, super-convergence rate and better accuracy are obtained by DFEM. For the numerical simulation of crack propagation, better accuracy is obtained in the evaluation of displacement norm, energy norm and the stress intensity factor

    Well-posedness of Multidimensional Diffusion Processes with Weakly Differentiable Coefficients

    Full text link
    We investigate well-posedness for martingale solutions of stochastic differential equations, under low regularity assumptions on their coefficients, widely extending some results first obtained by A. Figalli. Our main results are a very general equivalence between different descriptions for multidimensional diffusion processes, such as Fokker-Planck equations and martingale problems, under minimal regularity and integrability assumptions, and new existence and uniqueness results for diffusions having weakly differentiable coefficients, by means of energy estimates and commutator inequalities. Our approach relies upon techniques recently developed, jointly with L. Ambrosio, to address well-posedness for ordinary differential equations in metric measure spaces: in particular, we employ in a systematic way new representations and inequalities for commutators between smoothing operators and diffusion generators.Comment: Added references to further literature on the subjec

    3D cut-cell modelling for high-resolution atmospheric simulations

    Full text link
    Owing to the recent, rapid development of computer technology, the resolution of atmospheric numerical models has increased substantially. With the use of next-generation supercomputers, atmospheric simulations using horizontal grid intervals of O(100) m or less will gain popularity. At such high resolution more of the steep gradients in mountainous terrain will be resolved, which may result in large truncation errors in those models using terrain-following coordinates. In this study, a new 3D Cartesian coordinate non-hydrostatic atmospheric model is developed. A cut-cell representation of topography based on finite-volume discretization is combined with a cell-merging approach, in which small cut-cells are merged with neighboring cells either vertically or horizontally. In addition, a block-structured mesh-refinement technique is introduced to achieve a variable resolution on the model grid with the finest resolution occurring close to the terrain surface. The model successfully reproduces a flow over a 3D bell-shaped hill that shows a good agreement with the flow predicted by the linear theory. The ability of the model to simulate flows over steep terrain is demonstrated using a hemisphere-shaped hill where the maximum slope angle is resolved at 71 degrees. The advantage of a locally refined grid around a 3D hill, with cut-cells at the terrain surface, is also demonstrated using the hemisphere-shaped hill. The model reproduces smooth mountain waves propagating over varying grid resolution without introducing large errors associated with the change of mesh resolution. At the same time, the model shows a good scalability on a locally refined grid with the use of OpenMP.Comment: 19 pages, 16 figures. Revised version, accepted for publication in QJRM

    Boundary regularity for elliptic systems under a natural growth condition

    Get PDF
    We consider weak solutions u∈u0+W01,2(Ω,RN)∩L∞(Ω,RN)u \in u_0 + W^{1,2}_0(\Omega,R^N) \cap L^{\infty}(\Omega,R^N) of second order nonlinear elliptic systems of the type −diva(⋅,u,Du)=b(⋅,u,Du)- div a (\cdot, u, Du) = b(\cdot,u,Du) in Ω\Omega with an inhomogeneity satisfying a natural growth condition. In dimensions n∈{2,3,4}n \in \{2,3,4\} we show that Hn−1\mathcal{H}^{n-1}-almost every boundary point is a regular point for DuDu, provided that the boundary data and the coefficients are sufficiently smooth.Comment: revised version, accepted for publication in Ann. Mat. Pura App

    Analysis of a high order Trace Finite Element Method for PDEs on level set surfaces

    Full text link
    We present a new high order finite element method for the discretization of partial differential equations on stationary smooth surfaces which are implicitly described as the zero level of a level set function. The discretization is based on a trace finite element technique. The higher discretization accuracy is obtained by using an isoparametric mapping of the volume mesh, based on the level set function, as introduced in [C. Lehrenfeld, \emph{High order unfitted finite element methods on level set domains using isoparametric mappings}, Comp. Meth. Appl. Mech. Engrg. 2016]. The resulting trace finite element method is easy to implement. We present an error analysis of this method and derive optimal order H1(Γ)H^1(\Gamma)-norm error bounds. A second topic of this paper is a unified analysis of several stabilization methods for trace finite element methods. Only a stabilization method which is based on adding an anisotropic diffusion in the volume mesh is able to control the condition number of the stiffness matrix also for the case of higher order discretizations. Results of numerical experiments are included which confirm the theoretical findings on optimal order discretization errors and uniformly bounded condition numbers.Comment: 28 pages, 5 figures, 1 tabl
    • …
    corecore