We present a general method for accelerating by more than an order of
magnitude the convolution of pixelated functions on the sphere with a
radially-symmetric kernel. Our method splits the kernel into a compact
real-space component and a compact spherical harmonic space component. These
components can then be convolved in parallel using an inexpensive commodity GPU
and a CPU. We provide models for the computational cost of both real-space and
Fourier space convolutions and an estimate for the approximation error. Using
these models we can determine the optimum split that minimizes the wall clock
time for the convolution while satisfying the desired error bounds. We apply
this technique to the problem of simulating a cosmic microwave background (CMB)
anisotropy sky map at the resolution typical of the high resolution maps
produced by the Planck mission. For the main Planck CMB science channels we
achieve a speedup of over a factor of ten, assuming an acceptable fractional
rms error of order 1.e-5 in the power spectrum of the output map.Comment: 9 pages, 11 figures, 1 table, accepted by Astronomy & Computing w/
minor revisions. arXiv admin note: substantial text overlap with
arXiv:1211.355