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Abstract

We consider weak solutions u ∈ u0 +W 1,2
0 (Ω, RN )∩L∞(Ω, RN ) of second order nonlinear elliptic

systems of the type
− div a( · , u, Du) = b( · , u, Du) in Ω

with an inhomogeneity satisfying a natural growth condition. In dimensions n ∈ {2, 3, 4} we show
that Hn−1-almost every boundary point is a regular point for Du, provided that the boundary data
and the coefficients are sufficiently smooth.
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1 Introduction

In this paper we are concerned with the existence of regular boundary points for the gradient of bounded,
vector-valued weak solutions u ∈W 1,2(Ω,RN )∩L∞(Ω,RN ) of nonlinear, inhomogeneous elliptic systems
of the form

−div a( · , u,Du) = b( · , u,Du) in Ω (1.1)

with boundary values u0 on ∂Ω in the sense of traces. Here Ω ⊂ Rn is a bounded domain of class C1,α

and u0 ∈ C1,α(Ω,RN ) for some α ∈ (0, 1). The coefficients a : Ω × RN × RnN → RnN are assumed
to be Hölder continuous with exponent α with respect to the first two variables and of class C1 in
the last variable, satisfying a standard quadratic growth condition. Furthermore, we assume that the
right-hand side b : Ω × RN × RnN → RN satisfies a natural growth condition and that an additional
smallness condition on ‖u‖L∞ holds. In general we cannot expect a weak solution to a nonlinear elliptic
system – in contrast to weak solutions to a single equation – to be a classical one of class C2, see
[15, 24]. Nevertheless, a partial regularity result still holds true which can be stated as follows: every
weak solution u ∈ W 1,2(Ω,RN ) ∩ L∞(Ω,RN ) to the inhomogeneous system (1.1) is of class C1 near a
point x0 if and only if a certain excess quantity is sufficiently small and the mean values of u and of Du
on balls Bρ(x0) do not not diverge for ρ↘ 0. To be more precise, if we denote by

RegDu(Ω) :=
{
x0 ∈ Ω : Du ∈ C0(Ω ∩A,RnN ) for some neighborhood A of x0

}
the set of regular points for Du (in the interior and at the boundary), and by SingDu(Ω) := Ω\RegDu(Ω)
the set of singular points of Du, then the singular set is characterized via SingDu(Ω) = Σ ∪ Σu with

Σ :=
{
x0 ∈ Ω: lim inf

ρ→ 0+

∫
−
Ω∩Bρ(x0)

∣∣Du− (Du)Ω∩Bρ(x0)

∣∣2 dx > 0 or lim sup
ρ→ 0+

∣∣(Du)Ω∩Bρ(x0)

∣∣ =∞
}
,

Σu :=
{
x0 ∈ Ω: lim sup

ρ→ 0+

∣∣(u)Ω∩Bρ(x0)

∣∣ =∞
}
.

Furthermore, the gradient Du of the weak solution is locally Hölder continuous with exponent α in
a (small) neighborhood of every point x0 ∈ RegDu(Ω), see [26] (and [30, 6] for the non-quadratic
analogues). This is the up-to-the-boundary extension of the interior partial regularity results obtained
in various papers starting from [23, 21, 31]. By Lebesgue’s differentiation theorem, the regularity
criterion stated above applies to almost every point in Ω, whence |Ω \ RegDu(Ω)| = 0. However, this
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does not yield the existence of even one single regular boundary point for weak solutions to general
nonlinear elliptic systems, since the boundary ∂Ω itself is a set of Lebesgue measure zero. By contrast,
due to Giaquinta’s counterexample [20], it is well known that singularities may occur at the boundary
even if the boundary data is smooth.

The question of dimension reduction of the singular set (in the sense that it is not only negligible
with respect to the Lebesgue measure but that its Hausdorff dimension is bounded strictly below n)
has received considerable attention in recent years. Some significant results were first obtained for weak
solutions to systems satisfying special structure conditions: for quasilinear systems of the form

− div
(
a( · , u)Du

)
= b( · , u,Du) ,

various partial regularity results were established, stating that the weak solution u (instead of its first
derivative) is locally Hölder continuous. To bound the Hausdorff dimension of the singular set Singu(Ω),
we recall that a regular point x0 ∈ Ω of u is a point where u is locally continuous and is characterized
via a smallness condition on the lower order excess functional∫

−
Ω∩Bρ(x0)

∣∣u− (u)Ω∩Bρ(x0)

∣∣2 dx ,
e. g., see [23, 14, 38, 25, 3]. Since the set of non-Lebesgue points of every W 1,p-map has Hausdorff
dimension not larger than n − p, the Hausdorff dimension of Singu(Ω) cannot exceed n − 2. If the
coefficient matrix a(·, ·) of the quasilinear system is further assumed to be of diagonal form, it is known
that the weak solution is a classical solution (see [42] where boundary regularity is included). Useful
estimates for the singular set are also available for nonlinear elliptic systems obeying special structure
assumptions: for instance, Uhlenbeck established in her fundamental paper [41] a strong maximum
principle for the gradient Du of weak solutions to nonlinear systems, provided that the nonlinear part
of the coefficient function only depends on the modulus of Du. This was the key to obtain everywhere-
regularity for Du. For an extension to the nonquadratic case we refer to [40, 1]. However, neither could
Uhlenbeck’s techniques be carried over to the boundary, nor is a suitable counterexample available in the
literature, leaving the question of full boundary regularity open for such systems. Turning the attention
to general nonlinear elliptic systems, we observe that a direct comparison technique allows to infer local
Hölder continuity of the weak solution outside a set of Hausdorff dimension n − p in low dimensions
n ≤ p + 2, see [10, 11, 4, 5, 8]. By contrast, in arbitrary dimensions n the reduction of the Hausdorff
dimension of the singular set SingDu(Ω) for the gradient Du was a long-standing problem. It was finally
tackled by Mingione [37]: he studied the interior singular set SingDu(Ω) in the superquadratic case p ≥ 2
for systems without u-dependencies and with inhomogeneities obeying a controllable growth condition,
and he succeeded in showing that the Hausdorff dimension of SingDu(Ω) is not larger than n − 2α.
In [36] he extended these results to systems with inhomogeneities under a natural growth condition,
covering also systems explicitly depending on u, provided that n ≤ p+ 2 is satisfied.

We now return to the existence of regular boundary points: we first observe that for this aim the
almost-everywhere regularity result has to be improved to a bound for the Hausdorff dimension less than
n − 1 because this yields immediately that almost every boundary point is regular. Consequently, our
objective is to identify additional assumptions on the coefficients or on the space dimension which guar-
antee this dimension reduction. A result in this direction was recently obtained by Duzaar, Kristensen
and Mingione [18]: they considered weak solutions u ∈ W 1,p(Ω,RN ), p ∈ (1,∞), of the homogeneous
Dirichlet problem corresponding to (1.1) and developed a technique which allows to carry the estimates
in [37] up to the boundary, implying in particular the existence of regular boundary points, provided
that n− 2α < n− 1 (or equivalently α > 1

2 ) is satisfied. More precisely, the authors obtained for every
α ∈ ( 1

2 , 1] that almost every boundary point is regular if the coefficients a(x, z) have no u-dependency
or if n ≤ p + 2 holds. In the quadratic case they improved this result in two ways: on the one hand,
inhomogeneities with controllable growth were included, and on the other hand the condition on α was
sharpened to α > 1

2 − ε for some number ε > 0 stemming from an application of Gehring’s lemma.
We further mention that various results establishing better estimates for the (interior) singular set of
minimizers of variational integral can be found in [33, 34].

The main result in this paper is an extension of the result [18] to bounded weak solutions to inho-
mogeneous systems under a critical growth condition on the inhomogeneity (giving also an alternative
proof of [18, Theorem 1.3]), namely the improvement of the estimate |SingDu(Ω)| = 0 in the following
sense:
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Theorem 1.1: Consider n ∈ {2, 3, 4} and α ≥ 1
2 . Let Ω ⊂ Rn be a domain of class C1,α and u0 ∈

C1,α(Ω,RN ). Assume that u ∈ u0+W 1,2
0 (Ω,RN )∩L∞(Ω,RN ) is a weak solution of the Dirichlet problem

(1.1) under the assumptions (H1)-(H3) and (B) from Section 2, and suppose that ‖u‖L∞(Ω,RN ) ≤M for
some M > 0 such that 2L2M < ν. Then Hn−1-almost every boundary point is a regular point for Du.

This result was presented as a part of the author’s PhD thesis [7] where most of the proofs and
calculations are discussed in detail. In addition, some extensions and open questions concerning the
dimension reduction of the singular set are collected in Section 6. In particular, in view of an observation
by Kristensen and Mingione [34], it is possible to replace a part of the Hölder continuity assumption
on the coefficients with respect to the x-variable (in the sense that it is only required with an arbi-
trary exponent) by an additional fractional differentiability assumption on the map x 7→ a(x, u, z), see
Theorem 6.4.

We close this introductory part with some remarks about the ideas behind the arguments and the
techniques used within this paper. The strategy can be described as follows: To simplify matters
we initially consider coefficients of the form a(x, z): If they are Hölder continuous in x with arbitrarily
small exponent, we know dimH(SingDu(Ω)) ≤ n. If they are instead Lipschitz-continuous, then standard
difference quotients reveal Du ∈W 1,2(Ω,RnN ) which implies that dimH(SingDu(Ω)) ≤ n−2. Therefore,
the upper bound on the Hausdorff dimension of SingDu(Ω) reflects the regularity of the coefficients in
x. This gives the impression that the regularity of the coefficients is related not only to the regularity
of the solution (namely the local Hölder continuity of Du to the same exponent), but also to the size
of the singular set. Working from this observation, Mingione [37, 36] introduced a remarkable new
technique and accomplished in the interior an interpolation between Lipschitz continuity on the one
hand and Hölder continuity on the other: for general α-Hölder continuous coefficients the existence of
higher order derivatives of the weak solution cannot be expected, but it is still possible to differentiate
the system (1.1) in a fractional sense. This leads to the desired upper bound n− 2α for the Hausdorff
dimension. If the coefficients a(x, u, z) now depend explicitly on u, the situation becomes more complex
and the estimates are technically much more involved. To follow the line of arguments above we have
to investigate the regularity of the map x 7→ (x, u(x)). If the weak solution u is a priori known to be
everywhere Hölder continuous then x 7→ (x, u(x)) is also Hölder continuous and the arguments apply
with only marginal modifications. However, in general this map is no longer continuous, because u may
exhibit irregularities. Nevertheless, at least in low dimensions n ≤ p+2, local Hölder continuity of weak
solutions is guaranteed outside of closed subsets of Hausdorff dimension less than n−p. In other words,
the set of points where u is not continuous – and where x 7→ (x, u(x)) is not regular – has sufficiently
small Hausdorff dimension, hence, restricting the analysis of Du to the regular set Regu(Ω) of u, we
still arrive at a good result for dimH(SingDu(Ω)), see Theorem 6.1.

In the interior this method relies essentially upon finite difference operators, fractional differentia-
bility estimates for the gradient Du and interpolation techniques dating back to Campanato [12, 9],
combined in a delicate iteration scheme (applied for elliptic and parabolic systems [37, 36, 19]), and the
necessary estimates are deduced by testing with (differences of) the solution. At the boundary some
severe problems are caused by the fact that testing is allowed only for differences in tangential direction:
hence, the normal direction still has to be recovered by exploiting the system of equations (which follows
immediately if second-order derivatives exist). This problem was overcome first for homogeneous ellip-
tic system (and inhomogeneous systems under controllable growth) by an indirect approach developed
by Duzaar, Kristensen and Mingione [18]: via a regularization procedure involving both the original
coefficients a(·, ·, ·) and the specific solution u, a family of comparison maps is constructed for which the
existence of second-order derivatives is known. This allows to gain higher integrability for Du which
in turn is used to improve the integrability of the comparison map by means of Calderón-Zygmund
estimates (provided in [33, 7]) in the next iterative step.

When trying to apply this approach for inhomogeneous systems under critical growth, several critical
difficulties arise: most importantly the propagation of higher integrability via the Calderón-Zygmund
theory seems not to be clear since the natural growth condition merely gives L1+δ for the right-hand
side with some (small) δ > 0 (coming from the higher integrability of Du) rather than the necessary
prerequisite Lq/(p−1) for some q > p. For this reason we exploit the system differently and replace the
indirect comparison principle by a direct method, introduced by Kronz [35] as a promising approach
for up-to-the-boundary regularity results including upper bounds for the Hausdorff dimension of the
singular set, with the flexibility to attack higher order systems. Kronz observed that estimates for the
tangential differences suffice to control the averaged mean deviation with respect to mean values taken
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over slices in tangential direction. Using an alternative definition of fractional Sobolev spaces based on
pointwise inequalities, this helps to deduce a fractional differentiability property for the system, which
then gives further information on the gradient of the solution. The overall strategy remains unchanged,
i. e. existence of regular boundary points is still proved by a dimension reduction argument for the
singular set SingDu(Ω): The key tool here is the observation that if Du belongs to a fractional Sobolev
space W θ,p, then the characterization of SingDu(Ω) and a measure density result allow to conclude
that the Hausdorff dimension of SingDu(Ω) does not exceed n − θp. The proof of such a fractional
differentiability estimate for Du is now sketched in a series of steps:

Strategy of the proof:

Simplifications: It suffices to consider the model situation Ω = B+ and solutions u ∈ W 1,2(B+,RN ) ∩
L∞(B+,RN ) which vanish on the flat part of the boundary. The general situation then follows from a
transformation argument. Furthermore, we assume Hölder continuity of u on B+ with some exponent
λ > 0. This is justified by the fact that the solution is Hölder continuous outside a set of Hausdorff
dimension n− 2 in dimensions n ∈ {2, 3, 4}.

Tangential differences: Testing the system with differences of the solution up to the boundary is
only allowed for tangential directions (because zero boundary values on the flat part are maintained for
the test function). Taking into account the assumptions on the coefficients and the inhomogeneity, we
end up with an integral estimate for |Du(x+ hes)−Du(x)| for all unit directions es ⊥ en, telling that
its L2-norm decays like c|h|αλ/2 (with α denoting the Hölder exponent of the continuity condition on
the coefficients with respect to the first and the second variable).

An estimate for tangential derivatives: If finite differences of the full derivative Du are estimated,
then it is reasonable that also normal differences of only the tangential derivative denoted by D′u are es-
timated similarly (if we think of Lipschitz-continuous coefficients a(x,Du) for example, this observation
is trivial since the previous step yields the existence of second order derivatives D′Du = DD′u). This
is in fact true (up to a small loss in the power of |h|), and we thus get a first fractional differentiability
estimate for D′u.

Towards the normal derivative: Information about Dnu can only be gained out of the system (in
case of Lipschitz-continuous coefficients a(x,Du), the existence of the second order normal derivative
DnDu is obtained from the system of equations −Dnan(x,Du) =

∑n−1
k=1 Dkak(x,Du) + b(x, u,Du)

in a standard way). Looking at the simple example −div
(
f(x, u)Du

)
= b(x, u,Du) we get a first

idea on how the coefficients might serve to improve the differentiability of Dnu, because we then have
an(x, u,Du) = f(x, u)Dnu, meaning that an(x, u,Du) is the missing normal derivative up to a Hölder
continuous perturbation (a similar property holds true for the general coefficients). For the moment let
us concentrate on an(x, u,Du): mimicking the differentiable situation to a certain extent, we show by
means of the estimates for tangential differences of Du that slice-wise mean values of an(x, u(x), Du(x))
are differentiable in the weak sense in the xn-direction, and as a consequence, we obtain that the map
x 7→ an(x, u(x), Du(x)) is in a fractional Sobolev space.

An estimate for the normal derivative: Taking advantage of the ellipticity and the boundedness
condition assumed for the coefficients, we find that differences of Dnu are essentially dominated by
those of an(x, u,Du) and of the tangential derivative D′u. Together with a corresponding estimate
for the tangential derivatives of u, this leads to a fractional differentiability result for the full gradient
Du ∈Wαγλ,2 for every γ < 1.

Getting rid of λ: By an interpolation technique we gain higher integrability out of the fractional
differentiability of Du. This in turn is used to improve the differentiability of Du in a suitable iteration
procedure up to the final result Du ∈Wαγ,2 for every γ < 1.

2 Structure conditions and notation

We impose on the coefficients a : Ω × RN × RnN → RnN standard conditions (here stated for general
p-growth, even if we will concentrate on case p = 2): the mapping z 7→ a(x, u, z) is a continuous vector
field, and for fixed numbers 0 < ν ≤ L, p ∈ (1,∞) and all x, x̄ ∈ Ω, u, ū ∈ RN , z ∈ RnN , the following
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growth, ellipticity and continuity assumptions hold:

(H1) a has polynomial growth and is differentiable in z with continuous, bounded derivatives:

|a(x, u, z)|+
(
1 + |z|2

) 1
2 |Dza(x, u, z)| ≤ L

(
1 + |z|2

) p−1
2 ,

(H2) a is uniformly strongly elliptic, i. e.

Dza(x, u, z)λ · λ ≥ ν
(
1 + |z|2

) p−2
2 |λ|2 ∀λ ∈ RnN ,

(H3) There exists a nondecreasing, concave modulus of continuity ωα : R+ → [0, 1]
such that ωα(s) ≤ min{1, sα} for all s ∈ R+ and

|a(x, u, z)− a(x̄, ū, z)| ≤ L
(
1 + |z|2

) p−1
2 ωα

(
|x− x̄|+ |u− ū|

)
.

The latter condition (H3) prescribes uniform Hölder continuity with respect to the (x, u)-variable with
Hölder exponent α (for fixed z). Moreover, we assume the inhomogeneity b : Ω × RN × RnN → RN to
be a Carathéodory map, that is, it is continuous with respect to (u, z) and measurable with respect to
x, and to satisfy a natural growth condition of the form

(B) there exists a constant L2 (possibly depending on M > 0) such that
|b(x, u, z)| ≤ L+ L2 |z|p

for all x ∈ Ω, u ∈ RN with |u| ≤M, and z ∈ RnN .

We further make some remarks on the notation used below:
(Half-)Balls, cubes and cylinders: We write Bρ(y) = {x ∈ Rn : |x− y| < ρ} and B+

ρ (y) = {x ∈ Rn :
xn > 0, |x− y| < ρ} for an n-dimensional ball or the intersection of the ball with the upper half-space
Rn−1×R+, centered at a point y ∈ Rn (respectively ∈ Rn−1×R+

0 in the latter case) with radius ρ > 0.
In the case y = 0 we set Bρ := Bρ(0), B := B1 as well as B+

ρ := B+
ρ (0), B+ := B+

1 . Furthermore, we
denote by Dρ(y′) the (n− 1)-dimensional ball Dρ(y′) :=

{
x ∈ Rn−1 : |y′ − x′| < ρ

}
for y′ ∈ Rn−1, and

by Zρ(y) the open cylinder on the upper half-plane Rn−1 × R+

Zρ(y) := Dρ(y′)×
(

max{0, yn − ρ}, yn + ρ
)

=: Dρ(y′)× Iρ(yn)

for a center y =: (y′, yn) ∈ Rn with yn ≥ 0. Similarly as for balls, cubes with center y ∈ Rn and side-
length 2ρ are denoted by Qρ(y), upper half-cubes by Q+

ρ (y), and we further write Q0
ρ(y) = ∂Q+

ρ (y) ∩
Rn−1 × {0} (with the corresponding abbreviations for y = 0 and if ρ = 1).

Function spaces: We will work with functions belonging to the Hölder spaces C1,α, α ∈ (0, 1), and
the (fractional) Sobolev space W θ,p, θ ∈ (0, 1], p ∈ [1,∞). The definition for noninteger values of θ
and some preliminary material is collected in the next section. Moreover, we introduce the following
notation for W 1,p-functions defined on a upper half-cubes Q+

ρ (y) which vanish on Q0
ρ(y) (in the sense

of traces):
W 1,p

Γ (Q+
ρ (y),RN ) :=

{
u ∈W 1,p(Q+

ρ (y),RN ) : u = 0 on Q0
ρ(y)

}
.

where yn < ρ is satisfied; the subspace of functions vanishing on the whole boundary is denoted by
W 1,p

0 . Sometimes, it will be convenient to treat the tangential derivative D′u := (D1u, . . . ,Dn−1u) and
the normal derivative Dnu of a Sobolev function u separately.

Measures and mean values: For a given set X ⊂ Rk we write Lk(X) = |X| and dimH(X) for
its k-dimensional Lebesgue-measure and its Hausdorff dimension, respectively. Furthermore, if h ∈
L1(X,RN ) and 0 < |X| < ∞, we denote the average of h by (h)X =

∫
−
X
h dx, and when working on

cylinders we will use the abbreviation (v)x0,ρ := (v)Zρ(x0). We further define the slice-wise mean value
of u in Dr((x0)′) at almost every height xn ∈ Iρ((x0)n) via

(v)x′0,ρ(xn) :=
∫
−
Dρ((x0)′)

v(x′, xn) dx′ .

The constants c appearing in the different estimates will all be chosen greater than or equal to 1,
and they may vary from line to line.
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3 Fractional Sobolev spaces and finite differences

In what follows, we will use the notation of [2] (see also [33, 18]). For a bounded open set A ⊂ Rn,
parameters θ ∈ (0, 1) and q ∈ [1,∞) we write u ∈ W θ,q(A,RN ) provided that u ∈ Lq(A,RN ) and the
following Gagliardo-type norm of u defined as

‖u‖W θ,q(A) :=
(∫

A

|u(x)|q dx
) 1
q

+
(∫

A

∫
A

|u(x)− u(y)|q

|x− y|n+qθ
dx dy

) 1
q

is finite. In order to formulate a general criterion for a function to belong to a fractional Sobolev space
we introduce the finite difference operator τe,h with respect to a direction e ∈ B1 ⊂ Rn and with stepsize
h ∈ R via

τe,hG(x) ≡ τe,h(G)(x) := G(x+ he)−G(x)

for a vector valued function G : A → RN (this makes sense whenever x, x + he ∈ A). If e = es,
s ∈ {1, . . . , n}, is a standard basis vector, we use the abbreviation τs,h instead of τes,h. These finite
differences are related to the fractional Sobolev spaces (in the interior as well as in an up-to-the-boundary
version) via the next lemma:

Lemma 3.1 ([32], Lemma 2.5; [18], Lemma 2.2): Let G ∈ Lq(Q+
R,RN ), q ≥ 1, and assume that

for θ ∈ (0, 1], M > 0 and some 0 < r < R we have
n∑
s=1

∫
Q+
r

|τs,hG|q dx ≤ Mq |h|qθ

for every h ∈ R satisfying 0 < |h| ≤ d where 0 < d < min{1, R − r} is a fixed number. In the case
s = n we only allow positive values of h. Then G ∈ W b,q(Q+

ρ ,RN ) for every b ∈ (0, θ) and ρ < r.
Moreover, there exists a constant c = c(n, q) (in particular, independent of M and G) such that the
following inequality holds true:∫

Q+
ρ

∫
Q+
ρ

|G(x)−G(y)|q

|x− y|n+bq
dx dy ≤ c

(Mqεq(θ−b)

θ − b
+
|Q+

R|
εn+bq

∫
Q+
R

|G|q dx
)
,

where ε := min{r−ρ, d}. In the interior the same result holds true without any constraint on the sign of
h with respect to the direction of the differences τs,h. Moreover, we can consider (half-)balls or cylinders
instead of cubes.

In the case where G is the weak derivative of a W 1,q function v and where an estimate for finite differ-
ences only in tangential direction is known, we are still in a position to state a fractional differentiability
result which is limited to the tangential derivative of v:

Lemma 3.2: Let v ∈W 1,q(Q+
R,RN ), q ≥ 1, and assume that for θ ∈ (0, 1], M > 0 and some 0 < r < R

we have
n−1∑
s=1

∫
Q+
r

|τs,hDv|q dx ≤ Mq |h|qθ (3.1)

for every h ∈ R satisfying 0 < |h| ≤ d where 0 < d < min{1, R − r} is a fixed number. Then
D′v = (D1v, . . . , Dn−1v) ∈W b,q(Q+

ρ ,R(n−1)N ) for every b ∈ (0, θ) and ρ < r.

Proof: We first fix b ∈ (0, θ) and ρ ∈ (0, r). We consider arbitrary numbers h′ ∈ R+ and h ∈ R
satisfying 0 < |h|, |h′| < min{d, r−ρ3 }. Then, using Young’s inequality, standard properties of the
difference operator and the assumption (3.1) on finite differences in tangential direction, we conclude
for every ε ∈ (0, θ) and s ∈ {1, . . . , n− 1}:

|h′|−(θ−ε)q |h|−(1+ε)q

∫
Q+
r−2d

|τn,h′τs,hτs,−hv|q dx

≤
(
|h′|−q |h|−θq + |h|−q−θq

) ∫
Q+
r−2d

|τn,h′τs,hτs,−hv|q dx

≤ 2 |h′|−q |h|−θq
∫
Q+
r−d

|τs,hτn,h′v|q dx+ 2 |h|−q−θq
∫
Q+
r−d

|τs,hτs,−hv|q dx

≤ 2 |h|−θq
∫
Q+
r

|τs,hDnv|q dx+ 2 |h|−θq
∫
Q+
r

|τs,hDsv|q dx ≤ 4Mq
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uniformly in h, h′. From [16, Lemma 2.2.1] we infer (for possibly smaller values of |h|)

|h′|−(θ−ε)q |h|−q
∫
Q+
r−2d

|τn,h′τs,hv|q dx ≤ c
(∫

Q+
R

|Dv|q dx+Mq
)
,

and the constant c depends only on θ, q, ε, d and r − ρ. Considering the limit h → 0, we hence end up
with

|h′|−(θ−ε)q
∫
Q+
r−2d

|τn,h′Dsv|q dx ≤ c
(∫

Q+
R

|Dv|q dx+Mq
)
.

Keeping in mind that the index s ∈ {1, . . . , n − 1} is arbitrary, we combine the latter inequality with
(3.1) to find

n∑
s=1

∫
Q+
r−2d

|τs,hD′v|q dx ≤ c |h|(θ−ε)q
(∫

Q+
R

|Dv|q dx+Mq
)

for all h ∈ R satisfying 0 < |h| ≤ min{d, r−ρ3 } where we only allow positive values of h if s = n. For
ε = (θ − b)/2 the application of Lemma 3.1 with θ, r replaced by θ − ε, r − 2d finishes the proof. �

The following interpolation inequality can be found in [9, Lemma 2.V] and is essentially based on
the inequality in [12, Theorem 2.I] for the case p = 2.

Theorem 3.3: Let λ, θ ∈ (0, 1], p ∈ (1,∞) and u ∈ C0,λ(Q,RN ) such that Du ∈ W θ,p(Q,RnN ) with
pθ < n, where Q ⊂ RN is an (upper) cube. Then

Du ∈ Ls(Q,RnN ) for all s <
np(1 + θ)
n− pθλ

.

Moreover, ∫
Q

|Du|s dx ≤ c
(
n,N, p, θ, λ, s, |Q|, ‖u‖W 1+θ,p(Q,RN ), [u]C0,λ(Q,RN )

)
.

The next lemma enables us to conclude from difference estimates for a map v an appropriate estimate
for the averaged mean deviation with respect to slice-wise mean values:

Lemma 3.4 ([35]): Let σ < 1
3 , n ≥ 2, τ > 0, Zρ(x0) ⊂ Q+ for some x0 ∈ Q+ ∪ Q0. Furthermore,

assume that v ∈ Lp(Zρ(x0),RN ), p > 1, satisfies∫
Zσρ(x0)

|τh,ev|p dx ≤ Kp |h|τp

for some K > 0, all e ∈ Sn−1 with e ⊥ en and h ∈ R with |h| < 2σρ. Then, for every β ∈ (0, τ) there
exists a function F ∈ Lp(Zσρ(x0)) such that∫

Zσρ(x0)

|F |p dx ≤ c(n, p, τ, β)Kp ρ(τ−β)p

and (∫
−
Zr(z)

∫
−
Dr(z′)

|v(x′, xn)− v(y′, xn)|ep dy′ dx) 1ep ≤ c(n, β) rβ F (z)

for every exponent p̃ ∈ [1, p), almost all z ∈ Q+ ∪Q0 and all r > 0 such that Zr(z) ⊂ Zσρ(x0).

A different definition for fractional Sobolev spaces, based on pointwise inequalities, can be derived
as follows: Let Ω ⊂ Rn be a bounded domain, p ≥ 1 and θ ∈ (0, 1]. Following the approach of Haj lasz
in [28], we set

Dθ,p(Ω; f) :=
{
g ∈ Lp(Ω): ∃E ⊂ Ω, |E| = 0 such that

|f(x)− f(y)| ≤ |x− y|θ(g(x) + g(y)) for all x, y ∈ Ω \ E
}
,

and we define the fractional Sobolev space via

Mθ,p(Ω,RN ) :=
{
f ∈ Lp(Ω,RN ) : Dθ,p(Ω; f) 6= ∅

}
.
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Mθ,p(Ω,RN ) is equipped with the norm

‖f‖Mθ,p(Ω,RN ) := ‖f‖Lp(Ω,RN ) + inf
g∈Dθ,p(Ω;f)

‖g‖Lp(Ω) .

For p ∈ (1,∞), due to the convexity of Lp, to every f ∈ Mθ,p(Ω,RN ) there exists a unique function
g ∈ Lp(Ω) which minimizes the Lp(Ω)-norm amongst all functions in Dθ,p(Ω; f). We highlight that
this definition has its origin in the definition of Sobolev spaces in the context of arbitrary metric spaces
(replacing |x− y| by dist(x, y)) and that it does not use of the notion of derivatives (for a more detailed
discussion of the metric setting we refer to [29]). Employing the Hardy-Littlewood maximal function
we see that this “metric” Sobolev space coincides with the classical Sobolev space for the integer order
θ = 1 and sufficiently regular domains (e. g. with Lipschitz boundary). More precisely, provided that
p > 1, there holds M1,p(Ω,RN ) = W 1,p(Ω,RN ) for all bounded domains Ω with the so-called extension
property, meaning that there exists a bounded linear operator E : W 1,p(Ω,RN ) → W 1,p(Rn,RN ) such
that for every f ∈ W 1,p(Ω,RN ) there holds Ef = f almost everywhere in Ω. Instead, the equivalence
fails if p = 1, see [27]. Furthermore, the definitions of the classical and the metric fractional Sobolev
spaces immediately yield for all bounded domains Ω, fractional orders θ ∈ (0, 1) and p ∈ [1,∞) the
following inclusion:

Mθ,p(Ω,RN ) ⊆W θ′,p(Ω,RN ) for all θ′ ∈ (0, θ).

The following lemma provides an integral characterization of fractional Sobolev spaces for domains
satisfying the mild Ahlfors regularity condition, which demands the existence of a positive constant kΩ

such that

(KΩ) |Bρ(x0) ∩ Ω| ≥ kΩ ρ
n for all points x0 ∈ Ω and every radius ρ ≤ diam(Ω) .

In other words: the domain is not allowed to have external cusps. We note that the latter condition is
for example satisfied by the large class of domains with Lipschitz-continuous boundary.

Lemma 3.5: Let Ω ⊂ Rn be a domain which fulfills an Ahlfors condition (KΩ), θ ∈ (0, 1], p ∈ (1,∞).
Then the following two statements are equivalent:

(i) f ∈Mθ,p(Ω,RN )

(ii) f ∈ L1(Ω,RN ) and there exists a function h ∈ Lp(Ω) and a radius R0 > 0 such that∫
−
Bρ(x0)∩Ω

|f − (f)Bρ(x0)∩Ω| dx ≤ ρθ h(x0) (3.2)

for almost all x0 ∈ Ω and ρ ≤ R0.

Proof: The implication (i) ⇒ (ii) follows by standard properties of the Hardy-Littlewood maximal
function for the choice h = 4M(g) with g ∈ Dθ,p(Ω; f). The reverse implication (ii) ⇒ (i) is an easy
adaptation of the proof of Campanato’s integral characterization of Hölder continuous functions, see
e. g. [39, Chapt. 1.1, Lemma 1]. �

Remarks 3.6: In fact, the following local version of the integral characterization holds: let x0 ∈ Ω and
R > 0 such that ∫

−
Br(z)∩Ω

|f − (f)Br(z)∩Ω| dx ≤ rθ h(z)

for almost all z ∈ Ω, Br(z) ⊂ BR(x0) and h ∈ Lp(Ω) as above. Then there holds f ∈Mθ,p(BR/2(x0) ∩
Ω,RN ) with

|f(x)− f(y)| ≤ c(n, kΩ, θ) |x− y|θ
(
h(x) + h(y)

)
for almost all x, y ∈ BR/2(x0)∩Ω. In view of Jensen’s inequality and the fact that the Hardy Littlewood
maximal operator is a bounded map from Lp to itself, this characterization allows to infer the inclusion

W θ,p(Ω,RN ) ⊆Mθ,p(Ω,RN )

whenever Ω satisfies an Ahlfors condition (KΩ), θ ∈ (0, 1) and p ∈ (1,∞).
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Moreover, we note that (i) implies indeed the following statement: there exists a function h ∈ Lp(Ω)
and a radius R0 > 0 such that(∫

−
Bρ(x0)∩Ω

|f − (f)Bρ(x0)∩Ω|q dx
) 1
q ≤ ρθ h(x0)

for all q < p and almost all x0 ∈ Ω and ρ ≤ R0.

4 Some basic facts about the solution

In what follows, we restrict ourselves to the model case Ω = Q+
2 , and we study weak solutions u ∈

W 1,p
Γ (Q+

2 ,RN ) ∩ L∞(Q+
2 ,RN ) of the system

−div a( · , u,Du) = b( · , u,Du) in Q+
2 . (4.1)

By a transformation argument this covers the situation of general inhomogeneous systems of type (1.1)
on arbitrary domains Ω of class C1,α. Moreover, we argue under the permanent assumption that the
weak solution u of system (4.1) is Hölder continuous on Q+ with Hölder exponent λ for some λ ∈ (0, 1).
This assumption will later be justified by the fact that in low dimensions the weak solution u is a priori
known to be Hölder continuous outside a set of Hausdorff dimension n−2 (and since we are interested in
the behavior of Du on the boundary which is of Hausdorff dimension n− 1 this information is sufficient
to forget about the bad set where u is not Hölder continuous).

We now present some tools needed in the remainder of the paper: first, we recall the well-known
Caccioppoli inequality in an up-to-the-boundary version. The fact that the oscillations of u are due to
its continuity arbitrarily small in a cylinder – provided that the side length of the cylinder is chosen
sufficiently small – allows to simplify the estimates which are usually slightly more involved for nonlinear
elliptic systems with inhomogeneities under a natural growth condition. As a matter of fact we here do
not need the smallness assumption |u| ≤M with 2L2M < ν.

Lemma 4.1 (Caccioppoli inequality revised): Let u ∈ W 1,p
Γ (Q+

2 ,RN ) ∩ L∞(Q+
2 ,RN ) be a weak

solution of (4.1) under the assumptions (H1)-(H3) and (B). Assume further u ∈ C0,λ(Q+,RN ). Then
there exist positive constants c̃cacc = c̃cacc(n,N, p, Lν ,

L2
ν ) and ρ̃cacc = ρ̃cacc(p, Lν ,

L2
ν , λ, [u]C0,λ(Q+,RN ))

such that for every ξ ∈ RN and every cylinder Zρ(y) ⊂ Q+ with y ∈ Q+ ∪Q0 and yn < ρ ≤ ρ̃cacc there
holds: ∫

−
Zρ/2(y)

|V (Du)− V (ξ ⊗ en)|2 dx ≤ c̃cacc

(∫
−
Zρ(y)

∣∣∣V (u− ξxn
ρ

)∣∣∣2 dx+ ρ2α
(
1 + |ξ|

)p+2α
)
.

Here we have used the V -function which is in general defined by V (ξ) = (1+|ξ|2)(p−2)/4ξ for all ξ ∈ Rk
for some k ∈ N (in the quadratic case it is just the identity map) and which is in particular a bi-Lipschitz
bijection on Rk. Secondly, we recall an estimate concerning finite tangential differences ofDu which is the
starting point to proceed to fractional differentiability estimates forDu and hence to dimension reduction
arguments for the singular set: We consider δ ∈ (0, 1) and assume u ∈ W 1,p

Γ (Q+
2 ,RN ) ∩ L∞(Q+

2 ,RN )
to be a weak solution of system (4.1). Then for every cut-off function η ∈ C∞0 (Q1−δ, [0, 1]) and every
tangential direction e ∈ Sn−1 with e ⊥ en there holds∫

Q+
η2|τe,hV (Du)|2 dx ≤ c

(
|h|2α

∫
Q+∩spt(η)

(
1 + |Du(x)|p + |Du(x+ he)|p + |h|−p|τe,hu(x)|p

)
dx

+
∫
Q+∩spt(η)

(
1 + |Du(x)|2 + |Du(x+ hes)|2

) p
2 |τe,hu(x)|2α dx

+
∫
Q+

(
1 + |Du(x)|p

)
|τe,−h(η2τe,hu(x))| dx

)
(4.2)

for all h ∈ R with |h| < δ, and the constant c depends only on n,N, p, Lν ,
L2
ν , ‖u‖L∞ and ‖Dη‖L∞ . We

highlight that this estimate is the up to the boundary analogue of [36, estimate (4.7)], and its proof
follows the line of arguments in [36]: Testing the weak formulation of (4.1) with the function τe,−hϕ for
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ϕ ∈W 1,p
0 (Q+,RN )∩L∞(Q+,RN ) with sptϕ ⊂ Q1−δ, we first use partial integration for finite differences

on the left-hand side which results in integrals involving τs,h
(
a(x, u(x), Du(x))

)
. Decomposing

τe,h
(
a(x, u(x), Du(x))

)
= a(x+ he, u(x+ he), Du(x+ he))− a(x, u(x+ he), Du(x+ he))

+ a(x, u(x+ he), Du(x+ he))− a(x, u(x), Du(x+ he))
+ a(x, u(x), Du(x+ he))− a(x, u(x), Du(x))

=: A(h) + B(h) + C(h) , (4.3)

we hence find ∫
Q+

[
A(h) + B(h) + C(h)

]
·Dϕdx =

∫
Q+

b(x, u,Du) · τe,−hϕdx . (4.4)

Choosing ϕ = η2τe,hu, we have to estimate the various terms by taking advantage of the growth and
continuity assumptions of the coefficients and the inhomogeneity exactly as in [36], and we then end up
with the desired inequality (4.2).

5 The proof of Theorem 1.1

5.1 Higher integrability of finite differences

We first state a higher integrability estimate for both Du and for finite differences of Du (again mo-
tivated from [36]), which will allow later to end up with a slightly sharper estimate on the Hausdorff
dimension of the singular set. We first observe the well-known existence of a higher integrability ex-
ponent s0 > 2 depending only on n,N, Lν ,

L2
ν and [u]C0,λ(Q+,RN ) such that u ∈ W 1,s0(Q+

ρ ,RN ) for all
ρ < 1. Furthermore, for every center x0 ∈ Q+ ∪Q0 and every radius ρ ∈ (0, 1− |x0|) there holds(∫

−
Zρ/2(x0)

|Du|s0 dx
) 1
s0 ≤ c

(
n,N, Lν ,

L2
ν , [u]C0,λ(Q+,RN )

) ( ∫
−
Zρ(x0)

(
1 + |Du|2

)
dx
) 1

2
, (5.1)

see e.g. [8, Lemma 4.1]. Combining the higher integrability with (4.2) we obtain similarly to [36, Section
5, step 2] a higher integrability result for τe,hDu:

Proposition 5.1: Let u ∈ W 1,2
Γ (Q+

2 ,RN ) ∩ L∞(Q+
2 ,RN ) ∩ C0,λ(Q+,RN ) be a weak solution of (4.1)

under the assumptions (H1)-(H3) and (B). Furthermore, let Zρ(x0) ⊂ Q+ for some x0 ∈ Q+ ∪ Q0,
σ ∈ (0, 1

10 ), e ∈ Sn−1 with e ⊥ en and h ∈ R with |h| ∈ (0, 2σρ). Then there exists a higher integrability
exponent s ∈ (2, s0) depending only on n,N, Lν ,

L2
ν and [u]C0,λ(Q+,RN ) such that∫

−
Zσρ(x0)

|τe,hDu|s dx ≤ c |h|αλs2

(∫
−
Zρ(x0)

(
1 + |Du|2

)
dx
) s

2

for a constant c= c
(
n,N, Lν ,

L2
ν , [u]C0,λ(Q+,RN ), ρ, σ

)
.

Proof: We consider in the sequel the tangential directions e ∈ Sn−1, i. e. e ⊥ en, and we initially look
at numbers h ∈ R satisfying |h| < 1. Recalling the abbreviations for A(h), B(h) and C(h) from (4.3),
representing the differences of the coefficients a(·, ·, ·) with respect to each variable, we set

vh :=
τe,hu

|h|αλ2
, Ã(h) :=

−A(h)

|h|αλ2
, B̃(h) :=

−B(h)

|h|αλ2
,

and we define C̃(h) =
∫ 1

0
Dza

(
x, u(x), Du(x) + tτe,hDu(x))

)
dt. Dividing the previous identity (4.4) by

|h|αλ/2 (which is half the power of |h| to be expected in (4.2) for λ-Hölder continuous solutions) we get∫
Q+

C̃(h)Dvh ·Dϕdx =
∫
Q+

[
Ã(h) + B̃(h)

]
·Dϕdx+

∫
Q+
|h|−αλ2 b(x, u,Du) · τe,−hϕdx (5.2)

for all functions ϕ ∈ W 1,2
0 (Q+

1−|h|,R
N ) ∩ L∞(Q+

1−|h|,R
N ), i. e. the map vh ∈ W 1,2(Q+

1−|h|,R
N ) is a

weak solution to the linear system (5.2) for every h ∈ R with |h| < 1. In the next step we infer
Caccioppoli-type inequalities for the functions vh, for which the constants may be chosen independently
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of the parameter h. For this purpose we first observe some simple properties due to (H1)-(H3) and the
Hölder continuity of u with exponent λ:

|Ã(h)| ≤ L
(
1 + |Du(x+ he)|

)
,

|B̃(h)| ≤ L [u]αC0,λ(B+,RN )

(
1 + |Du(x+ he)|

)
,

ν |λ̃|2 ≤ C̃(h)λ̃⊗ λ̃ ≤ L |λ̃|2 ∀ λ̃ ∈ RnN .

For σ, ρ and x0 fixed according to the assumptions of the proposition, we next choose h ∈ R such that
|h| ∈ (0, 2σρ) and consider intersections of balls B+

R(y) with the upper half-plane Rn−1×R+ for centers
y ∈ Z(1−σ)ρ/2(x0) satisfying B+

R(y) ⊂ Q+
1−|h| (implying that 0 < R < 1 − |h| −maxk∈{1,...,n} |yk|) and

yn ≤ 3R
4 , i. e. we first study the situation for centers close to the boundary. Furthermore, we take a

cut-off function η ∈ C∞0 (B3R/4(y), [0, 1]) satisfying η ≡ 1 on BR/2(y) and |Dη| ≤ 8
R , and we choose

ϕ := η2vh as a test function in (5.2). Taking into account Dϕ = η2Dvh + 2ηvh ⊗Dη, we estimate the
various terms arising in (5.2): using Young’s inequality with ε ∈ (0, 1) and the estimates for Ã(h), B̃(h)
and C̃(h) given above we see

• ν
∫
B+
R(y)

η2 |Dvh|2 dx ≤
∫
B+
R(y)

η2 C̃(h)Dvh ·Dvh dx ,

•
∫
B+
R(y)

2 η |C̃(h)Dvh · vh ⊗Dη| dx ≤ ε

∫
B+
R(y)

η2 |Dvh|2 dx+
cL2

εR2

∫
B+
R(y)

|vh|2 dx ,

•
∫
B+
R(y)

|Ã(h) ·Dϕ| dx ≤ ε

∫
B+
R(y)

η2 |Dvh|2 dx+
L

R2

∫
B+
R(y)

|vh|2 dx

+ c
(
ε−1L2 + L

) ∫
B+
R(y)

(
1 + |Du(x+ he)|2

)
dx ,

•
∫
B+
R(y)

|B̃(h) ·Dϕ| dx ≤ ε

∫
B+
R(y)

η2 |Dvh|2 dx+
c ε

R2

∫
B+
R(y)

|vh|2 dx

+ c
(
[u]C0,λ(B+,RN )

)
ε−1L2

∫
B+
R(y)

(
1 + |Du(x+ he)|2

)
dx .

In order to estimate the last integral on the right-hand side of (5.2) we calculate∣∣τe,−hϕ∣∣ =
∣∣τe,−h(η2vh)

∣∣ ≤ |h|−αλ2 (|τe,hu(x− he)|+ |τe,hu(x)|
)
≤ 2 [u]C0,λ(Q+,RN ) |h|λ−

αλ
2 . (5.3)

This yields

•
∫
B+
R(y)

|h|−αλ2 |b(x, u,Du) · τe,−hϕ| dx ≤ c
(
[u]C0,λ(Q+,RN )

) ∫
B+
R(y)

(
L+ L2 |Du(x)|2

)
dx .

Collecting the estimates for all terms arising in equation (5.2) and choosing ε = ν
6 , we finally conclude

the Caccioppoli-type estimate∫
B+
R/2(y)

|Dvh|2 dx ≤ cR−2

∫
B+
R(y)

|vh|2 dx+ c

∫
B+
R(y)

(
1 + |Du(x)|2 + |Du(x+ he)|2

)
dx ,

and the constant c depends only on L
ν ,

L2
ν and [u]C0,λ(Q+,RN ). With the boundary version of the Sobolev-

Poincaré inequality we deduce∫
−
B+
R/2(y)

|Dvh|2 dx ≤ c
(∫
−
B+
R(y)

|Dvh|
2n
n+2 dx

)n+2
n

+ c

∫
−
B+
R(y)

(
1 + |Du(x)|2 + |Du(x+ he)|2

)
dx , (5.4)

and the constant c now depends additionally on the dimensions n,N . We here note that the integrand
of the second integral on the right-hand side of the last inequality belongs to Ls0/2 due to the higher
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integrability result for Du from (5.1). In the interior we proceed analogously and consider B+
R(y) with

centers y ∈ Z(1−σ)ρ/2(x0) satisfying B+
R(y) ⊂ Q+

1−|h| and yn > 3R
4 . If we choose ϕ := η2

(
vh−(vh)y,3R/4

)
as a test function all the computations above remain valid (with 2 replaced by 4 in inequality (5.3)).
Then, after applying the Sobolev-Poincaré inequality in the interior in the mean value version on the ball
B3R/4(y), we obtain the corresponding inequality (5.4) with the full ball BR/2(y) instead of B+

R/2(y),
and c has exactly the same dependencies as in the previous reverse Hölder-type inequality; in particular,
the constant c is independent of the parameter h.

Applying the global Gehring Lemma [17, Theorem 2.4] on the cylinder Z(1−σ)ρ/2(x0) for the choices
of σ, ρ and x0 made in the assumptions of the proposition, we find that there exist a constant c depending
only on n,N, q, Lν ,

L2
ν , [u]C0,λ(Q+,RN ) and σ and a positive number δ depending only on n,N, Lν ,

L2
ν and

[u]C0,λ(Q+,RN ) such that there holds(∫
−
Zσρ(x0)

|Dvh|q dx
) 1
q

≤ c
[( ∫
−
Z(1−8σ)ρ/2(x0)

|Dvh|2 dx
) 1

2
+
(∫
−
Z(1−8σ)ρ/2(x0)

(
1 + |Du(x)|2 + |Du(x+ he)|2

) q
2 dx

) 1
q
]

≤ c
[
|h|−αλ2

(∫
−
Z(1−8σ)ρ/2(x0)

|τe,hDu|2 dx
) 1

2
+
(∫
−
Zρ/2(x0)

(
1 + |Du(x)|2

) q
2 dx

) 1
q
]

≤ c
[( ∫
−
Zρ/2(x0)

(
1 + |Du|2

)
dx
) 1

2
+
(∫
−
Zρ/2(x0)

(
1 + |Du|2

) q
2 dx

) 1
q
]

for all q ∈ [2, 2 + δ). Here, we have also used the bound |h| < 2σρ (with |σ| < 1
10 ) and the estimate (4.2)

combined with the Hölder continuity of u with exponent λ (note that as a consequence the constant c
then depends additionally on the radius ρ). Hence, for all s ∈ (2,min{s0, 2 + δ}) the previous inequality
holds true. Keeping in mind the definition of vh and the higher integrability result (5.1), we finally
arrive at (∫

−
Zσρ(x0)

|τe,hDu|s dx
) 1
s ≤ c |h|αλ2

(∫
−
Zρ(x0)

(
1 + |Du|2

)
dx
) 1

2
,

which finishes the proof of the proposition. �

Moreover, we mention two direct consequences of Proposition 5.1. The first one follows from
Lemma 3.4 and concerns the slice-wise mean-square deviation of Du:

Corollary 5.2: Let u ∈ W 1,2
Γ (Q+

2 ,RN ) ∩ L∞(Q+
2 ,RN ) ∩ C0,λ(Q+,RN ) be a weak solution of (4.1)

under the assumptions (H1)-(H3) and (B). Furthermore, let Zρ(x0) ⊂ Q+ for some x0 ∈ Q+ ∪Q0 and
σ ∈ (0, 1

10 ). Then for every γ ∈ (0, 1) there exists a function F1 ∈ Ls(Zσρ(x0)) such that the following
estimate holds true:(∫

−
Zr(z)

∣∣Du(x)− (Du)z′,r(xn)
∣∣2 dx) 1

2

≤
(∫
−
Zr(z)

∫
−
Dr(z′)

|Du(x′, xn)−Du(y′, xn)|2 dy′ dx
) 1

2 ≤ c r
γαλ

2 F1(z)

for all cylinders Zr(z) ⊂ Zσρ(x0) with z ∈ Q+ ∪Q0, and the constant c depends only on n, α, λ and γ.

Remark: The Ls-norm of F1 might blow up if γ ↗ 1 (as a consequence of the application of the
Lq-inequality for the maximal operator in the proof of Lemma 3.4). Moreover, when verifying the
assumptions of Lemma 3.4, we observe that the number K (resulting from the inequality in Propo-
sition 5.1) depends on the radius ρ and on σ. This dependency is reflected only in the Ls-norm of
F1. However, this will not be of importance because ρ and σ may be chosen fixed in every step of the
subsequent iteration. More precisely, in the next section we will infer appropriate fractional Sobolev
estimates on the cylinders Zσρ(x0) and then, via a covering argument, also on Q+ (respectively on
smaller half-cubes in the course of the iteration).

As a second consequence of Proposition 5.1 we obtain a fractional Sobolev estimate for the tangential
derivative D′u. This follows immediately from Lemma 3.2 and the inclusion W θ,s ⊆Mθ,s (for θ ∈ (0, 1),
s ∈ (1,∞)) given in Remarks 3.6.
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Corollary 5.3: Let u ∈W 1,2
Γ (Q+

2 ,RN )∩L∞(Q+
2 ,RN )∩C0,λ(Q+,RN ) be a weak solution of (4.1) under

the assumptions (H1)-(H3) and (B). Then for every γ ∈ (0, 1) there holds

D′u = (D1u, . . . ,Dn−1u) ∈Mγαλ/2,s(Q+
ρ ,R(n−1)N )

for every ρ < 1. In particular, there exists a function H1 ∈ Ls(Q+
1/2) such that

|D′u(x)−D′u(y)| ≤ |x− y|
γαλ

2
(
H1(x) +H2(y)

)
for almost all x, y ∈ Q+

1/2.

5.2 A first estimate for the full derivative

So far, we can estimate finite differences close to the boundary only with respect to tangential directions.
In order to find a fractional Sobolev estimate of type (3.2) also with respect to the normal direction
we next choose a cylinder Zρ(x0) ⊂ Q+, x0 ∈ Q+ ∪Q0, ρ ≤ ρ̃cacc where ρ̃cacc is from Lemma 4.1, and
σ ∈ (0, 1

10 ). Furthermore, we fix a number γ ∈ (0, 1) to be specified later. We now study the model
system (4.1) on cylinders Zr(z) with z ∈ Q+ ∪ Q0 such that Z2r(z) ⊂ Zσρ(x0), and by M∗ we always
denote the maximal operator restricted to the cylinder Zσρ(x0), i. e.

M∗(f)(z) := sup
Zr̃(z̃)⊆Zσρ(x0), z∈Zr̃(z̃)

∫
−
Zr̃(z̃)

|f(x)| dx .

for every f ∈ L1(Zσρ(x0),Rk), k ≥ 1, and z ∈ Zσρ(x0). We shall frequently use the fact that the
maximal operator is bounded as a mapping from Lp to itself for every p > 1.

A fractional Sobolev estimate for an( · ,u,Du)

In coordinates we have the following representation of the weak formulation for the system (4.1):

N∑
j=1

n∑
κ=1

∫
−
Zr(z)

ajκ(x, u(x), Du(x))Dκϕ
j dx =

N∑
j=1

∫
−
Zr(z)

bj(x, u(x), Du(x))ϕj dx

for all ϕ ∈ C∞0 (Zr(z),RN ). Following the approach of [35], we are going to derive in the first step a
weak differentiability result for the function

Ajr(xn) :=
∫
−
Dr(z′)

ajn(x′, xn, u(x′, xn), Du(x′, xn))dx′ (5.5)

for every j ∈ {1, . . . , N} and xn ∈ Ir(zn). For this purpose we choose a “splitting” test function of
the form ϕ(x) = φ1(x′)φ2(xn)Ej where φ1 ∈ C∞0 (Dr(z′)) with φ1 ≡ 1 on the (n− 1)-dimensional ball
Dτr(z′) for some τ ∈ (0, 1), φ2 ∈ C∞0 (Ir(zn)), and where Ej denotes the standard unit coordinate vector
in RN . Employing the above identity with such a test function ϕ then yields∫

−
Ir(zn)

∫
−
Dr(z′)

ajn(x, u(x), Du(x))φ1(x′)Dnφ2(xn) dx′ dxn

= −
∫
−
Ir(zn)

1
|Dr(z′)|

∫
Dr(z′)\Dτr(z′)

n−1∑
κ=1

ajκ(x, u(x), Du(x))Dκφ1(x′)φ2(xn) dx′ dxn

+
∫
−
Ir(zn)

∫
−
Dr(z′)

bj(x, u(x), Du(x))φ1(x′)φ2(xn) dx′ dxn

= −
∫
−
Ir(zn)

1
|Dr(z′)|

∫ r

τr

∫
∂Der(z′)

n−1∑
κ=1

[
ajκ(x, u(x), Du(x))− ajκ(z, (u)z,r, (Du)z′,r(xn))

]
×Dκφ1(x′) dHn−2(x′) dr̃ φ2(xn) dxn

+
∫
−
Ir(zn)

∫
−
Dr(z′)

bj(x, u(x), Du(x))φ1(x′) dx′ φ2(xn) dxn
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for j ∈ {1, . . . , N}, where we have used the co area formula in the last line. In particular, we may choose
by approximation a cut-off function of the form

φ1(x′) =


1 if |x′ − z′| ≤ τr ,

r−|x′−z′|
(1−τ)r if τr < |x′ − z′| < r ,

0 if |x′ − z′| ≥ r .

We note that this implies Dκφ1(x′) = − 1
(1−τ)r

xκ−zκ
|x′−z′| for every κ ∈ {1, . . . , n−1} provided that |x′−z′| ∈

(τr, r). Setting

Bjκ(x) = ajκ(x, u(x), Du(x))− ajκ(z, (u)z,r, (Du)z′,r(xn)) (5.6)

for j ∈ {1, . . . , N} and κ ∈ {1, . . . , n− 1}, we calculate with this particular choice for φ1:∫
−
Ir(zn)

∫
−
Dr(z′)

ajn(x, u(x), Du(x))φ1(x′) dx′Dnφ2(xn) dxn

=
∫
−
Ir(zn)

1
|Dr(z′)|

∫
−
r

τr

∫
∂Der(z′)

Bj(x) · x
′ − z′

|x′ − z′|
dHn−2(x′) dr̃ φ2(xn) dxn

+
∫
−
Ir(zn)

∫
−
Dr(z′)

bj(x, u(x), Du(x))φ1(x′) dx′ φ2(xn) dxn .

Recalling the definition of Ajr(xn) given in (5.5), we consider the limit τ ↗ 1 and conclude from
Lebesgue’s differentiation Theorem that for almost every radius r (and fixed center z ∈ Zσρ(x0)) such
that Zr(z) ⊂ Zσρ(x0) there holds∫

Ir(zn)

Ajr(xn)Dnφ2(xn) dxn =
∫
Ir(zn)

1
|Dr(z′)|

∫
∂Dr(z′)

Bj(x) · x
′ − z′

|x′ − z′|
dHn−2(x′)φ2(xn) dxn

+
∫
Ir(zn)

∫
−
Dr(z′)

bj(x, u(x), Du(x)) dx′ φ2(xn) dxn .

Hence, for almost every radius r with Zr(z) ⊂ Zσρ(x0) we find that Ar(xn) = (A1
r(xn), . . . , ANr (xn)) is

weakly differentiable on Ir(zn) (note that the index j ∈ {1, . . . , N} and the test function φ2 are arbitrary
in the latter identity), and its weak derivative is given by

A′r(xn) = − 1
|Dr(z′)|

∫
∂Dr(z′)

B(x) · x
′ − z′

|x′ − z′|
dHn−2(x′)−

∫
−
Dr(z′)

b(x, u(x), Du(x)) dx′ . (5.7)

We next consider for any fixed r all radii ρ̃ ∈ (0, r] and we define the set J via

J =
{
ρ̃ : ρ̃ ∈ (0, r] and

∫
Ieρ(zn)

∫
∂Deρ(z′)

|B(x)| dHn−2(x′) dxn >
2
r

∫
Zr(z)

|B(x)| dx
}
.

The following computations reveal that there holds L1(J) < r
2 : employing the co area formula and

Fubini’s Theorem we get∫
Zr(z)

|B(x)| dx ≥
∫ r

0

∫
Ieρ(zn)

∫
∂Deρ(z′)

|B(x)| dHn−2(x′) dxn dρ̃

≥
∫
J

∫
Ieρ(zn)

∫
∂Deρ(z′)

|B(x)| dHn−2(x′) dxn dρ̃

>

∫
J

2
r

∫
Zr(z)

|B(x)| dx dρ̃ = L1(J)
2
r

∫
Zr(z)

|B(x)| dx .

Therefore, we find some radius ρ̄ ∈ [ r2 , r] such that on the one hand Aρ̄(xn) is weakly differentiable and
on the other hand ρ̄ /∈ J . Hence, in view of Poincaré’s inequality and identity (5.7), we obtain for this
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choice of ρ̄: ∫
−
Iρ̄(zn)

∣∣Aρ̄(xn)− (Aρ̄)zn,ρ̄
∣∣ dxn ≤ c(N)

∫
Iρ̄(zn)

∣∣A′ρ̄(xn)
∣∣ dxn

≤ c(N)
|Dρ̄(z′)|

∫
Iρ̄(zn)

∫
∂Dρ̄(z′)

|B(x)| dHn−2(x′) dxn

+ c(N)
∫
Iρ̄(zn)

∫
−
Dρ̄(z′)

|b(x, u(x), Du(x))| dx′ dxn

≤ c(N)
[ 1
|Dρ̄(z′)| r

∫
Zr(z)

|B(x)| dx+ ρ̄

∫
−
Zρ̄(z)

|b(x, u(x), Du(x))| dx
]

≤ c(n,N)
[ ∫
−
Zr(z)

|B(x)| dx+ r

∫
−
Zr(z)

|b(x, u(x), Du(x))| dx
]
. (5.8)

In the next step we control the integrals arising on the right-hand side of the last inequality by using
the growth conditions on coefficients and inhomogeneity, respectively, and by exploiting the assumption
that u is Hölder continuous with exponent λ (which shall be used without any further comment).

For the first integral in (5.8) we use the definition of B(x) in (5.6), the assumptions (H1), (H3), and
Corollary 5.2 to see∫

−
Zr(z)

∣∣B(x)
∣∣ dx ≤ ∫−

Zr(z)

[ ∣∣a(x, u(x), Du(x))− a(z, (u)z,r, Du(x))
∣∣

+
∣∣a(z, (u)z,r, Du(x))− a(z, (u)z,r, (Du)z′,r(xn))

∣∣ ] dx
≤ 4L

(
rα + [u]αC0,λ(Q+,RN ) r

αλ
) ∫
−
Zr(z)

(
1 + |Du|

)
dx

+ L

∫
−
Zr(z)

∣∣Du(x)− (Du)z′,r(xn)
∣∣ dx

≤ c r
γαλ

2
(
M∗
(
1 + |Du|

)
(z) + F1(z)

)
,

and the constant c depends only on n,L, [u]C0,λ(Q+,RN ), α, λ and γ. Moreover, the functions F1 and
M∗
(
1 + |Du|

)
belong to the space Ls(Zσρ(x0)), due to Corollary 5.2 and the higher integrability of Du

(combined with standard properties of the maximal function).
For the second integral in (5.8), we initially assume that we are close to the boundary, meaning that

zn < 2r. We then infer the following estimate from the natural growth condition (B), the Caccioppoli
inequality from Lemma 4.1 (note that 2r ≤ ρ̃cacc), and the Poincaré inequality in the boundary version:

r

∫
−
Zr(z)

|b(x, u(x), Du(x))| dx ≤ r

∫
−
Zr(z)

(L+ L2 |Du|2) dx

≤ c
(
r1−1+λ

∫
−
Z2r(z)

|Du| dx+ r2α+1
)

+ r L

≤ c rλM∗
(
1 + |Du|

)
(z) , (5.9)

and the constant c depends only on n,N,L, L2, ν and [u]C0,λ(Q+,RN ). For cylinders in the interior, where
zn ≥ 2r, we end up with exactly the same estimate using interior versions of Caccioppoli and Poincaré
where |u| is replaced by |u− (u)z,2r|.

Hence, combining the last two estimates, we conclude from (5.8)∫
−
Zρ̄(zn)

∣∣∣ ∫−
Dρ̄(z′)

an(y′, xn, u(y′, xn), Du(y′, xn)) dy′ −
∫
−
Zρ̄(z)

an(ỹ, u(ỹ), Du(ỹ)) dỹ
∣∣∣ dx

=
∫
−
Iρ̄(zn)

∣∣Aρ̄(xn)− (Aρ̄)zn,ρ̄
∣∣ dxn ≤ c r

γαλ
2
[
M∗
(
1 + |Du|

)
(z) + F1(z)

]
, (5.10)

and the constant c depends only on n,N,L, L2, ν, [u]C0,λ(Q+,RN ), α, λ and γ. Besides, we have F1,
M∗
(
1 + |Du|

)
∈ Ls(Zσρ(x0)) for some s > 2. Furthermore, applying Jensen’s inequality, conditions
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(H1), (H3), and Corollary 5.2 we find∫
−
Zρ̄(z)

∣∣∣an(x, u(x), Du(x))−
∫
−
Dρ̄(z′)

an(y′, xn, u(y′, xn), Du(y′, xn)) dy′
∣∣∣ dx

≤ c
(
L, [u]C0,λ(Q+,RN )

)
ρ̄αλ

∫
−
Zρ̄(z)

(
1 + |Du|

)
dx

+ L

∫
−
Zρ̄(z)

∫
−
Dρ̄(z′)

∣∣Du(x′, xn)−Du(y′, xn)
∣∣ dy′ dx

≤ c
(
n,L, [u]C0,λ(Q+,RN ), α, λ, γ

)
ρ̄
γαλ

2
[
M∗
(
1 + |Du|

)
(z) + F1(z)

]
. (5.11)

Combining (5.10) and (5.11), we conclude∫
−
Zρ̄(z)

∣∣an(x, u(x), Du(x))−
(
an( · , u,Du)

)
z,ρ̄

∣∣ dx ≤ c r
γαλ

2
[
M∗
(
1 + |Du|

)
(z) + F1(z)

]
for every r with Zr(z) ⊂ Zσρ(x0) and an appropriate radius ρ̄ ∈ [ r2 , r] for which Aρ̄(xn) is weakly
differentiable on Ir(zn) and ρ̄ /∈ J . The constant c here depends only on n,N,L, L2, ν, [u]C0,λ(Q+,RN ), α, λ
and γ. In particular, this yields∫

−
Zr/2(z)

∣∣an(x, u(x), Du(x))−
(
an( · , u,Du)

)
z,r/2

∣∣ dx ≤ c r
γαλ

2
[
M∗
(
1 + |Du|

)
(z) + F1(z)

]
,

and the constant c admits the same dependencies as in the previous inequality. This allows to apply
the characterization of fractional Sobolev spaces given in Lemma 3.5 and Remarks 3.6 (note that these
results also hold true if we replace the balls by cubes or cylinders). Since the cylinders Zρ(x0) ⊂ Q+

were chosen arbitrarily we infer via a covering argument

an( · , u,Du) ∈M
γαλ

2 ,s(Q+
1/2,R

N ) .

Furthermore, there exists a function G1 ∈ Ls(Q+
1/2,R

N ) which satisfies

|an(x, u(x), Du(x))− an(y, u(y), Du(y))| ≤ |x− y|
γαλ

2
(
G1(x) +G1(y)

)
for almost every x, y ∈ Q+

1/2. We finally note that G1 can be calculated from c, M∗
(
1 + |Du|

)
, F1(z)

and the restriction on the radius ρ.
We close this first step with some remarks concerning the components ak(·, u,Du) of the coefficients,

k ∈ {1, . . . , n− 1}, and the interior situation:

Remarks 5.4: We first note that testing the system (4.1) with finite differences in normal direction of
the weak solution u is not allowed. Hence, the statement in Proposition 5.1 cannot be expected to cover
(via a modified proof) also differences of Du in any arbitrary direction e ∈ Sn−1 up to the boundary.
This reveals the crucial point for the up-to-the-boundary estimates derived in this section: the method
makes only an up to the boundary estimate for an(·, u,Du) available – which is still sufficient to enable
us later to find an appropriate fractional Sobolev estimate for Du – but a corresponding estimate for
ak(·, u,Du), k ∈ {1, . . . , n− 1}, does not follow.

For cylinders in the interior, however, Proposition 5.1 holds true for every direction e ∈ Sn−1. As
a consequence, we may repeat the arguments above line-by-line and end up with an interior fractional
estimate for the full coefficients a(·, u,Du). We here mention that fractional Sobolev estimates for the
coefficients a(·, u,Du) are not necessary in the interior to prove the dimension reduction for the singular
set. In fact, interior fractional Sobolev estimates for weak solutions to elliptic systems with inhomo-
geneities obeying a natural growth condition can be obtained directly by exploiting the fundamental
estimate (4.2), see [36].

A fractional Sobolev estimate for Du

The ellipticity condition (H2) and the upper bound in (H1) allow to estimate[
an(x, u(x), Du(x))− an(x, u(x), Du(y))

]
·
(
Dnu(x)−Dnu(y)

)
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=
∫ 1

0

Dzan
(
x, u(x), Du(y) + t(Du(x)−Du(y))

)
dt(

Du(x)−Du(y)
)
·
(
Dnu(x)−Dnu(y)

)
≥ ν |Dnu(x)−Dnu(y)|2 − L |D′u(x)−D′u(y)| |Dnu(x)−Dnu(y)|

for almost all x, y ∈ Q+
1/2. Dividing by |Dnu(x) −Dnu(y)| (provided that Dnu(x) 6= Dnu(y) which is

the nontrivial case) and taking into account the fractional Sobolev estimates for both an(·, u,Du) and
the tangential derivative D′u from Corollary 5.3 and condition (H3), the latter inequality implies

ν |Dnu(x)−Dnu(y)| ≤
∣∣an(x, u(x), Du(x))− an(x, u(x), Du(y))

∣∣+ L |D′u(x)−D′u(y)|
≤ L

(
|x− y|α + [u]αC0,λ(Q+,RN )|x− y|

αλ
) (

1 + |Du(y)|
)

+ |x− y|
γαλ

2
(
G1(x) +G1(y)

)
+ L |x− y|

γαλ
2
(
H1(x) +H1(y)

)
≤ c(L, [u]C0,λ(Q+,RN )) |x− y|

γαλ
2
(
1 + |Du(y)|+G1(x) +G1(y) +H1(x) +H1(y)

)
for almost every x, y ∈ Q+

1/2, meaning that we have Dnu ∈ M
γαλ

2 ,s(Q+
1/2,R

N ). Combined with Corol-
lary 5.3 we hence end up with

Du ∈M
γαλ

2 ,s(Q+
1/2,R

nN ) ,

which is the desired estimate for the full derivative Du. We recall the embedding for the fractional
Sobolev spaces, namely that

Mγαλ/2,s(Q+
1/2,R

nN ) ⊂W γ′γαλ/2,s(Q+
1/2,R

nN )

for all γ′ ∈ (0, 1). Then, in view of the interpolation Theorem 3.3 and the fact that γ and γ′ may be
chosen arbitrarily close to 1 (an appropriate choice is for example γ = γ′ = ( n

n+2λ )1/2), we finally arrive
at the higher integrability result

Du ∈ Ls(1+αλ/2)(Q+
1/2,R

nN ) .

5.3 Iteration

In the next step we iterate the fractional Sobolev estimate for Du. To this aim we define a sequence
(bk)k∈N as follows:

b0 := 0, bk+1 :=
αλ

2
+ bk

(
1− λ

2

)
= bk +

λ

2
(α− bk)

for all k ∈ N0. We observe that the sequence (bk) is increasing with bk ↗ α. The strategy of the proof
is the following: For every k ∈ N0 we show by induction the following inclusions:

Du ∈ Lsk(1+bk)(Q+
2−k

,RnN ) → Du ∈Mγbk+1,sk+1(Q+
1/2k+1 ,RnN )

→ Du ∈ Lsk+1(1+bk+1)(Q+
1/2k+1 ,RnN ) ,

where γ ∈ (0, 1) is an arbitrary number and where (sk)k∈N is a decreasing sequence of higher integrability
exponents with sk > 2 for every k ∈ N0. The first step of the induction, k = 0, was already performed
above (with s1 = s). We now proceed to the inductive step: The objective is to find the first inclusion
by improving the fractional Sobolev estimates in Sections 5.1 and 5.2, and then to deduce in the second
step the higher integrability result by applying the interpolation Theorem 3.3.

Higher integrability II

We again need to deduce a higher integrability result for the tangential differences τe,hDu (cf. Proposi-
tion 5.1) which now incorporates the fact that Du is assumed to be integrable with exponent sk(1+ bk).
In what follows we will frequently use a simple consequence of bk ≤ α, namely the inequality

αλ+ bk(1− λ) ≥ αλ

2
+ bk

(
1− λ

2

)
= bk+1 .
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Proposition 5.5: Let u ∈ W 1,2
Γ (Q+

2 ,RN ) ∩ L∞(Q+
2 ,RN ) ∩ C0,λ(Q+,RN ) be a weak solution to (4.1)

under the assumptions (H1)-(H3) and (B). Assume further u ∈W 1,sk(1+bk)
Γ (Q+

2−k
,RN ) for some k ∈ N,

sk > 2, and let Zρ(x0) ⊂ Q+
2−k

for some x0 ∈ Q0
2−k ∪Q

+
2−k

, σ ∈ (0, 1
5 ), e ∈ Sn−1 with e ⊥ en and h ∈ R

satisfying |h| ∈ (0, 2σρ). Then there exists a higher integrability exponent sk+1 ∈ (2, sk) depending only
on n,N, Lν ,

L2
ν and [u]C0,λ(Q+,RN ) such that∫
−
Zσρ(x0)

|τe,hDu|sk+1 dx ≤ c |h|sk+1bk+1

(∫
−
Zρ(x0)

(
1 + |Du(x)|

)sk(1+bk)
dx
) sk+1

sk

for a constant c = c
(
n,N, Lν ,

L2
ν , [u]C0,λ(Q+,RN ), ρ, σ

)
.

Proof: We give only a sketch of proof and refer to [7, Proof of Proposition 8.8] for more details.
We start from the preliminary estimate (4.2) and show that for every θ ∈ (0, 1) and every cylinder
Zr(x0) ⊂ Q+

2−k
there holds∫

Zθr(x0)

|τe,hDu|2 dx ≤ c |h|2bk+1

∫
Zr(x0)

(
1 + |Du|

)2+2bk dx (5.12)

for all e ∈ Sn−1 with e ⊥ en, h ∈ R satisfying |h| < r(1−θ)
2 and a constant c depending only on

n,N, Lν ,
L2
ν , [u]C0,λ(Q+,RN ), θ and r. For this purpose, a suitable cut-off function is chosen, and the

different terms arising on the right-hand side of (4.2) are then estimated taking advantage of standard
properties of finite differences, the integrability of Du with exponent 2 + 2bk and the Hölder continuity
with exponent λ, see also [36, p. 387].

In the next step we proceed similarly to the case k = 0 and estimate the Lsk+1-norm of |τe,hDu| for
some exponent sk+1 > 2 in terms of an appropriate power of |h|. To this end we consider directions
e ∈ Sn−1 with e ⊥ en and h ∈ R satisfying |h| < 2−k; furthermore, analogously to the proof of
Proposition 5.1 we set

vh,k :=
τe,hu

|h|bk+1
, Ãk(h) :=

−A(h)
|h|bk+1

, B̃k(h) :=
−B(h)
|h|bk+1

,

and C̃k(h) = C̃(h) =
∫ 1

0
Dza

(
x, u(x), Du(x) + tτe,hDu(x))

)
dt as above. Analogously to the derivation

of (5.2) we then see that the map vh,k ∈W 1,2+2bk(Q+
2−k−|h|,R

N ) is a weak solution to a linear system,
for which the various terms need to be estimated in terms of the L2-norms of vh,k and Dvh,k. The only
point differing from the estimates before is the one involving B̃(k)(h): to find an adequate inequality we
first take advantage of the Hölder continuity of u and Young’s inequality and we see∫

B+
R(y)

(
1 + |Du(x+ he)|

)2 |τe,hu|2α dx
≤ c

(
[u]C0,λ(B+,RN )

)
|h|2αλ−2bkλ

∫
B+
R(y)

(
1 + |Du(x+ he)|

)2 |τe,hu|2bk dx
≤ c

(
[u]C0,λ(B+,RN )

)
|h|2bk+1

∫
B+
R(y)

(
1 + |Du(x+ he)|+ |Gh(x)|

)2+2bk dx .

Here we have used the fact that

|τe,hu| ≤ |h|
∫ 1

0

|Du(x+ the)| dt =: |h|Gh(x) ,

and the function Gh is Lsk(1+bk)-integrable on B+
R(y) in view of Fubini’s Theorem:∫

B+
R(y)

|Gh|sk(1+bk) dx ≤
∫
Q+

2−k

|Du|sk(1+bk) dx < ∞ .

Hence, we find with Young’s inequality for every ε ∈ (0, 1)

•
∫
B+
R(y)

∣∣B̃(k)(h) ·Dϕ
∣∣ dx ≤ L

∫
B+
R(y)

|h|−bk+1
(
1 + |Du(x+ he)|

)
|τe,hu|α |Dϕ| dx

≤ ε

∫
B+
R(y)

η2
k |Dv

(k)
h |

2 dx+
c ε

R2

∫
B+
R(y)

|v(k)
h |

2 dx
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+ c
(
[u]C0,λ(B+,RN )

)
ε−1L2

∫
B+
R(y)

(
1 + |Du(x+ he)|+ |Gh(x)|

)2+2bk dx.

Arguing exactly as in the proof of Proposition 5.1, we obtain via the Sobolev-Poincaré inequality a
reverse Hölder-type inequality, from which (taking advantage of the higher integrability of Gh) we then
deduce the desired assertion by the global Gehring Lemma. �

Remark 5.6: If sk(1 + bk) ≥ 2 + 2α is satisfied, it is easy to check that the inequality (5.12) and in
turn the statement of the proposition on the higher integrability of the differences hold true with bk+1

replaced by α.

Proposition 5.5 combined with Lemma 3.4 and with Lemma 3.2, respectively, again allows to state
two direct consequences concerning the slice-wise mean-square deviation of Du and a suitable fractional
differentiability of the tangential derivative D′u:

Corollary 5.7: Let u ∈ W 1,2
Γ (Q+

2 ,RN ) ∩ L∞(Q+
2 ,RN ) ∩ C0,λ(Q+,RN ) be a weak solution to (4.1)

under the assumptions (H1)-(H3) and (B). Assume further u ∈W 1,sk(1+bk)
Γ (Q+

2−k
,RN ) for some k ∈ N,

sk > 2, and let Zρ(x0) ⊂ Q+
2−k

for some x0 ∈ Q0
2−k ∪ Q

+
2−k

and σ ∈ (0, 1
5 ). Then for every γ ∈ (0, 1)

there exists a function Fk+1 ∈ Lsk+1(Zσρ(x0)) where sk+1 ∈ (2, sk) is the higher integrability exponent
determined in Proposition 5.5 such that the following estimate holds true:

(∫
−
Zr(z)

∣∣Du(x)− (Du)z′,r(xn)
∣∣2 dx) 1

2

≤
(∫
−
Zr(z)

∫
−
Dr(z′)

|Du(x′, xn)−Du(y′, xn)|2 dy′ dx
) 1

2 ≤ c rγbk+1 Fk+1(z)

for all cylinders Zr(z) ⊂ Zσρ(x0) with z ∈ Q+ ∪Q0, and the constant c depends only on n, α, λ and γ.

Corollary 5.8: Let u ∈ W 1,2
Γ (Q+

2 ,RN ) ∩ L∞(Q+
2 ,RN ) ∩ C0,λ(Q+,RN ) be a weak solution to (4.1)

under the assumptions (H1)-(H3) and (B). Assume further u ∈W 1,sk(1+bk)
Γ (Q+

2−k
,RN ) for some k ∈ N,

sk > 2. Then for every γ ∈ (0, 1) there holds

D′u ∈Mγbk+1,sk+1(Q+
ρ ,R(n−1)N )

for every ρ < 1
2k+1 . In particular, there exists a function Hk+1 ∈ Lsk+1(Q+

1/2k+1) such that

|D′u(x)−D′u(y)| ≤ |x− y|γbk+1
(
Hk+1(x) +Hk+1(y)

)
for almost all x, y ∈ Q+

1/2k+1 .

An improved fractional Sobolev estimate for an( · ,u,Du)

Taking into account that Du is assumed to be integrable with exponent sk(1 + bk), we next proceed
similarly to the case k = 0: We choose a cylinder Zρ(x0) ⊂ Q+

2−k
with center x0 ∈ Q+

2−k
∪ Q0

2−k

and radius ρ sufficiently small , i. e. ρ ≤ ρ̃cacc where ρ̃cacc is from the Caccioppoli-type inequality in
Lemma 4.1, and σ ∈ (0, 1

5 ). Furthermore, we fix a number γ ∈ (0, 1) and again study the model system
(4.1) on cylinders Zr(z) with z ∈ Q+

2−k
∪ Q0

2−k such that Z2r(z) ⊂ Zσρ(x0). Using the notation from
Section 5.2, we first improve the estimate (5.10): To this aim we start with inequality (5.8): For the
first integral on the right-hand side of (5.8) we recall the definition of B(x) in (5.6) and take advantage
of conditions (H1) and (H3) to infer∫

−
Zr(z)

∣∣B(x)
∣∣ dx ≤ L

∫
−
Zr(z)

(
|x− z|α + |u(x)− (u)z,r|α

) (
1 + |Du(x)|

)
dx

+ L

∫
−
Zr(z)

∣∣Du(x)− (Du)z′,r(xn)
∣∣ dx .
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In view of Hölder’s and Jensen’s inequality, the Hölder continuity of u and Poincaré’s Lemma, we derive∫
−
Zr(z)

|u(x)− (u)z,r|α
(
1 + |Du(x)|

)
dx

≤
(∫
−
Zr(z)

|u(x)− (u)z,r|α
1+bk
bk dx

) bk
1+bk

(∫
−
Zr(z)

(
1 + |Du|)1+bk dx

) 1
bk+1

≤ c rαλ−bkλ
(∫
−
Zr(z)

|u(x)− (u)z,r|1+bk dx
) bk

1+bk
(∫
−
Zr(z)

(
1 + |Du|)1+bk dx

) 1
1+bk

≤ c rαλ+bk(1−λ)

∫
−
Zr(z)

(
1 + |Du|)1+bk dx ≤ c rγbk+1 M∗

(
(1 + |Du|)1+bk

)
(z) (5.13)

for c = c(n, [u]C0,λ(Q+,RN )). Furthermore, we trivially have∫
−
Zr(z)

|x− z|α
(
1 + |Du(x)|

)
dx ≤ c(n) rγbk+1 M∗

(
(1 + |Du|)1+bk

)
(z) .

Keeping in mind Corollary 5.7 we finally arrive at the following estimate for the integral of |B(x)|:∫
−
Zr(z)

∣∣B(x)
∣∣ dx ≤ c rγbk+1

(
M∗
(
(1 + |Du|)1+bk

)
(z) + Fk+1(z)

)
(5.14)

for a constant c depending only on n,L, [u]C0,λ(Q+,RN ), α, λ and γ. We mention that the functions
M∗
(
(1 + |Du|)1+bk

)
and Fk+1 belong to the space Lsk+1(Zσρ(x0)), due to the higher integrability of Du

and Corollary 5.7, respectively (note sk+1 ∈ (2, sk)).
For the second integral on the right-hand side of (5.8) we argue similarly to above on p. 15: we first

assume that we are close to the boundary, i. e. zn < 2r. Then, we infer the following estimate from the
growth condition (B) on the inhomogeneity, the Caccioppoli inequality (note that 2r ≤ ρ ≤ ρ̃cacc), the
Hölder continuity of u and Poincaré’s inequality in the boundary version:

r

∫
−
Zr(z)

|b(x, u(x), Du(x))| dx ≤ r

∫
−
Zr(z)

(L+ L2 |Du|2) dx

≤ c r

∫
−
Z2r(z)

(
1 +

∣∣∣u
r

∣∣∣1+bk
r(1−bk)(λ−1)

)
dx

≤ c r1+(1−bk) (λ−1)

∫
−
Z2r(z)

(
1 + |Du|

)1+bk dx

≤ c rbk+1 M∗
(
(1 + |Du|)1+bk

)
(z) , (5.15)

where in the last line we have employed the fact that 1 + (1− bk) (λ− 1) ≥ bk+1 and where the constant
c depends only on n,N,L, L2, ν and [u]C0,λ(Q+,RN ). For cylinders in the interior, meaning that zn ≥ 2r,
we end up with exactly the same estimate using both the Caccioppoli inequality and the Poincaré
inequality with |u| replaced by |u− (u)z,2r|.

Merging the estimates found in (5.14) and (5.15) together with (5.8) hence yields∫
−
Zρ̄(z)

∣∣∣ ∫−
Dρ̄(z′)

an(y′, xn, u(y′, xn), Du(y′, xn)) dy′ −
(
an( · , u,Du)

)
z,ρ̄

∣∣∣ dx
=
∫
−
Iρ̄(zn)

∣∣Aρ̄(xn)− (Aρ̄)zn,ρ̄
∣∣ dxn ≤ c rγbk+1

[
M∗
(
(1 + |Du|)1+bk

)
(z) + Fk+1(z)

]
for a constant c depending only on n,N,L, L2, [u]C0,λ(Q+,RN ), α, λ and γ. This is the desired improvement
of inequality (5.10). Moreover, Fk+1,M

∗((1 + |Du|)1+bk
)
∈ Lsk+1(Zσρ(x0)) holds true. In order to find

a fractional Sobolev estimate for the map x 7→ an(x, u(x), Du(x)) it still remains to deduce an estimate
corresponding to (5.11). To this aim we follow the line of arguments leading to (5.11) and (5.13): in
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view of Corollary 5.7, Hölder’s inequality and the Hölder continuity of u, we see∫
−
Zρ̄(z)

∣∣∣an(x, u(x), Du(x))−
∫
−
Dρ̄(z′)

an(y′, xn, u(y′, xn), Du(y′, xn)) dy′
∣∣∣ dx

≤ L

∫
−
Zρ̄(z)

∫
−
Dρ̄(z′)

∣∣Du(x′, xn)−Du(y′, xn)
∣∣ dy′ dx

+ 4L
∫
−
Zρ̄(z)

∫
−
Dρ̄(z′)

(
ρ̄α + |u(x′, xn)− u(y′, xn)|α

) (
1 + |Du(x)|

)
dy′ dx

≤ c rγbk+1 Fk+1(z) + 4L ρ̄α
∫
−
Zρ̄(z)

(
1 + |Du(x)|

)
dx

+ 8L
(∫
−
Zr(z)

|u(x)− (u)z,r|α
1+bk
bk dx

) bk
1+bk

(∫
−
Zr(z)

(
1 + |Du|)1+bk dx

) 1
bk+1

≤ c rγbk+1
(
M∗
(
(1 + |Du|)1+bk

)
(z) + Fk+1(z)

)
,

and the constant c depends only on n,L, [u]C0,λ(Q+,RN ), α, λ and γ. In particular, taking into account
ρ̄ ∈ [ r2 , r], we infer from the latter two estimates the inequality∫

−
Zr/2(z)

∣∣an(x, u(x), Du(x))−
(
an( · , u,Du)

)
z,r/2

∣∣ dx
≤ c rγbk+1

(
M∗
(
(1 + |Du|)1+bk

)
(z) + Fk+1(z)

)
,

where c admits the same dependencies as in the preceding inequalities. Since Fk+1, M∗
(
(1 + |Du|)1+bk

)
belong to Lsk+1(Zσρ(x0)), we may apply the characterization of fractional Sobolev spaces in Lemma 3.5
and Remark 3.6, and we obtain

an( · , u,Du) ∈Mγbk+1,sk+1(Q+
1/(2·2k)

,RN ) .

Furthermore, there exists Gk+1 ∈ Lsk+1(Q+
1/(2k+1)

,RN ) which satisfies for almost every x, y ∈ Q+
1/(2k+1)

|an(x, u(x), Du(x))− an(y, u(y), Du(y))| ≤ |x− y|γbk+1
(
Gk+1(x) +Gk+1(y)

)
.

We note that Gk+1 can be calculated from the constant c, the functions M∗((1 + |Du|)1+bk), Fk+1(z)
and the restriction on the radius ρ which in turn result in a dependence on the iteration step k. For
the interior situation we observe that the statements of the Remarks 5.4 remain valid, in particular, the
coefficients a(·, u,Du) satisfy a corresponding interior fractional Sobolev estimate.

Final conclusion for Du

Exactly as before on p. 17 the normal derivative Dnu inherits the fractional Sobolev estimate of both
the coefficients an(·, u,Du) and the tangential derivative D′u (see Corollary 5.8). This gives

Du ∈Mγbk+1,sk+1(Q+
1/2k+1 ,RnN ) .

At this point we are in the position to use the embeddding

Mγbk+1,sk+1(Q+
1/2k+1 ,RnN ) ⊂W γ′γbk+1,sk+1(Q+

1/2k+1 ,RnN )

for all γ′ ∈ (0, 1). Since γ and γ′ may be chosen arbitrarily close to 1 (the choice γ = γ′ = ( n
n+2λ )1/2

like in the first step is still appropriate for every k ∈ N), the application of Theorem 3.3 yields Du ∈
Lsk+1(1+bk+1)(Q+

1/2k+1 ,RnN ). This finishes the iteration and yields:

Lemma 5.9: Let α ∈ (0, 1) and let u ∈W 1,2
Γ (Q+

2 ,RN ) ∩ L∞(Q+
2 ,RN ) ∩ C0,λ(Q+,RN ), λ ∈ (0, 1], be a

weak solution of the Dirichlet problem (4.1) under the assumptions (H1)-(H3) and (B). Then for every
t < α there exists ρ̄ = ρ̄(t) such that Du ∈W t,s̄(Q+

ρ̄ ,RnN ), where s̄ > 2 is a higher integrability exponent
depending only n,N,L, L2, ν and [u]C0,λ(Q+,RN ) (but not on t).
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Proof: In view of bk ↗ α, the iteration scheme immediately implies a fractional differentiability result
for Du: for every t1 < α there exists k̄ = k̄(t1) such that Du ∈ W t1,2(Q+

1/2k̄
,RnN ). In particular, we

may choose t1 sufficiently close to α such that

2 + 2α <
2n(1 + t1)
n− 2t1λ

.

In view of Theorem 3.3 we hence find Du ∈ L2+2α, and at this stage we can indeed stop the iteration:
as already observed in Remark 5.6, in all calculations above the exponent bk̄+1 can be replaced by α,
leading to

Du ∈M t,sk̄+1(Q+
1/2k̄+1 ,RnN )

for every t < α and a higher integrability exponent s̄ := sk̄+1 > 2. With the choice ρ̄ := 2−k̄−1 the
proof of the lemma is complete. �

Remark: A similar statement was derived for weak solutions to superquadratic nonlinear elliptic sys-
tems with inhomogeneities satisfying a controllable growth condition, see [18, Lemma 6.1]. We easily
observe that the method presented in this section does not only apply to inhomogeneities obeying a
natural growth condition, but also to those obeying a controllable growth condition. As an advantage
of the technique presented here, we note that in the formulation of the previous Lemma 5.9 the low
dimensional assumption p > n − 2 − δ for some positive number δ is not necessary, whereas it was
required in the proof of [18, Lemma 6.1].

Proof (of Theorem 1.1): Most of the arguments required here can be recovered from [18, proof of
Theorem 1.1]; for the sake of completeness we sketch briefly the procedure: First, we reduce the general
Dirichlet problem (1.1) with boundary values u0 to the corresponding boundary value problem with zero
boundary values, i e., u0 = 0 on ∂Ω (some attention is needed here: the transformed coefficients still
satisfy assumption (H1)-(H3), but the transformed inhomogeneity then satisfies also a slightly different
critical growth condition in the sense that

|b̃(x, u, z)| ≤ L+ L2(M) |z|p

for all (x, u, z) ∈ Ω×RN×RnN with |u+u0| ≤M . Furthermore, the regularity of ∂Ω allows us to flatten
the boundary locally around every boundary point x0 ∈ ∂Ω to end up with a finite number of problems
of type (4.1) on cubes. It then suffices to prove that almost every point on Q0 is a regular boundary
point, i. e. that it belongs to the set RegDu(Q0): since the Hausdorff dimension is invariant under
bi-Lipschitz transformations, a standard covering argument then yields the corresponding estimate for
the singular boundary points on ∂Ω, i. e. for SingDu(∂Ω).

In the model situation, [5, Theorem 1] guarantees that u is Hölder continuous on the regular set
Regu(Q+

2 ∪ Γ) of u with any exponent λ ∈
(
0, 1 − n−2

2

)
and that dimH(Singu(Q+

2 ∪ Q0) < n − 2. In
particular, the set of singular points is empty if n = 2. We next observe that the statement in Lemma 5.9
still holds true if we replace the cube Q+

1 by any smaller cube Q+
R(x0), meaning that we then obtain

Du ∈W t,s̄(Q+
δR(x0),RnN ) for some δ(t) > 0 for all t < α and some s̄ > 2 (independently of the choice of

t). Therefore, choosing an increasing sequence of sets Bk ↗ Regu(Q+ ∪Q0) with Bk ⊂ Regu(Q+ ∪Q0)
such that Bk is relatively open in Q+ ∪Q0 for every k ∈ N, Lemma 5.9 allows us to infer that for every
t < α and every point x0 ∈ Bk ∩ Q0 there holds Du ∈ W t,s̄(Q+

δR(x0),RnN ) for some δ(t) > 0. Taking
t ∈ (2/s̄, α) and applying the measure density result [18, Proposition 2.1] (tracing back to Giusti [22,
Proposition 2.7]) we thus find

dimH

(
SingDu(Q0) ∩Q+

δ (x0)
)
≤ n− s̄t < n− 1 .

Hence, we find dimH(SingDu(Q0) ∩Bk) < n− 2t for every k ∈ N via a covering argument. Keeping in
mind dimH(Singu(Q+∪Q0) < n−2, we finally conclude the desired estimate dimH(SingDu(Q0)) < n−1
on the Hausdorff dimension of the singular set for the gradient Du on the boundary. This completes
the proof of the main result. �

Remark: We emphasize that the proof also yields a global fractional differentiability result: if u ∈
u0 +W 1,2

0 (Ω,RN ) ∩ L∞(Ω,RN ) is a weak solutions to (1.1) under the assumptions of the theorem and
with α ∈ (0, 1) arbitrary, then Du ∈W t,2(Ω,RnN ) for all t < α.
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6 Extensions and open questions related to the dimension reduction

In the last section we discuss briefly some extensions and open questions related to regularity results
concerning the above regularity theory and to the Hausdorff dimension of the singular set up to the
boundary:

6.1 The nonquadratic case

In the case p ∈ (1,∞) it is convenient to work in terms of the V -function (useful algebraic properties are
found in [13, Lemma 2.1] for the subquadratic case, and for the superquadratic case similar inequalities
hold true). We start by observing that Mingione [36] was the first to succeed in the dimension reduction
for the singular points for Du in the interior of Ω, where u ∈ W 1,p(Ω,RN ) ∩ L∞(Ω,RN ) is a weak
solution (under the standard smallness assumption) to the general system (1.1) with an inhomogeneity
satisfying a natural growth condition and being Hölder continuous with respect to every argument:

|b(x, u, z)− b(x̄, ū, z)| ≤ Lωβ1

(
|x− x̄|+ |u− ū|

)
(1 + |z|p) (6.1)

|b(x, u, z)− b(x, u, z̄)| ≤ L |z − z̄|β2
(
1 + |z|2 + |z̄|2

)p−β2 (6.2)

for all x, x̄ ∈ Ω, u, ū ∈ RN and z, z̄ ∈ RnN , ωβ1(t) = min{1, tβ1} with β1, β2 ∈ (0, 1) (these condition are
in fact only needed to obtain a sharper bound in the superquadratic case). The dimension reduction
relies on the fundamental estimate (4.2) which iteratively improves the fractional differentiability of
V (Du). In a slightly generalized version (including also the subquadratic case) this result can be stated
as follows:

Theorem 6.1 (cf. [36], Theorem 2.2): Let n ≤ p + 2 and u ∈ W 1,p(Ω,RN ) ∩ L∞(Ω,RN ) be a
bounded weak solution to (1.1) under the conditions (H1)-(H3) and (B), and suppose ‖u‖L∞(Ω,RN ) ≤M
for some M > 0 such that 2 max{p− 1, 1}L2M < ν. Then we have

dimH

(
SingDu(Ω)

)
≤ max{n− p

p−1 , n− 2α, n− p} .

If p > 2 and α > p/(2p−2), then under the assumptions (6.1)-(6.2) for β1 = 2α−1 and β2 = (2α−1)/α
there holds

dimH

(
SingDu(Ω)

)
≤ n− 2α .

In the general homogeneous case a corresponding interior result [37] is valid, and it turned out that
the estimates can be extended up to the boundary and that in fact Hn−1-almost every point in Ω is a
regular point for Du independently of the value of p as long as α > 1

2 and the Hölder continuity of u is
known a priori (Hn−1-almost everywhere). For this reason one expects that also in the inhomogeneous
case under natural growth it should be possible to carry the result of Theorem 6.1 from the interior up
to the boundary. However, apart from some partial result for p close to 2 (under further restrictions
on α), it seems impossible to obtain the boundary regularity statement for all p ∈ (1,∞) with the direct
approach employed in this paper without any further technical tricks; we emphasize that this problem is
not caused by the inhomogeneity but appears also for homogeneous systems where boundary regularity
was already proved by the indirect approach. Hence, the direct approach seems to be matched well
only in the quadratic situation, and it would be interesting to develop an approach which leads to the
known dimension reduction for homogeneous systems, but which can also be applied for inhomogeneous
systems under natural growth assumption and a general p-growth assumption on the coefficients.

In fact, the only result available so far in this direction is in the two-dimensional case n = 2, where
by means of Morrey-type estimates and a comparison principle the optimal C1,α

loc -regularity of every
weak solution is obtained up to the boundary on the regular set of u (the set where u is locally in a
neighborhood continuous), and hence outside a set of Hausdorff dimension less than n− p:

Theorem 6.2: Let p ∈ (1,∞), Ω ⊂ R2 be a domain of class C1,α and u0 ∈ C1,α(Ω,RN ). Let u ∈
u0 +W 1,p

0 (Ω,RN )∩L∞(Ω,RN ) be a bounded weak solution to (1.1) under the conditions (H1)-(H3) and
(B), and suppose that ‖u‖L∞(Ω,RN ) ≤M for some M > 0 such that 2 max{p− 1, 1}L2M < ν. Then we
have

u ∈ C1,α(Ω,RN )
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in the superquadratic case p ≥ 2, whereas in the subquadratic case 1 < p < 2 there hold

u ∈ C1,α
loc (Regu(Ω),RN ) and dimH(Ω \ Regu(Ω)) < n− p .

Proof (Sketch): In the first step of the proof one compares the solution u of the original problem
to the solution of the frozen, homogeneous problem, for which good a priori estimates are known (in
particular full C1-regularity). This allows to show that Du belongs to the Morrey-space Lp,2−τ locally
on the regular set Regu(Ω) of u for every τ ∈ (0, 2), see [5, p. 2743] if p ≥ 2 and [8, p. 317] if 1 < p < 2
for the up-to-the-boundary versions. This decay estimate for the integrals

∫
(1 + |Du|)p dx over balls

(possibly intersected with Ω) in terms of the radius is then used to enter again into the comparison
argument and to improve the decay of the excess of Du on balls Bρ(x0) ⊂ BR(x0) contained in the
regular set Regu(Ω) via∫

Bρ(x0)∩Ω

∣∣V (Du)−
(
V (Du)

)
Bρ(x0)∩Ω

∣∣2 dx
≤ 2

∫
Bρ(x0)∩Ω

∣∣V (Dv)−
(
V (Dv)

)
BR(x0)∩Ω

∣∣2 dx+ 2
∫
Bρ(x0)∩Ω

∣∣V (Dv)− V (Du)
∣∣2 dx ,

where v ∈ u+W 1,p(BR(x0)∩Ω,RN ) is the weak solution to div a(x0, (u)BR(x0)∩Ω, Dv) = 0. Taking into
account the Morrey regularity and proceeding as in [33, Chapter 9], we then estimate the first integral
on the right-hand side via the decay properties for the comparison map (see [11, 3.12] and [7, (4.34)])
combined with a good choice of the radius R as a power of ρ. The second integral is under control via
an estimate similar to the ones of [5, (34)] or [8, (4.16)], with the difference that the terms involving s
and δ, respectively, do not appear if also the higher integrability of the comparison solution is kept in
mind. As a consequence, the reasoning in [33] applies, and a sufficiently small choice of τ shows that
the previous excess integral is bounded by ρ2+σ for some σ > 0. This corresponds to Hölder continuity
of V (Du) and therefore of Du with some small exponent, which is then improved to the optimal one by
standard regularity theory. �

6.2 Systems with coefficients a(x, z)

In the introduction we already spent some words on the situation where the coefficients do not explicitly
depend on the weak solution u, but only on its gradient and the independent variable. In the interior it
turned out [37, 36] that the assumption n ≤ p+ 2 (or priori Hölder continuity of u) is no longer needed
(because – roughly speaking – possible singularities of u do propagate to the coefficients only in the
gradient variable). For this reason the dimension reduction follows in only one step, and it is further
valid without any restrictions on the space dimension n. In the indirect approach of [18] the same
reasoning was applied in order to extend these interior results up to the boundary. As a consequence,
in case of homogeneous systems there holds:

Theorem 6.3 ([18]): Consider p ∈ (1,∞), α > 1
2 . Let Ω be a domain of class C1,α and u0 ∈

C1,α(Ω,RN ). Assume that u ∈ u0 + W 1,p
0 (Ω,RN ) is a weak solution to div a(x,Du) = 0 in Ω un-

der the assumptions (H1)-(H3). Then Hn−1-almost every boundary point is a regular point for Du.

It is not clear whether the result of Theorem 1.1 can be improved to such vector fields which do
not explicitly depend on u, in the sense that the existence of regular boundary points in that case is
valid for all dimensions n ≥ 2. The first problem arises in the preliminary estimate (4.2), where in
general no positive power of h for the last integral – which came from |

∫
b(x, u,Du)τe,−h(η2τe,hu)dx| –

can be produced. Hence, to obtain some fractional differentiability of the system, additional regularity
assumptions on the inhomogeneity are required (such as conditions (6.1)-(6.2) of Hölder continuity with
respect to all variables), which then allow to use the formula for partial integration for finite differences
also in the integral involving the right-hand side. In the interior this gives dimH(SingDu(Ω)) ≤ n− 2α
in all dimensions. However, in the direct approach presented in this paper, these assumptions do not
seem to lead to fractional Sobolev estimates for x 7→ an(x,Du), see e.g. the derivation of (5.9) where
the Hölder continuity was the crucial ingredient.
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6.3 Optimality of the Hausdorff dimension

It is not clear to what extent the estimates for the Hausdorff dimension of the singular set may still
be improved, neither in our main statements nor in the cited results [11, 5, 8, 37, 36, 18] on the
Hausdorff dimension of the singular set of u and Du. Up to now, the bound for the singular set of
Du depends on the parameter α. While one cannot rule out that the dependence on α is only due
to technique, it is believed that this dependence is a structural feature of the problem concerning the
Hausdorff dimension of the singular set. However, the literature lacks appropriate counterexamples. As
a consequence, the question of the existence of regular boundary points for Hölder exponents α ∈ (0, 1

2 )
remains open for general nonlinear systems of the type considered above. Recently, it was observed by
Kristensen and Mingione [34] that the Hölder continuity assumption in x can be relaxed to a fractional
Sobolev dependence. More precisely, still assuming the Hölder continuity assumption (H3) with now
an arbitrarily small α > 0 (as a consequence, we have C1,α

loc regularity on the regular set and the
characterization of the singular set remains unchanged), we further assume for some β > 0:

(H4) There exists a function g ∈ Lυ(Ω) with g ≥ 0 and υ > (1 + β)/β such that

|a(x, u, z)− a(x̄, ū, z)| ≤ L
(
1 + |z|2

) p−1
2
[
|x− x̄|β(g(x) + g

(
x̄)
)

+ ωβ
(
|u− ū|

)]
for almost all x, x̄ ∈ Ω and all u, ū ∈ RN , z ∈ RnN (and ωβ(s) ≤ min{1, sα}). The function g again
plays the role of a fractional derivative, see Section 3. Obviously, condition (H4) is weaker than (H3) in
the case α = β and υ <∞, and it actually turns out that – independently of the value of α – the result
of Theorem 1.1 still holds true, provided that β > 1

2 . In particular, we still get existence of regular
boundary points (even though in a regular point the exponent of Hölder continuity of Du is only α and
in general not β):

Theorem 6.4: Consider n ∈ {2, 3, 4}, α, β ∈ (0, 1] with β ≥ 1/2. Let Ω ⊂ Rn be a domain of class C1,α

and u0 ∈ C1,α(Ω,RN ). Assume further that u ∈ u0 +W 1,2
0 (Ω,RN )∩L∞(Ω,RN ) is a weak solution of the

Dirichlet problem (1.1) under the assumptions (H1)-(H4) and (B), and suppose that ‖u‖L∞(Ω,RN ) ≤M
for some M > 0 such that 2L2M < ν. Then Hn−1-almost every boundary point is a regular point for
Du.

Proof: The strategy of the proof of the theorem is the same as the one of Theorem 1.1, and we im-
mediately get into the study of the transformed system (4.1) under the assumption of a priori Hölder
continuity of u with exponent λ. We first infer Du ∈ L2+2α(Q+

ρ̄ ,RnN ) from Lemma 5.9 from a first
iteration using only assumptions (H1)-(H3) and (B) (alternatively we can use a simple higher inte-
grability result via Gehring’s Lemma), and now start a new iteration as in Section 5.3 by taking into
consideration the additional assumption (H4): for this purpose we define a sequence (βk)k∈N

β0 :=
α

2
, βk+1 := βk + min

{λ
2
,

βk
2(1 + βk)

}
(β − βk) ,

and we observe that it is bounded and strictly increasing with limit β. Observing that only the fractional
dependence of the coefficients in the x-variable has changed, we now have to re-estimate the terms
involving differences of the coefficients with respect to the x-variable, and then all the statement of
Section 5.3 remain true for bk replaced by βk (and on smaller half-cubes). In fact, there are only two
new terms. Under the Hölder continuity assumption (H3), these were estimated trivially, but they now
need to be investigated more carefully: the first occurs in the proof of Proposition 5.5 (assuming that Du
is integrable to a power greater than 2 + 2βk), when we derive a suitable substitute for the preliminary
estimate (4.2) to find the inequality corresponding to (5.12). Actually, only the integral involving A(h)
needs to be adjusted: Keeping in mind the integrability assumption g ∈ Lυ(Q+

2 ) ⊂ L(1+β)/β(Q+
2 ) and

the Hölder continuity of u we calculate with (H3), (H4), Young’s and Hölder’s inequality:∫
Q+
|A(h)| |D(η2τe,hu)| dx ≤ L |h|β

1+β
β

βk
1+βk

×
∫
Q+

(
1 + |Du(x+ he)|

) (
g(x+ he) + g(x)

) 1+β
β

βk
1+βk

(
η2|τe,hDu|+ 2η|Dη||τe,hu|

)
dx

≤ ε

∫
Q+

η2|τe,hDu|2 dx+
[
c(ε, L) |h|2β

1+β
β

βk
1+βk + c(L, ‖Dη‖L∞) |h|β

1+β
β

βk
1+βk

+1
]
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×
(∫

Q+∩spt(η)

(
1 + |Du(x+ he)|

)2+2βk dx
) 1

1+βk
(∫

Q+
|g|

1+β
β dx

) βk
1+βk ,

where we also have used standard estimates for finite differences (note that the exponent α was for
simplicity treated as 0 in the powers of |h|). To conclude (5.12) it then suffices to observe that both
powers of |h| are at least 2βk+1 and that the other terms are estimates exactly as before (but using (H4)
instead of (H3) for estimating differences of the coefficients with respect to the u-variable).

The second new term arises in the fractional Sobolev estimate for an(x, u,Du) (and in turn in the
same way also for Dnu): it occurs for the first time in the estimate for B(x) and can be dealt with as
follows:∫

−
Zr(z)

∣∣a(x, u(x), Du(x))− a(z, (u)z,r, Du(x))
∣∣ dx

≤ c(n) rβ
1+β
2β

βk
1+βk

[ ∫
−
Zr(z)

(
1 + |Du(x+ he)|

)1+βk dx+
∫
−
Zr(z)

(
g(z) + g(x)

) 1+β
2β dx

]
.

The right-hand side is then estimated further via the maximal function.
With these two adjustments, the proof of the theorem then continues as before, leading to the

existence of regular boundary points for α ∈ (0, 1) arbitrarily, provided that β ≥ 1
2 . �
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[31] P.-A. Ivert, Regularitätsuntersuchungen von Lösungen elliptischer Systeme von quasilinearen Differentialgleichungen
zweiter Ordnung, Manuscr. Math. 30 (1979), 53–88.

[32] J. Kristensen and G. Mingione, The Singular Set of ω-minima, Arch. Rational Mech. Anal. 177 (2005), 93–114.

[33] J. Kristensen and G. Mingione, The Singular Set of Minima of Integral Functionals, Arch. Rational Mech. Anal. 180
(2006), no. 3, 331–398.

[34] J. Kristensen and G. Mingione, Boundary regularity in variational problems, Arch. Rational Mech. Anal. (to appear),
DOI: 10.1007/s00205-010-0294-x.

[35] M. Kronz, Habilitationsschrift, Erlangen, in preparation.

[36] G. Mingione, Bounds for the singular set of solutions to non linear elliptic systems, Calc. Var. Partial Differ. Equ.
18 (2003), no. 4, 373–400.

[37] G. Mingione, The Singular Set of Solutions to Non-Differentiable Elliptic Systems, Arch. Rational Mech. Anal. 166
(2003), 287–301.
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