1,956 research outputs found

    Calculation of wear (f.i. wear modulus) in the plastic cup of a hip joint prosthesis

    Get PDF
    The wear equation is applied to the wear process in a hip joint prosthesis and a wear modulus is defined. The sliding distance, wear modulus, wear volume, wear area, contact angle and the maximum normal stress were calculated and the theoretical calculations applied to test results.\ud \ud During the wear process the increase of the wear modulus is about 100 Nmm−2 per mm sliding distance in the Charnley and the Charnley-Muller hip joint prosthesis. From the wear volume point of view the Charnley prosthesis is probably superior to the Charnley-Muller prosthesis if run-in before implantation

    Reconstruction of the adult hemifacial microsomia patient with temporomandibular joint total joint prosthesis and orthognathic surgery

    Get PDF
    HFM patients' reconstruction has always been a challenge for maxillofacial surgeons, and numerous reconstructive techniques have been described. Surgical treatment depends on the patient's age and contemplates Temporomandibular Joint (TMJ) reconstruction in conjunction with orthognathic surgery, usually necessary following completion of growth to maximize the functional and esthetic results. Distraction osteogenesis had gained popularity as valid alternative in growing patients, but the two primary methods to reconstruct the TMJs involve the use of autogenous, using free or microvascular bone grafts, or alloplastic graft, but there is no widely accepted method

    Mathematical analysis of hip joint prosthesis

    Get PDF
    Damage, significantly impairing the quality of life, coxarthrosissal can meet a young age. Therefore, nowadays the prosthesis implantation is performed in the most active life period of the patient. Besides, it is known that the replacement of the prosthesis will be necessary later [1]. When acetabular cups were measured, the results were analysed and the differences were determined, I took the coordinate systems needed to describe the movement of the prosthesis

    Estimation of Loosening of Knee Joint Prosthesis

    Get PDF
    Knee replacement arthroplasty is indicated for the patient with advanced knee pain, knee deformation, and knee functional disorder. The aim of this study was to estimate loosening after a knee replacement arthroplasty. Loosening is measured by a frequency response function, and mobility by random vibration. The modal parameters for the knee joint are obtained by applying a modal analysis to the frequency response function. The values decrease as the knee joint prosthesis loosened. These parameters serve as an index for the condition between a thighbone and the prosthesis. The various indexes will greatly clarify the stage of advance in the loosening of knee-joint prostheses

    Compliant joint

    Get PDF
    A compliant joint is provided for prosthetic and robotic devices which permits rotation in three different planes. The joint provides for the controlled use of cable under motion. Perpendicular outer mounting frames are joined by swaged cables that interlock at a center block. Ball bearings allow for the free rotation of the second mounting frame relative to the first mounting frame within a predetermined angular rotation that is controlled by two stop devices. The cables allow for compliance at the stops and the cables allow for compliance in six degrees of freedom enabling the duplication or simulation of the rotational movement and flexibility of a natural hip or knee joint, as well as the simulation of a joint designed for a specific robotic component for predetermined design parameters

    On the Analysis of the Contact Conditions in Temporomandibular Joint Prostheses

    Get PDF
    Temporomandibular joint replacement (TMJR) is a complex surgical procedure in which the artificial joints available must assure the anatomical reconstruction and guarantee a good range of the natural temporomandibular joint (TMJ) movements. With this aim, different types of TMJ prostheses, including the stock prosthetic system and custom-made prostheses, are being currently implanted. Although temporomandibular joint replacements (TMJRs) are expected to accomplish their function during a number of years, they might actually fail and need to be replaced. This paper analyzes different design factors affecting the contact stress distributions within the TMJ prosthesis interface, which are consequently involved in their deterioration and final failure of the prosthetic device. With this purpose, a numerical model based on finite elements has been carried out in order to evaluate the stress states attained in different prosthesis configurations corresponding to general types of TMJ prostheses. On the other hand, the actual degradation of resected implants has been evaluated via optical microscopy. The linkage between the numerical simulations performed and experimental evidence allowed the authors to establish the different wear and damage mechanisms involved in the failure of stock TMJ prostheses. Indeed, the results obtained show that the contact stresses at the interface between the mandible and the glenoid fossa components play a key role in the failure process of the TMJR devices

    Temporomandibular joint prosthesis in cancer reconstruction preceding radiation therapy

    Get PDF
    Total joint prostheses are a viable treatment option after removal of malignancies invading the temporomandibular joint, even when adjuvant radiation therapy is required.publishedVersio

    Transient elastohydrodynamic lubrication analysis of a novel metal-on-metal hip prosthesis with a non-spherical femoral bearing surface

    No full text
    Effective lubrication performance of metal-on-metal hip implants only requires optimum conformity within the main loaded area, while it is advantageous to increase the clearance in the equatorial region. Such a varying clearance can be achieved by using non-spherical bearing surfaces for either acetabular or femoral components. An elastohydrodynamic lubrication model of a novel metal-on-metal hip prosthesis using a non-spherical femoral bearing surface against a spherical cup was solved under loading and motion conditions specified by ISO standard. A full numerical methodology of considering the geometric variation in the rotating non-spherical head in elastohydrodynamic lubrication solution was presented, which is applicable to all non-spherical head designs. The lubrication performance of a hip prosthesis using a specific non-spherical femoral head, Alpharabola, was analysed and compared with those of spherical bearing surfaces and a non-spherical Alpharabola cup investigated in previous studies. The sensitivity of the lubrication performance to the anteversion angle of the Alpharabola head was also investigated. Results showed that the non-spherical head introduced a large squeeze-film action and also led to a large variation in clearance within the loaded area. With the same equatorial clearance, the lubrication performance of the metal-on-metal hip prosthesis using an Alpharabola head was better than that of the conventional spherical bearings but worse than that of the metal-on-metal hip prosthesis using an Alpharabola cup. The reduction in the lubrication performance caused by the initial anteversion angle of the non-spherical head was small, compared with the improvement resulted from the non-spherical geometry
    corecore