1,614 research outputs found

    Reduction of Petri net maintenance modeling complexity via Approximate Bayesian Computation

    Get PDF
    This paper is part of the ENHAnCE ITN project (https://www.h2020-enhanceitn.eu/) funded by the European Union's Horizon 2020 research and innovation programme under the Marie SklodowskaCurie grant agreement No. 859957. The authors would like to thank the Lloyd's Register Foundation (LRF), a charitable foundation in the U.K. helping to protect life and property by supporting engineeringrelated education, public engagement, and the application of research. The authors gratefully acknowledge the support of these organizations which have enabled the research reported in this paper.The accurate modeling of engineering systems and processes using Petri nets often results in complex graph representations that are computationally intensive, limiting the potential of this modeling tool in real life applications. This paper presents a methodology to properly define the optimal structure and properties of a reduced Petri net that mimic the output of a reference Petri net model. The methodology is based on Approximate Bayesian Computation to infer the plausible values of the model parameters of the reduced model in a rigorous probabilistic way. Also, the method provides a numerical measure of the level of approximation of the reduced model structure, thus allowing the selection of the optimal reduced structure among a set of potential candidates. The suitability of the proposed methodology is illustrated using a simple illustrative example and a system reliability engineering case study, showing satisfactory results. The results also show that the method allows flexible reduction of the structure of the complex Petri net model taken as reference, and provides numerical justification for the choice of the reduced model structure.European Commission 859957Lloyd's Register Foundation (LRF), a charitable foundation in the U.K

    A graphical environment and applications for discrete event and hybrid systems in robotics and automation

    Get PDF
    technical reportIn this paper we present an overview for the development of a graphical environment for simulating, analyzing, synthesizing, monitoring, and controlling complex discrete event and hybrid systems within the robotics, automation, and intelligent system domain. We start by presenting an overview of discrete event and hybrid systems, and then discuss the proposed framework. We also present two applications within the robotics and automation domain for such complex systems. The first is for formulating an observer for manipulating agents, and the second is for designing sensing strategies for the inspection of machine parts

    Plausible Petri nets as self-adaptive expert systems: A tool for infrastructure asset monitoring

    Get PDF
    This article provides a computational framework to model self-adaptive expert systems using the Petri net (PN) formalism. Self-adaptive expert systems are understood here as expert systems with the ability to autonomously learn from external inputs, like monitoring data. To this end, the Bayesian learning principles are investigated and also combined with the Plausible PNs (PPNs) methodology. PPNs are a variant within the PN paradigm, which are efficient to jointly consider the dynamics of discrete events, like maintenance actions, together with multiple sources of uncertain information about a state variable. The manuscript shows the mathematical conditions and computational procedure where the Bayesian updating becomes a particular case of a more general basic operation within the PPN execution semantics, which enables the uncertain knowledge being updated from monitoring data. The approach is general, but here it is demonstrated in a novel computational model acting as expert system for railway track inspection management taken as a case study using published data from a laboratory simulation of train loading on ballast. The results reveal selfadaptability and uncertainty management as key enabling aspects to optimize inspection actions in railway track, only being adaptively and autonomously triggered based on the actual learnt state of track and other contextual issues, like resource availability, as opposed to scheduled periodic maintenance activities.Lloyd'sRegister Foundation, Grant/Award Number: RB4539; Engineering and Physical SciencesResearch Council, Grant/Award Number:EP/M023028/

    NASA Center for Intelligent Robotic Systems for Space Exploration

    Get PDF
    NASA's program for the civilian exploration of space is a challenge to scientists and engineers to help maintain and further develop the United States' position of leadership in a focused sphere of space activity. Such an ambitious plan requires the contribution and further development of many scientific and technological fields. One research area essential for the success of these space exploration programs is Intelligent Robotic Systems. These systems represent a class of autonomous and semi-autonomous machines that can perform human-like functions with or without human interaction. They are fundamental for activities too hazardous for humans or too distant or complex for remote telemanipulation. To meet this challenge, Rensselaer Polytechnic Institute (RPI) has established an Engineering Research Center for Intelligent Robotic Systems for Space Exploration (CIRSSE). The Center was created with a five year $5.5 million grant from NASA submitted by a team of the Robotics and Automation Laboratories. The Robotics and Automation Laboratories of RPI are the result of the merger of the Robotics and Automation Laboratory of the Department of Electrical, Computer, and Systems Engineering (ECSE) and the Research Laboratory for Kinematics and Robotic Mechanisms of the Department of Mechanical Engineering, Aeronautical Engineering, and Mechanics (ME,AE,&M), in 1987. This report is an examination of the activities that are centered at CIRSSE

    Integration of prognostics at a system level: a Petri net approach

    Get PDF
    This paper presents a mathematical framework for modeling prognostics at a system level, by combining the prognostics principles with the Plausible Petri nets (PPNs) formalism, first developed in M. Chiach´ıo et al. [Proceedings of the Future Technologies Conference, San Francisco, (2016), pp. 165-172]. The main feature of the resulting framework resides in its efficiency to jointly consider the dynamics of discrete events, like maintenance actions, together with multiple sources of uncertain information about the system state like the probability distribution of end-of-life, information from sensors, and information coming from expert knowledge. In addition, the proposed methodology allows us to rigorously model the flow of information through logic operations, thus making it useful for nonlinear control, Bayesian updating, and decision making. A degradation process of an engineering sub-system is analyzed as an example of application using condition-based monitoring from sensors, predicted states from prognostics algorithms, along with information coming from expert knowledge. The numerical results reveal how the information from sensors and prognostics algorithms can be processed, transferred, stored, and integrated with discrete-event maintenance activities for nonlinear control operations at system level

    Contribution to the evaluation and optimization of passengers' screening at airports

    Get PDF
    Security threats have emerged in the past decades as a more and more critical issue for Air Transportation which has been one of the main ressource for globalization of economy. Reinforced control measures based on pluridisciplinary research and new technologies have been implemented at airports as a reaction to different terrorist attacks. From the scientific perspective, the efficient screening of passengers at airports remain a challenge and the main objective of this thesis is to open new lines of research in this field by developing advanced approaches using the resources of Computer Science. First this thesis introduces the main concepts and definitions of airport security and gives an overview of the passenger terminal control systems and more specifically the screening inspection positions are identified and described. A logical model of the departure control system for passengers at an airport is proposed. This model is transcribed into a graphical view (Controlled Satisfiability Graph-CSG) which allows to test the screening system with different attack scenarios. Then a probabilistic approach for the evaluation of the control system of passenger flows at departure is developped leading to the introduction of Bayesian Colored Petri nets (BCPN). Finally an optimization approach is adopted to organize the flow of passengers at departure as best as possible given the probabilistic performance of the elements composing the control system. After the establishment of a global evaluation model based on an undifferentiated serial processing of passengers, is analyzed a two-stage control structure which highlights the interest of pre-filtering and organizing the passengers into separate groups. The conclusion of this study points out for the continuation of this theme

    Automata-theoretic and bounded model checking for linear temporal logic

    Get PDF
    In this work we study methods for model checking the temporal logic LTL. The focus is on the automata-theoretic approach to model checking and bounded model checking. We begin by examining automata-theoretic methods to model check LTL safety properties. The model checking problem can be reduced to checking whether the language of a finite state automaton on finite words is empty. We describe an efficient algorithm for generating small finite state automata for so called non-pathological safety properties. The presented implementation is the first tool able to decide whether a formula is non-pathological. The experimental results show that treating safety properties can benefit model checking at very little cost. In addition, we find supporting evidence for the view that minimising the automaton representing the property does not always lead to a small product state space. A deterministic property automaton can result in a smaller product state space even though it might have a larger number states. Next we investigate modular analysis. Modular analysis is a state space reduction method for modular Petri nets. The method can be used to construct a reduced state space called the synchronisation graph. We devise an on-the-fly automata-theoretic method for model checking the behaviour of a modular Petri net from the synchronisation graph. The solution is based on reducing the model checking problem to an instance of verification with testers. We analyse the tester verification problem and present an efficient on-the-fly algorithm, the first complete solution to tester verification problem, based on generalised nested depth-first search. We have also studied propositional encodings for bounded model checking LTL. A new simple linear sized encoding is developed and experimentally evaluated. The implementation in the NuSMV2 model checker is competitive with previously presented encodings. We show how to generalise the LTL encoding to a more succint logic: LTL with past operators. The generalised encoding compares favourably with previous encodings for LTL with past operators. Links between bounded model checking and the automata-theoretic approach are also explored.reviewe
    corecore