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ABSTRACT

This paper presents a mathematical framework for model-
ing prognostics at a system level, by combining the prognos-
tics principles with the Plausible Petri nets (PPNs) formal-
ism, first developed in M. Chiachı́o et al. [Proceedings of the
Future Technologies Conference, San Francisco, (2016), pp.
165-172]. The main feature of the resulting framework re-
sides in its efficiency to jointly consider the dynamics of dis-
crete events, like maintenance actions, together with multiple
sources of uncertain information about the system state like
the probability distribution of end-of-life, information from
sensors, and information coming from expert knowledge. In
addition, the proposed methodology allows us to rigorously
model the flow of information through logic operations, thus
making it useful for nonlinear control, Bayesian updating,
and decision making. A degradation process of an engineer-
ing sub-system is analyzed as an example of application us-
ing condition-based monitoring from sensors, predicted states
from prognostics algorithms, along with information coming
from expert knowledge. The numerical results reveal how the
information from sensors and prognostics algorithms can be
processed, transferred, stored, and integrated with discrete-
event maintenance activities for nonlinear control operations
at system level.

1. INTRODUCTION

In prognostics, the integration of the predicted information at
a system level encompasses two distinct research challenges.
First is about predicting the change in system performance
and remaining life estimation through an adequate combina-
tion of the degradation rates and states of health of individ-
ual components. Second, and perhaps most important, to
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integrate system-level nonlinearities and uncertainties with
the predicted information from prognostics. Here, system-
level nonlinearities are understood as uncertain environmen-
tal elements that affect the system operation irrespectively
of the component-wise state of health or degradation, like
intervention processes (e.g. maintenance actions), resource
availability, ad hoc synchronization of components, influence
of expert knowledge, etc. In the literature, the majority of
prognostics research to date has been focused on individual
components, and determining their end-of-life (EOL) and re-
maining useful life (RUL), e.g.: (Chiachı́o, Chiachı́o, Saxena,
& Goebel, 2016; Zio & Peloni, 2011; Myötyri, Pulkkinen,
& Simola, 2006; Saha, Celaya, Wysocki, & Goebel, 2009;
Daigle & Kulkarni, 2013). Besides, few attempts can be
encountered describing system-level prognostics methodolo-
gies. Generally, these attempts provide the EOL of a sys-
tem based on its constituent components and how they inter-
act, like in Gomez, Rodrigues, Galvo, and Yoneyama (2013),
where a system-level approach was developed using fault tree
analysis from the RUL of individual components. Daigle,
Bregon, and Roychoudhury (2014) provided a distributed ar-
chitecture to model system-level prognostics based on the
concept of structural model decomposition whereby the so-
lution of independent local prognostics subproblems were in-
tegrated to obtain prognostics at system-level. Liu, Xu, Xie,
and Kuo (2014) studied multi-component maintenance mod-
els with economic dependence for components that degrade
in a continuous manner. More recently, an analytic frame-
work has been provided in (Khorasgani, Biswas, & Shankarara-
man, 2016) for combining the degradation rate of individual
components to predict the variation in system performance
over time. Nonetheless, to the authors best known, holistic
methodologies for prognostics with integration of system or
sub-system level nonlinearities and uncertainties, still remain
missing in the literature.

In this paper, a novel holistic framework is proposed for mod-
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eling prognostics at a system level by using Petri nets (PNs)
(Petri, 1962). In particular, the newly developed Plausible
Petri nets (PPNs) (Chiachı́o, Chiachı́o, Prescott, & Andrews,
2016) are used to integrate uncertain information about the
system, like the probability density function (PDF) of EOL
for multiple components, information from sensors, expert
knowledge, etc., with the dynamics of discrete events like
system-level health indicators, maintenance activities, resour-
ce availability, to cite but any. Consequently, the approach has
the advantage of being able to integrate by first time informa-
tion from prognostics (e.g. EOL, RUL, etc.), with decision
making aspects like go/no-go decisions for maintenance ac-
tions. Moreover, the uncertainty is intrinsically accounted for
in PPNs, since its formulation stems from combining the in-
formation theory principles with the PNs technique, as will
be shown further below.

To exemplify some of the problems that can be solved by the
proposed methodology, several toy examples are formulated
through a set of PPN architectures. Next, the framework is
tested using a numerical example to model decision-making
over a two-component engineering system under degradation
using prognostics information, expert knowledge, and main-
tenance actions, which is just some of the challenges faced in
system-level prognostics applications using PPNs.

The remainder of the paper is organized as follows. Section 2
briefly overviews basic concepts about prognostics and PNs
before introducing the fundamentals of PPNs. The PPNs for-
malism as well as their execution semantics, are succinctly
described in §3. A set of examples of PPN architectures for
system-level prognostics are provided and discussed in §4.
Section 5 illustrates our approach through a numerical exam-
ple about two-component degrading system. Finally, Section
6 gives concluding remarks.

2. BASIC CONCEPTS

2.1. Foundations of prognostics

Prognostics is concerned with predicting the future health
state of engineering systems or components given current de-
gree of wear or damage, and, based on that, estimating the
remaining time beyond which the system is expected not to
perform its intended function within desired specifications
(Chiachı́o, Chiachı́o, Sankararaman, Saxena, & Goebel, 2015).
In the PHM community, the aforementioned remaining time
is typically referred as RUL. The potential of prognostics in
positively contributing to safety and cost relies in its capac-
ity to provide anticipated information about an anomalous or
faulty condition. This information can be used for risk re-
duction in go/no-go decision, cost optimization through the
scheduling of maintenance as-needed, and improved asset avail-
ability.

Broadly, formal approaches for prognostics fall into three pri-

mary categories (Javed, Gouriveau, & Zerhouni, 2017; Kho-
rasgani et al., 2016): (1) data driven techniques, (2) model
based, and (3) hybrid approaches, depending on how the fault
propagation process is modeled. Irrespective of the type of
modeling approach chosen for prognostics, two main distinct
research problems can be devised: (i) the estimation prob-
lem, which determines the current state of health of the sys-
tem, and (ii) the failure prediction problem, by which the
EOL and RUL can be obtained from predictions of the future
state of the system `-steps forward in time in absence of new
observations. For the estimation problem, the component,
sub-system, or system state of health or degradation is typ-
ically assumed to be represented using a stochastic variable
xk. This state variable evolves over time k following a spe-
cific dynamic equation given in state-space form (Chiachı́o et
al., 2015; Zio & Peloni, 2011), as follows:

xk = fk(xk−1,uk,vk,θ) (1a)
yk = hk(xk,uk,wk,θ) (1b)

where uk ∈ Rnu is an input vector, yk ∈ Rny is a measure-
ment vector, and vk ∈ Rnv and wk ∈ Rnw are uncertain
variables introduced to account for the model error and mea-
surement error, respectively. The functions fk and hk are pos-
sibly nonlinear functions for the state transition evolution and
observation equation, respectively. This model is sequentially
evaluated at every time step k, and produces updated informa-
tion about the system state xk as long as new measurements
are available. Next, prognostics algorithms can be employed
to project the state predictions into future in absence of new
observations. Then, by having defined a failure region F , the
EOL can be obtained as the earliest time index k + `, ` > 1
when the event [xk+` ∈ F ] occurs. It can be computed as:

EOLk = inf
{
k + ` ∈ N : ` > 1 ∧ I(F)(xk+`) = 1

}
(2)

where I(F) is an indicator function that maps a given point in
the x-space to the Boolean domain {0, 1}, such that I(F) = 1
if x ∈ F , and 0 otherwise. The RUL predicted from time
k can be straightforwardly obtained from EOLk as RULk =
EOLk−k. Note that due to the probabilistic nature of the state
variable given by xk, then EOL and RUL are also described
as stochastic variables.

Finally, it is important to remark that in this work, the focus is
not on predicting the EOL or RUL of a system as a probabil-
ity, but on methodology that integrates EOL and RUL within
an asset management framework at a system level, as will be
described next.

2.2. Basis of Petri nets

Petri Nets (PNs) are bipartite directed graphs (digraph) used
for modeling the dynamics of systems. The underlying graph
of a PN consists of two kinds of nodes, transitions and places,
where arcs are either from a place to transition or vice versa.
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p1

p2

p32 t1

Figure 1. Example of Petri net of three places and one transi-
tion.

A place represents a particular state of the system or activity
being modeled (e.g. considering health management model-
ing, places can be used to indicate the current state of a com-
ponent or sub-system, if the performance of this component
or sub-system is currently being tested by a maintenance team
to determine its state, or if any maintenance activity is cur-
rently in progress). Places are temporarily visited by tokens,
the abstract moving units of a PN. The distribution of tokens
over the PN at a specific time of execution is referred to as
marking, which is expressed as a vector indicative of the state
of the PN. The transitions are responsible of the dynamic be-
havior of the PN, and enable the system to move from one
state to another. For example, a component wear process is
one of such processes which can be reflected using a tran-
sitions (Andrews, Prescott, & De Rozières, 2014). In graphi-
cal representation, places are typically expressed using circles
while transitions are drawn as bars or boxes. Arcs are labeled
with their corresponding weights, non-negative integer values
indicating the amount of parallel arcs (1 by default). Figure 1
is provided to serve as illustrative example of a PN of three
places (p1, p2, p3), and one transition (t1).

From a mathematical point of view, a PN can be defined as
an ordered 6-tuple N as follows (Murata, 1989):

P ,
〈
P,T,E,M0,D,W

〉
(3)

where P ∈ Nnp and T ∈ Nnt denote the set of np places
and nt transitions of the PN respectively, M0 ∈ Nnp is the
initial marking, and D ∈ Rnt is the non-negative vector of
switching delays of the transitions (0 by default). The set
E ⊂ Nnp × Nnt represents the edges (also referred to as
arcs), which are expressed through ordered pairs of nodes
to indicate the connections between places and transitions,
i.e. E ⊆ (P×T)∪ (T×P). As mentioned above, each edge
has assigned a weight (1 by default) within the set of weights
W.

At a certain state k, the PN dynamics can be described through
an algebraic equation defined by:

Mk+1 = Mk +ATuk (4)

where uk is the firing vector at k, a nt-dimensional vector

of Boolean values whose elements are obtained according to
the firing rule. A ∈ Nnt×np is the incidence matrix of the
graph, whose elements are the result of subtracting the for-
ward (A+) and backward (A−) incidence matrices respec-
tively, as follows:

A = A+ −A− (5)

where

A+ =


a+11 a+12 ··· a+1np

a+12 a+22 ··· a+2np

...
. . .

a+nt1
a+nt2

··· a+ntnp

 A− =


a−11 a−12 ··· a−1np

a−12 a−22 ··· a−2np

...
. . .

a−nt1
a−nt2

··· a−ntnp


(6)

The element a+ij from Eq. (6) represents the weight of the arc
from transition ti to output place pj , whereas a−ij is the weight
of the arc to transition ti from input place pj , i = 1, . . . , nt,
j = 1, . . . , np. If transition ti is activated at state k, then
ui,k ∈ uk is modified according to the firing rule, which can
be expressed as follows:

ui,k =

{
1, if M(j) > a−ij ∀pj ∈ •Pti
0, otherwise

(7)

where M(j) ∈ N is the marking for place pj , and •Pti de-
notes the set of places that belong to the preset of transi-
tion ti, i = 1, . . . , nt. For example in the PN from Fig. 1,
•Pt1 = {p1, p2}.

Note that by means of PNs and their marking, the behavior
of complex engineering systems can be described in terms
of discrete system states and their changes over time. The
following rules summarize the algebra of PNs as explained
above:

1. Transitions always consume from all the input arcs at
the same time and produce from all out-coming arcs the
same amount;

2. Transition ti is enabled if every input place pj from its
preset •Pti is marked with at least a−ij tokens;

3. An enabled transition ti will fire once the delay time τi ∈
D has passed;

4. After firing, transition ti removes a−ij tokens from pj , and
adds a+ij tokens to each j-th output place of ti.

Similarly to other formalisms for system modeling like Baye-
sian networks, Artificial Neural Networks, etc., PNs suffer
from the well-known “state explosion” problem, which is par-
ticularly common in real-life engineering applications, where
the number of states increases exponentially with the size of
the system. Furthermore, it should be noted that PNs are
not well-suited to deal with uncertainty since their output are
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p
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1

p
(S)
1

p
(N )
2

a−11

a′11
−

a′11
+

a+12
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Preset of t1 Postset of t1

Figure 2. Illustration of a sample PPN with two numerical
places (p(N )

1 , p(N )
2 ), one symbolic place (p(S)1 ), and one tran-

sition (t1).

based on sequences of Boolean operations. Thus, over the last
decades, researchers have enhanced the original PNs to han-
dle (1) uncertainty (Konar & Mandal, 1996; Looney, 1988;
Cao & Sanderson, 1993; Bugarin & Barro, 1994; Zhou &
Zain, 2016; Cardoso, Valette, & Dubois, 1999), and (2) con-
tinuous variables to efficiently reproduce the hybrid aspect
of systems without the need of employing complex graphs
(David, 1997; Antsaklis, 2000; Júlvez, Di Cairano, Bempo-
rad, & Mahulea, 2014; Vazquez & Silva, 2015; Silva, 2016).
Plausible Petri Nets (PPNs) (Chiachı́o, Chiachı́o, Prescott,
& Andrews, 2016) can be classified as one of these variants
of the PNs developed to better reproduce the nature of engi-
neering systems, hence giving partial response to the referred
drawbacks, as will be shown next.

3. PLAUSIBLE PETRI NETS (PPNS)

Plausible Petri nets (PPNs) are a class of PNs recently de-
veloped by the authors, which are based on a combination
of discrete and continuous numerical processes whose val-
ues may be uncertain (plausible). Two interacting subnets
form the PPN graph: 1) a symbolic subnet, where the to-
kens are objects in the sense of integer moving units, as in
classical PNs (Petri, 1962), 2) a numerical subnet, where
tokens are states of information 1. The resulting framework
is a hybrid variant of PNs where the sets of nodes {P,T}
are partitioned into two disjoint subsets, namely numerical
and symbolic, which are denoted using superscripts (N ) and
(S), respectively. In particular, the set of places P are par-
titioned into subset P(N ) ∈ Nnp and P(S) ∈ Nn

′
p , such

that P(N ) ∪ P(S) = P, and P(N ) ∩ P(S) = ∅. Super-
scripts np, n′p represent the number of numerical and sym-
bolic places, respectively. Analogously, transitions T are par-
titioned into numerical transitions T(N ) ∈ Nnt and symbolic
transitions T(S) ∈ Nn′t , where T(N ) ∪ T(S) = T, and
1A state of information can be described by a set of numerical values about a
state variable, along with a mapping over them that assigns each numerical
value with its relative plausibility (Tarantola & Valette, 1982; Rus, Chi-
achı́o, & Chiachı́o, 2016).

T(N ) ∩ T(S) 6= ∅. In this case, nt, n′t denote the number
of numerical and symbolic transitions, respectively. Observe
that those transitions that belong to T(N ) ∩T(S) are referred
to as mixed transitions (Chiachı́o, Chiachı́o, Prescott, & An-
drews, 2016).

In PPNs, the referred states of information about a system
state variable xk ∈ X are denoted by fp(xk) and f t(xk)
for numerical places and transitions, respectively. In prac-
tical terms, these states of information can be understood as
probability density functions (PDFs) except for a normalizing
constant. Thus, the marking Mk of a PPN at a certain time k
consists in a combined vector Mk =

(
M

(N )
k ,M

(S)
k

)
, where

M
(N )
k and M

(S)
k are column vectors of normalized PDFs and

integer values, respectively. Moreover, as in classical PNs,
there exist arc weights for the symbolic places, denoted by
a
′+
ij , a

′−
ij ∈ W(S) ⊂ N, whereby the incidence matrix A(S)

can be obtained by Eq. (5). The arc weights for the numeri-
cal places are denoted by a+ij , a

−
ij ∈W(N ) ⊂ R+, such that

A(N ) =
[
a+ij
]
−
[
a−ij
]
, and i = 1, . . . , nt, j = 1, . . . , np,

where nt, np represent the amount of numerical transitions
and numerical places of the PPN, respectively. Note that the
arc weights from the symbolic subnet, e.g. (a′11

−) are dif-
ferentiated from the numerical ones using an accent (′). In
graphical representation, numerical nodes are represented us-
ing double line, whereas single line is used for the rest. A
PPN model is shown in Fig. 4 for illustration purposes. The
dashed rectangles shown in Fig. 4 are to highlight the preset
and postset of t1.

3.1. Execution semantics

As stated in the last section, the marking at time k of PPNs
consists of both types of information given by M

(N )
k for the

numerical places, and M
(S)
k for the case of symbolic places.

The marking evolution of the symbolic subnet corresponds
to the state equation of a PN (Murata, 1989) (recall Eq. [4]).
However, the evolution of M(N )

k relies on an ad hoc informa-
tion flow dynamics based on two basic operations (Chiachı́o,
Chiachı́o, Prescott, & Andrews, 2016): the conjunction and
disjunction of states of information (Tarantola & Valette, 1982;
Rus et al., 2016). Both markings evolve in a synchronized
manner, as will be described in next section. In these op-
erations, the first principles from Boolean logic, in particu-
lar the logic operators AND (∧) and OR (∨), are invoked to
allow the continuos information from the numerical subnet
to be exchanged into the PPN. More specifically, they en-
able the combination and aggregation of states of informa-
tion across the numerical subnet of a PPN. To avoid repeating
literature but conferring a sufficient conceptual framework,
the conjunction and disjunction of states of information have
been briefly explained and illustrated in Fig. 3. The interested
reader is referred to (Tarantola & Valette, 1982) for further

4



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2017

fa(x)

fb(x)

f(x) = (fa ∧ fb) (x) = 1
α
fa(x)fb(x)

µ(x)

α : constant

x

fa(x)

fb(x)

f(x) = (fa ∨ fb) (x)
= 1

β

(
fa(x) + fb(x)

)
, β : constant

x

Figure 3. Illustration of the conjunction (left) and disjunction (right) of two arbitrary states of information, namely fa(x) and
fb(x).

details.

From this standpoint, the dynamics of PPNs is formulated un-
der the adoption of the following rules (Chiachı́o, Chiachı́o,
Prescott, & Andrews, 2016):

1. An input arc from place p(N )
j to transition ti ∈ T(N )

conveys a state of information given by a−ij
(
fpj∧f ti

)
(xk),

which remains in p(N )
j after transition ti has fired;

2. Transition ti ∈ T(N ) produces to an output arc a state
of information given by a+ij

(
f ti ∧ f•Pti

)
(xk), where

f
•Pti (xk) denotes the resulting density from the dis-

junction of the states of information of the preset of ti. As
stated in Fig. (3), the normalized version of f

•Pti (xk)
can be obtained as:

f
•Pti (xk) =

1

β

(
fp1 + fp2 + · · ·+ fpm

)
(xk) (8)

where β is a constant, and p1, . . . , pm ∈ •Pti ⊂ P(N );

3. After firing numerical transition ti, the state of informa-
tion resulting in place p(N )

j from the postset of ti, is the
disjunction of the state of information fpj (xk) (the pre-
vious state of information), and a+ij

(
f ti∧f•Pti

)
(xk) (the

information produced after firing transition ti). In math-
ematical terms:

fpj (xk+1) =
(
fpj ∨ a+ij

(
f ti ∧ f

•Pti

))
(xk) (9)

The rules given above are sufficient to explain the informa-
tion flow dynamics of PPNs. Notwithstanding, observe that
they are mostly based on conjunction of states of information
which requires the evaluation of normalizing constants in-
volving an intractable integral. Also, note that there are situa-
tions where the conjunction is conducted using density func-
tions which are not completely known, perhaps because they
are defined trough samples. Particle methods (Arumlampalam,
Maskell, Gordon, & Clapp, 2002; Doucet, De Freitas, & Gor-
don, 2001) can be used in these cases to circumvent the eval-

uation of the normalizing constant with a feasible computa-
tional cost. In particle methods, a set ofN samples

{
x(n)

}N
n=1

with associated weights
{
ω(n)

}N
n=1

are used to obtain an ap-
proximation for the required density function [e.g.

(
fa ∧

fb
)
(x)], as follows:

(
fa ∧ fb

)
(x) ≈

N∑
n=1

ω(n)δ
(
x− x(n)

)
(10)

where δ is the Dirac delta and x(n) ∼
(
fa∧fb

)
(x). The parti-

cle weight ω(n) represents the likelihood value of x(n), and is
representative of the plausibility of x(n) when it is distributed
according to

(
fa ∧ fb

)
(x). It can be evaluated for the case of

X being a linear space as follows (Tarantola & Mosegaard,
2007):

ω(n) =
fa(x

(n))fb(x
(n))∑N

n=1 fa(x
(n))fb(x(n))

(11)

A pseudocode implementation to obtain a particle approxi-
mation from the conjunction

(
fa ∧ fb

)
(x), is provided in the

Appendix as Algorithm 1.

3.1.1. Firing rule

In PPNs, any transition ti ∈ T is fired at time k if the delay
time has passed and:

1. Every symbolic place from the preset of ti has enough
tokens according to their input arc weight, as in classical
PNs;

2. Each of the conjunction of states of information between
f ti and fpjk is possible, where p(N )

j belongs to the preset
of ti;

3. Conditions (a) and (b) are both satisfied when ti is a
mixed transition, i.e. ti ∈ (T(S) ∩T(N )).

Note from Condition (b) that a conjunction, e.g.
(
f
pj
k ∧f

ti
k

)
(xk),

is possible if
(
f
pj
k ∧ f

ti
k

)
(xk) 6= ∅ (Tarantola & Valette,

1982). Note also that when any of the states of information
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12 − a

+
23
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Figure 4. Plausible Petri nets of the examples given in §4.1.

involved in a conjunction is the homogenous density (also
referred to as “non-informative density”) µ(xk) of the state
space of consideration X , then the conjunction is always pos-
sible (Tarantola & Valette, 1982; Chiachı́o, Chiachı́o, Prescott,
& Andrews, 2016), thus Condition (b) is automatically ful-
filled. This argument is important in terms of using PPNs in
practical applications, as will be demonstrated in next section.

4. SYSTEM LEVEL PHM BY PPNS

In this section, a set of PPN sample architectures are provided
to illustrate how our PPNs can be used for decision mak-
ing at a system level in applications where information from
prognostics along with other sources of information (like ex-
pert knowledge, sensors, etc.) may coexist, as usual in prac-
tice. The examples have been kept as simple as possible since
they are mostly intended to serve as guideline to built more
complex PPNs. Moreover, the examples provide represen-
tative architectures whereby to conceptualize the proposed
PNN methodology in a prognostics and health management
context.

4.1. Integrative decision making for multi-component prog-
nostics

A couple of PPN architectures are exemplified here for mod-
eling decision making aspects in presence of multiple infor-
mation about the EOL from different components of an en-
gineering system. Figure 4 shows two PPNs of three numeri-
cal {p(N )

1 , p
(N )
2 , p

(N )
3 } and two symbolic {p(S)1 , p

(S)
2 } places,

along with one mixed transition t1 (two transitions for Fig. 4b).
This example assumes that numerical places p(N )

1 and p(N )
2

enclose uncertain information about the EOL of two com-
ponents or sub-systems, which is expressed through a PDF
denoted by fEOL1 and fEOL2 , respectively. Transition t1 is
defined based on condition (Chiachı́o, Chiachı́o, Prescott, &

Andrews, 2016) using an indicator function for the state space
that assigns a value of 1 when the expected value of EOL
reaches a specific threshold denoted by ε ∈ R, and 0 other-
wise, as indicated in Table 1. Provided that place p(S)1 has
one token (assumed that a′11 = 1 in this example), then, ac-
cording to the firing rule given in §3.1.1, transition t1 is acti-
vated once the expected EOL from both components or sub-
systems has reached the threshold value ε (not necessarily at
the same time), whereupon the system turns to a “mainte-
nance needed” state. The resulting information is collected
in place p(N )

3 which acts as a buffer of information. This
buffer can be used for diagnostics purposes since it collects a
weighted distribution of plausible EOL values from the two-
component system, conditioned to E(EOLk) > ε. As stated
by the execution semantics of PPNs (refer to §3.1), the result-
ing PDF in p(N )

3 can be described as:

fp3 =
a+13

a−11 + a−12

(
a−11f

EOL1 + a−12f
EOL2

)
(12)

Note from the last equation that when a−11 = a−12 = a+13 = 1,

then fp3 = 1
2

(
fEOL1 + fEOL2

)
, an averaged sum of both

PDFs of EOL.
In Fig. 4b, an analogous PPN architecture is illustrated for the
two-component system. However in this case, the graph rep-
resents a two-component system acting in series ( t2 ≡ t1),
thus it turns to the “maintenance needed” state once the ex-
pected value of EOL from any of the components reaches
the threshold value ε. Note that, both PPN architectures can
be straightforwardly extended to the case of multiple com-
ponents or sub-systems provided that the PDF of EOL from
those components are known. Finally observe that through
these simple graph architectures, go/no-go decisions can be
made using uncertain information from multiple components
acting in series, parallel, or a combination from them.
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Figure 5. Illustration of the exemplified PPN architecture explained in §4.2 (left) and §4.3 (right).

4.2. Combining expert knowledge and prognostics mea-
sures

In this section, an example of PPN is provided which includes
information about the PDF of EOL of a component or sub-
system, along with information coming from expert knowl-
edge. Figure 5a illustrates the PPN consisting of three numer-
ical places, two symbolic places, and two transitions. Let us
now assume that the numerical place p(N )

1 comprises the PDF
of EOL of a component given by fEOL, whereas fp3 = ∅, ini-
tially. Next, the proposed PPN architecture also encompasses
information from one expert in place p(N )

2 , which is repre-
sented by a PDF given by fExpert (e.g. fExpert can be a uni-
form PDF of EOL representing an interval of possible values
of EOL). As in the last example, transition t1 is defined based
on condition, such that it is fired if the uncertainty2 of the
PDF fEOL reaches or exceeds a specific threshold value. If t1
is fired, then place p(S)2 receives a token that enables the infor-

2For example by calculating the differential entropy of the PDF of EOL
(Chiachı́o, Beck, Chiachı́o, & Rus, 2014; Chiachı́o, Chiachı́o, Prescott, &
Andrews, 2016)

mation from the expert to be transferred to place p(N )
3 . Note

that through this exemplified PPN, a decision making process
can be modeled about the adoption of information from an
expert if the uncertainty about the EOL is higher than a cer-
tain value ξ. For example, this can be as a consequence of a
faulty sensor, or a perturbed prognostic estimation. The re-
sulting information in p(N )

3 includes the PDF fEOL coming
from p

(N )
1 and that from the expert, as follows:

fp3 =
a+13

a−11 + a−12

(
a−11f

EOL1 + a−12f
Expert

)
(13)

If required, higher relevance can be conferred to the expert in-
formation by increasing the weight a−12 with respect to a−11. Fi-
nally, observe that the PDF fp3 can be further used in an op-
erational context (e.g., for diagnostics), as was described in
last section.

Table 1. Description of the transitions of the PPN shown in Figs. 4a, 4b, 5a, and 5b.

Reference Transition Type Condition State of information

Fig. 4
t1 Mixed C1 =

{
xk ∈ X : EfEOL1 (xk) 6 ε

}
f t1 ∼ IC1(xk)

t2 (Fig.4b) Mixed C2 =
{
xk ∈ X : EfEOL2 (xk) 6 ε

}
f t2 ∼ IC2(xk)

Fig. 5a
t1 Mixed C1 =

{
xk ∈ X : EfEOL(xk) 6 ε

}
f t1 ∼ IC1(xk)

t2 Mixed None (homogeneus) f t2 ∼ µ(xk)

Fig. 5b
t1 Mixed C1 =

{
xk ∈ X : EfEOL(xk) 6 ε

}
f t1 ∼ IC1(xk)

t2 Symbolic τ (delay) Not applicable
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4.3. Integration of prognostics and resource availability

This example illustrates the case of a decision making pro-
cess, like activation of a maintenance action, taken after the
PDF of EOL has reached a certain value ε as in §4.1, except
that in this case it occurs contingent upon availability of en-
gineers. Fig. 5b shows the idealized system using a PPN of
two numerical places, four symbolic places, one mixed tran-
sition, and one symbolic transition. Numerical place p(N )

1 is
assumed to represent the PDF fEOL of a component. As in
the example shown in Fig. 4a, t1 is fired once the expecta-
tion of fEOL has reached the threshold ε provided that p(S)1

has enough amount of tokens according to a′11
−, which for

the sake of illustration, is assumed to be a′11 = 1. Next, let
us also assume that symbolic transition t2 represents the acti-
vation of the maintenance activity (an activation delay τ can
be assigned to t2 (Andrews et al., 2014), although this infor-
mation is irrelevant here). Observe that when t1 is fired, then
t2 will be activated if the number of available engineers is
higher or equal to a′24

−. In such case, p(S)5 is marked, then
the system turns to “component being repaired” state.

5. NUMERICAL EXAMPLE

The PPN framework presented above is exemplified here us-
ing a numerical example to illustrate some of the advantages
of using PPNs for integration of prognostics at a system level.
In this example, a self-managed two-component system is
modeled through a PPN which comprises uncertain informa-
tion about the EOL of two degrading components acting in
series, along with expert knowledge about the whole system’s
EOL. Figure 6 illustrates the idealized system model through
a PPN of four numerical places, four symbolic places, and

five transitions. Noisy measurements about the components’
state of degradation are assumed to be available, whereby an
estimation of the EOL can be obtained, provided that there
exists a specified degradation threshold, and an appropriate
prognostics algorithm to make predictions (see for example
(Chiachı́o, Chiachı́o, Shankararaman, & Andrews, 2017)).
Let us denote by EOL(j)

k ∈ X ⊂ R+ a stochastic variable
corresponding to the EOL of the j-th component, j = 1, 2,
which evolves over time k ∈ N following a dynamic equa-
tion EOL(j)

k = hk(x
EOLj

k−1 , θj) given by:

EOL(j)
k = e−θjkEOL(j)

k−1 + vk (14)

where θj is an uncertain decay parameter whose values are
modeled as a Gaussian centered at 0,006 and 0,008 for j =
1, 2, respectively, and 100% of coefficient of variation in both
cases. The term vk represents a measurement error which
is assumed to be modeled as a zero-mean Gaussian density
function with standard deviation given by σv = 5. In the
PPN, the mixed transitions ti, i = {1, 2, 4} are defined by
condition, thus their states of information can be expressed
using Diract Delta density functions (Tarantola, 2005), i.e.,
f ti(EOLk) ∼ ICi(EOLk). Henceforth, their activation is
prescribed for the stochastic variable EOL(j)

k on fulfilling the
condition EOL(j)

k ∈ Ci, such that:

C1 =
{

EOLk ∈ X : Efp1 (EOLk) 6 ε
}

(15a)

C2 =
{

EOLk ∈ X : Efp2 (EOLk) 6 ε
}

(15b)

C3 =
{

EOLk ∈ X : H(EOLk) > ξ
}

(15c)

where ε = 20 and ξ = 5. In (15c), H denotes the differ-
ential entropy of EOLk, that can be obtained by evaluating

p
(N )
1 p
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p
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2

p
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Figure 6. Illustration of the PPN from the numerical example given in Section 5.
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Figure 7. Plots of the evolution over time of the states of information about the stochastic variable EOL(j)
k for components

j = 1, 2 (panels [a] and [b], respectively) from the Plausible Petri net of the example given in §5. The expectation of the states
of information is represented using gray circles. The dashed lines represent the 5th-95th probability band.

1/2 ln [(2πe)var(EOLk)] as a measure quantifying the uncer-
tainty of EOLk. The initial marking of the numerical places
is given by fp10 ∼ N (100, 5), fp20 ∼ N (100, 5), fp30 = ∅,
and fp4 = U [18, 22]. The latter represents expert knowledge
about EOL, which is given by a uniform PDF defined over
the interval [18, 22].

Initially at k = 0, the system starts in the “working condi-
tion” state represented by one token at p(S)1 , thus M

(S)
0 =

(1, 0, 0, 0)
T . Once any of the expected values of the predicted

EOL of components 1 and 2 (represented in place p(N )
1 and

p
(N )
2 , respectively) has reached the threshold value ε, then

transitions t1, t2 (not necessarily both nor simultaneously)
produce one token to p(S)2 which enables transition t3 to be
fired, whereupon the expert information about system’s EOL
enters into play and is transferred to p(N )

3 . Next, the system
turns to a “warning” state, and a decision is made conditioned
upon: 1) the quality of the information given by fp3k , and 2)
the total time spent by the system under no failure states. The
differential entropy (DE) is used in this example as a qual-
ity indicator of the information in place p(N )

3 , so that the
transition t4 is activated if the DE of fp3k is higher than the
threshold ξ = 5. In such case, the system turns to “inspec-
tion needed” state, otherwise the system remains in “warn-
ing” mode. In this example, the time spent by the system in
performing transition t5 (which corresponds to an activation
time given by τ ) is assumed to represent a scheduled periodic
maintenance activity such that if k > τ , then the system di-

rectly turns to the “maintenance needed” condition irrespec-
tive of the component’s degradation state nor their predicted
EOL.

For the numerical evaluation of the PPN in Fig. 6, the ex-
ecution semantics rules (recall §3.1) along with Eq. (4), are
applied in confluence with the firing rule for the system state
evolution described through the marking Mk. The algorithm
for particle approximation of conjunction of states of infor-
mation described in the Appendix, has been applied using
N = 1000. Note that the disjunction of states of information

Table 2. Summary of the discrete events taking place when
running the PPN shown in Fig. 6. The second and third col-
umn show the symbolic marking and firing vector, respec-
tively.

Time M
(S)
k uk Event

k = 0 (1 0 0 0) (0 0 0 0 0) –
k = 1 (1 0 0 0) (0 0 0 0 0) –

...
. . .

k = 16 (1 0 0 0) (1 0 0 0 0) t1 fired
k = 17 (0 1 0 0) (0 0 0 0 0) t3 enabled
k = 18 (0 1 0 0) (0 0 1 0 0) t3 fired
k = 19 (0 0 1 0) (0 0 0 0 0) t4 enabled
k = 20 (0 0 1 0) (0 0 0 1 0) t4 fired
k = 21 (0 0 0 1) (0 0 0 0 0) –
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Figure 8. Kernel density estimates of the state of information
about EOL in place p(N )

3 for k = 17 and k > 18 (darker gray
color).

can be straightforwardly evaluated using samples by just join-
ing the samples from the component-wise density functions,
and affecting their particle weights using an appropriate nor-
malizing constant so as to obtain a bone fide density. Figure 7
shows the results for the two-components’ EOL (from places
p
(N )
1 and p(N )

2 ) for time indexes k = 0 to k = 30. Note
from Fig. 7 that component 1 first reaches the threshold, i.e.,
the expectation of EOL(1)

k first reaches the value ε = 20 at
k = 16. Next, transition t3 is enabled and the information
coming from the expert is aggregated to p(N )

3 at k = 18. Fig-
ure 8 shows the resulting PDF in p(N )

3 before and after the
information from the expert was incorporated. Observe the
influence of the expert knowledge in terms of gain of infor-
mation, which makes the distribution of plausible EOL val-
ues being more concentrated around the recommended values
from the expert, namely [18,22]. Notwithstanding, the DE of
the resulting state of information given by fp3 at k > 18 is
higher than ξ = 5, then the system finally turns to the ”main-
tenance needed” state. A summary of the results for the sym-
bolic subnet of the PPN model is provided in Table 2.

This example illustrates that uncertain information about the
EOL of different components along with information from
experts, can be integrated into a system level model for prog-
nostics and decision making. The numerical results confirm
that system non linearities, apart from that attributable to the
stochastic variable EOLk, can be taken into account. Exam-
ples of the referred non linearities are: ad hoc synchronies
between components, user-defined time to failure, resources
availability, etc., which makes our PPNs useful for prognos-
tics and health management at a system level.

6. CONCLUSIONS

This paper presented a novel prognostics methodology to in-
tegrate information from prognostics with decision making
aspects at a system level using Plausible Petri nets. The ap-
proach has the advantage of addressing the prognostics prob-
lem as a unified system-level approach where multiple sources
of uncertain information can be integrated with discrete-events,
conferring high versatility to better reproduce real-world prob-
lems of prognostics without the need of using extremely com-
plex nets, as usual when adopting other formalisms. Further
research is needed to investigate suitable PPN architectures to
better integrate the influence of intervention activities within
the predicted state of health at a system level.
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APPENDIX

Pseudocode implementation to obtain particles from the con-
junction of two arbitrary states of information fa(x) and fb(x).

Algorithm 1 Particle approximation of conjunction of states
of information
Inputs: N, fa(x), fb(x) {number of particles and states of infor-

mation}
Outputs:

{
x(n), ω(n)

}N

n=1
, where x(n) ∼ (fa ∧ fb)(x)

Begin

1: Sample
{(

x̃
(n)
a , ω̃

(n)
a

)}N

n=1
from fa(x)

2: Set x(n) ← x̃
(n)
a , n = 1, . . . , N

3: Set ω̂(n) ← fb
(
x(n)

)
, n = 1, . . . , N {unnormalized weights}

4: Normalize weights ω(n) ← ω̂(n)∑N
n=1 ω̂(n) , n = 1, . . . , N
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