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ABSTRACT: In this work we study methods for model checking the tem-
poral logic LTL. The focus is on the automata-theoretic approach to model
checking and bounded model checking.

We begin by examining automata-theoretic methods to model check LTL
safety properties. The model checking problem can be reduced to checking
whether the language of a finite state automaton on finite words is empty. We
describe an efficient algorithm for generating small finite state automata for
so called non-pathological safety properties. The presented implementation
is the first tool able to decide whether a formula is non-pathological. The
experimental results show that treating safety properties can benefit model
checking at very little cost. In addition, we find supporting evidence for the
view that minimising the automaton representing the property does not al-
ways lead to a small product state space. A deterministic property automaton
can result in a smaller product state space even though it might have a larger
number states.

Next we investigate modular analysis. Modular analysis is a state space
reduction method for modular Petri nets. The method can be used to con-
struct a reduced state space called the synchronisation graph. We devise an
on-the-fly automata-theoretic method for model checking the behaviour of
a modular Petri net from the synchronisation graph. The solution is based
on reducing the model checking problem to an instance of verification with
testers. We analyse the tester verification problem and present an efficient
on-the-fly algorithm, the first complete solution to tester verification prob-
lem, based on generalised nested depth-first search.

We have also studied propositional encodings for bounded model check-
ing LTL. A new simple linear sized encoding is developed and experimen-
tally evaluated. The implementation in the NuSMV2 model checker is com-
petitive with previously presented encodings. We show how to generalise the
LTL encoding to a more succint logic: LTL with past operators. The gener-
alised encoding compares favourably with previous encodings for LTL with
past operators. Links between bounded model checking and the automata-
theoretic approach are also explored.

KEYWORDS: Verfication, Model checking, LTL, automata, safety properties,
Petri nets, modular analysis, LTS, testers, bounded model checking, PLTL
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1 INTRODUCTION

We are moving towards a society where computers and software are increas-
ingly managing business and safety critical functions. In effect, we are relying
on our computers and software to function correctly more than ever. At the
same time, the environment our systems are functioning in is becoming more
challenging. There is complexity in the form of concurrency, heterogeneity,
changing requirements and numerous other sources.

Of the above mentioned sources of complexity perhaps the most studied
is concurrency. Concurrency can be an issue at many levels of a complex
system. A modern telecommunication system must resolve concurrency is-
sues between the participating devices of the network. At the same time, the
mobile devices themselves are also concurrent systems: a mobile phone may
be receiving a text message while the user is adding an item to the calendar.
Another common feature of many complex systems is reactivity. A reactive
system receives inputs from the environment and continuously reacts to the
changing situation. Typical reactive systems include embedded controllers,
mobile phones or computer operating systems.

Modelling reactive systems is challenging. A reactive system cannot be
adequately described by the traditional model of behaviour where a system
receives inputs and performs finite computations to produce output. Even
small reactive and concurrent systems can be very complex to analyse: the
combinatorial explosion of possible states in the system makes analysing the
state space of the system hard. In addition, the inherent non-determinism
in these systems contributes to the combinatorial explosion and complicates
analysis in many ways. For systems implemented as hardware the sources of
complexity are similar. The dominating factor causing state explosion is the
large number of internal states combined with the non-determinism due to
many free input variables in the system.

Despite the increasing complexity of systems there is an expectation of in-
creased productivity. Thus, understanding and analysing concurrent and re-
active systems is a challenging but necessary endeavour. Currently the most
widely used verification and validation method is testing. However, the non-
determinism inherent in reactive and concurrent systems severely degrades
the performance of methods such as testing. Repeating failing executions is
very difficult in the presence of non-determinism, and this hinders effective
regression testing and debugging. The large state spaces usually associated
with concurrent systems and hardware systems also make achieving good
coverage of the possible behaviours hard: even measuring coverage is dif-
ficult. The overall increase in the complexity of systems and the inadequacy
of testing have been suggested as reasons for the faint signs that productivity
in the software industry is actually decreasing [75].

An active research direction aiming at increasing the productivity of sys-
tem designers is the research on computer aided verification. In this frame-
work one analyses a mathematical model of the system and the environment
w.r.t. a formal specification. The implicit assumption is that the mathemati-
cal model of the system reflects the important aspects of the real system. The
analysis of the properties of the model is, however, only valid for the real sys-
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tem as far as the model reflects the properties of the real system. Computer
analysis of the relationship between the system model and the specification,
as well as various methods for obtaining the model and the specification can
be seen as one definition of computer aided verification.

In 1977 Amir Pnueli [133] suggested that temporal logic, a variant of
modal logic, could be suitable for specifying properties of reactive and con-
current systems. Pnueli argued that temporal logic provided a natural mathe-
matical framework for reasoning about systems with non-terminating infinite
behaviour. The specific variant of temporal logic Pnueli advocated modelled
a system as a set of infinite sequences of states (executions). The notion of
time in this model is discrete, and in an execution each time point has a
unique future. The specification language Pnueli presented is called linear
temporal logic (LTL).

Using temporal logic as a specification language for systems quite natu-
rally leads to the idea of model checking. Model checking [31, 134, 36] is
one of the most actively studied computer aided verification techniques. In
model checking a temporal logic specification is checked against a Kripke
model of the system. Kripke models of reactive systems capture the contin-
uous interaction with the environment by modelling it with infinite compu-
tations. However, the interaction with the environment must be explicitly
modelled since Kripke models do not have a notion of input or output w.r.t.
the environment. The Kripke model represents the discrete state transition
behaviour as a directed labelled graph. Computations of the system are infi-
nite paths in the graph. Temporal logic is used to specify the allowed com-
putations of the system. The computations allowed by the temporal logic
specification can be mechanically compared with the computations of the
Kripke model of the system. This process is called model checking.

Model checking has several attractive features. Once the Kripke model of
the system and the temporal logic specifications have been defined (a non-
trivial task in itself), the process is fully automatic. If a computation that
violates the specification is found in the Kripke model, it can be displayed to
the system designer to aid the debugging process [35, 119, 74]. In addition,
the model checker can be designed to display a proof if the temporal logic
property holds [128, 131, 113].

An alternative approach to model checking for proving temporal logic
properties of a system is to use deductive verification. In deductive verifi-
cation both the system and the properties are formalised as logical formulae.
A theorem prover is used to show that the system has the desired proper-
ties. Deductive verification is often criticised for requiring highly educated
experts to complete the proofs: the theorem provers are solving undecidable
problems and in many cases need manual intervention to succeed. Model
checking can, at least partly, be criticised on the same grounds. Although
model checking is in principle automatic, manual abstraction is often re-
quired for a successful model checking effort. Deductive verification has
been the method of choice for proving properties for some classes of sys-
tems such as general parametric systems. However, a recent result shows
that model checking combined with finitary abstraction is as powerful as de-
ductive verification [108]. Thus, because it is easier (in the current author’s
opinion) to find abstractions of systems than to find powerful invariants for
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automated proofs, model checking has greater potential than deductive veri-
fication.

Perhaps the greatest hurdle to ubiquitous industrial use of model checking
is the state explosion problem (see [164] for a review). Even for simple mod-
els of concurrency, e.g. 1-safe Petri nets [48], analysing fundamental proper-
ties such as reachability of illegal states, is PSPACE-complete1 (see e.g. [58]).
Concurrent systems usually exhibit a combinatorial explosion in the number
of global system states, because events in the system can occur in many possi-
ble ways as the participating processes are fairly independent. Research into
alleviating the state explosion problem has been and remains one of the most
active areas of study. Different approaches to alleviate the state explosion
problem include symbolic model checking [24, 126, 14], partial order meth-
ods [162, 106, 70, 170], complete finite prefixes [125, 126, 84], compositional
methods [38, 76, 121, 103], symmetry reduction [98, 78, 56, 140, 102] and
abstraction [43, 34, 45, 71].

Although the state explosion problem is a great challenge, other issues
also impede the industrial use of model checking. Constructing an accu-
rate model of the system under inspection is a resource intensive task that
can require the largest portion of the resources of a model checking ef-
fort [57, 138, 161]. For software systems obstacles faced when modelling
a system include how to model advanced features of programming languages
such as pointers, dynamic memory allocation and recursion. Another prob-
lem is ensuring the accuracy of the model when modelling a large system.
Hardware systems mostly lack the complex features of software systems, but
the large size of the systems makes isolating a manageable subsystem difficult.
Many attempts at solving the modelling problem are based on automating
the model construction phase in the model checking effort [91, 40, 9, 95].

Model checking requires that the specification is formulated in a tempo-
ral logic. Unfortunately, expressing the desired property accurately can be
challenging even for a practitioner. False model checking results due to er-
roneous formulas are not unusual in model checking efforts [89, 91, 57].
Several approaches have been suggested to alleviate these problems: provid-
ing templates of useful formulas [50]; adding syntactic sugar to the logic and
extending the language [10, 6]; providing a graphical front-end for LTL [152]
and developing a domain specific front-end for the property language [41].

In some cases expressing the required properties is impossible because the
logic which is used does not have the required expressive power. LTL and its
simple extensions can only specify a proper subset of the ω-regular properties
called the star-free ω-regular properties [159]. Lichtenstein et al. [120] have
argued that full ω-regularity is useful for facilitating compositional reason-
ing. Furthermore, there are interesting properties which are not even reg-
ular. For instance, expressing pre-condition, post-condition style properties
for functions in formalisms where recursion is allowed is not a regular prop-
erty [5]. Some research has been conducted in model checking non-regular
specification formalisms. In [5] a method for model checking recursive state
machines for a non-regular logic is developed, while [111] presents model
checking of pushdown specifications for regular systems.

1Here and in the following we use complexity classes as defined in [130].
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The focus of this work has been to develop efficient model checking meth-
ods. The main techniques we have investigated are the automata-theoretic
approach to model checking and bounded model checking. We have applied
the automata-theoretic framework to different domains with special emphasis
on the algorithmics for model checking LTL. In bounded model checking
we have focused on developing efficient encodings of the LTL model check-
ing problem into propositional logic.

The automata-theoretic approach to model checking [115, 168, 169, 166]
presents automata as a uniform approach to specification and verification.
The approach exploits the close connection between temporal logic and au-
tomata on infinite words. Any LTL property can be expressed by a so called
Büchi automaton [168, 67]. In this approach automata are used to model
both the system under inspection and the specification. Interesting ques-
tions, e.g. whether the behaviour of the system obeys the specification, can
easily be cast into automata-theoretic terms. In many cases asymptotically op-
timal algorithms have been obtained using the automata-theoretic approach.
Since automata are essentially labelled graphs, many of the key algorithms
are actually adapted graph algorithms.

An important class of properties are the so called safety properties. Safety
properties are properties of the system that have finite counterexamples or,
more informally, properties requiring that “nothing bad happens”. A safety
property can e.g. express that “if the variable y becomes negative at some
point, then the Boolean variable x will have been false before this occurs”.
As safety properties include properties such as invariants, they are usually
considered the most important and critical subset of properties to verify in
a system. Another reason safety properties are interesting is that algorithms
for model checking safety properties are simpler and more efficient than algo-
rithms for the general case. The automata-theoretic approach accommodates
treating safety properties as a special case. Standard finite automata on finite
words can detect counterexamples to LTL safety properties while so called
Büchi automata are required by general LTL properties. The relevant algo-
rithms for finite automata are simpler than the corresponding ones for Büchi
automata. In some cases the difference can be so radical that model checking
safety properties is decidable, while model checking general properties is not:
LTL safety properties are decidable for (unbounded) Place/Transition nets,
while general (state based) LTL properties are not [58]. Safety properties
are also interesting outside the model checking context. In runtime analy-
sis of programs [83] only safety properties can be monitored, since liveness
properties can only be refuted by an infinite trace.

Many of the previously mentioned benefits can be obtained by having a
compact deterministic finite automaton expressing the LTL safety property.
We have investigated the problem of generating a finite automaton from an
LTL safety specification in [P1].

An attractive feature of the automata-theoretic approach to model check-
ing is its ability to flexibly adapt to different frameworks. A popular way to
describe the behaviour of a distributed system is to use Petri nets [136]. In
their most basic form, Petri nets do not include structural information such
as the system’s partition into processes. One extension of Petri nets that adds
process structure to Petri nets is called modular Petri nets [26]. This addi-
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tional structural information can be exploited by methods that attempt to
alleviate the state explosion problem. Modular analysis is a method to gen-
erate a smaller state space for modular Petri nets such that the reduced state
space still contains the relevant information for analysing the behaviour of
the system. In publication [P2] we present an automata-theoretic LTL model
checking method that is compatible with modular analysis.

The model checking method developed in [P2] reduces model check-
ing modular Petri nets to a special case of verification with testers [163, 81].
Testers are a form of automata suitable for defining illegal behaviours of la-
belled transition systems (LTSs). LTSs model systems as finite sets of syn-
chronising processes. Each process is modelled by a finite state automaton.
Testers are LTSs with additional structural information to enable them to
express both liveness and safety properties. The basic algorithmic problems
related to verification with testers had not been characterised fully until [P3].
In [P3] we study the tester verification problem and present and prove correct
an efficient algorithm for solving the tester verification problem.

Symbolic model checking [24, 126] is an efficient way of alleviating the
state explosion problem. The basic idea is to represent the state space im-
plicitly using symbolic means. In their seminal paper Burch et al. [24] used
propositional logic formulae manipulated with (ordered) Binary Decision
Diagrams (BDDs). Using this arrangement they succeeded in model check-
ing systems with unprecedently large state spaces. BDDs are a canonical
representation for Boolean formulas. They can succinctly represent many
Boolean functions. However, the efficiency of the BDD representation for
a function is dependent on finding good variable ordering for the variables
in the Boolean formula. This can be difficult, and there are functions which
do not have any succinct BDD representation [22]. The problem manifests
itself in model checking when the BDD representing the currently reach-
able state space (or equivalently the Boolean formula) is computed. Unpre-
dictable blow-ups in memory usage can occur if the current variable order
is unsuitable for the current Boolean formula. For this reason, several vari-
able ordering heuristics [137] and partitioning methodologies [23, 129] have
been developed for BDDs.

In bounded model checking [14] (BMC) a limited model checking prob-
lem is considered: only counterexamples of a fixed length k are sought for.
By letting the bound k grow incrementally we can prove that the systems con-
tains no counterexamples of length k or shorter. For a finite state system the
method is complete if one lets the bound grow large enough. However, de-
termining exactly how large the bound must be is a hard problem. Bounded
model checking uses the same basic idea as symbolic model checking with
BDDs: the state space of the system is represented implicitly using Boolean
formulas. However, Boolean formulas are not represented using a canonical
form. Instead the BMC problem defined above is mapped to the propo-
sitional satisfiability problem (SAT). BMC has its roots in similar methods
employed for AI planning problems [107]. Given a system M , a temporal
logic formula ψ and a bound k, a Boolean formula is constructed which is
satisfiable if and only if M has a counterexample of length k to ψ. A propo-
sitional satisfiability solver is used to perform the query. Solving the SAT
problem from a BDD representation is easy, but the canonical representa-
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tion of Boolean formulas can unexpectedly blow-up. In BMC, the growth
of the size of the BMC formulas can be known in advance, but predicting
the running times of the SAT solver is difficult. BMC is particularly good at
finding short counterexamples, and there are several papers describing suc-
cessful industrial applications of BMC [15, 39, 17]. The size and efficiency
of the encoding into propositional logic affects the performance of BMC.
In [P4, P5] we have investigated efficient encodings for LTL and its general-
isation PLTL.

There are also other ways to implement symbolic model checking with-
out BDDs. Many of these are attempts to remedy the problems encountered
when using BDDs. Verification using Boolean expression diagrams [172]
(BEDs) aims at combining the advantage of BDDs and compact proposi-
tional logic expressions by combining them in a hybrid data structure. The
use of BDDs allows easily checking whether the complete state space has
been explored, and the compact propositional representation alleviates the
space requirements of the BDDs. Another approach is to strictly use an ef-
ficient propositional representation as in [2]. Symbolic reachability analysis
is achieved by using quantifier elimination, which can, however, be time
consuming and cause a blow-up in the propositional expression. Quantifier
elimination can be avoided if a SAT solver that can return all possible so-
lutions to the propositional formula is used. This approach is used in [77].
However, the representation of all solutions as a Boolean formula can be
exponential in the number of propositional variables.

1.1 CONTRIBUTIONS

In this dissertation we study methods and algorithms that aim at facilitating
more efficient verification, especially model checking. Publications [P1]–
[P3] describe ways to improve model checking and verification using the
automata-theoretic approach. In publications [P4]–[P5] we discuss novel
methods for bounded model checking.

The main contributions of each publication are the following:

[P1] An algorithm based on [112] for translating LTL safety formulas to fi-
nite automata is presented. Experimental results indicate that the tool
is competitive compared to tools translating LTL to Büchi automata,
and that treating safety as a special case improves performance. Addi-
tionally, the implemented translation tool scheck can identify patho-
logical safety formulas. Pathological safety formulas are safety formulas
without (comparatively) succinct bad prefixes and therefore are ineffi-
cient to model check using the same techniques as other safety formu-
las.

[P2] Modular analysis is a way of alleviating the state explosion problem for
modular Petri nets. An automata-theoretic method for model check-
ing the temporal logic LTL-X compatible with modular analysis is pre-
sented. The method retains the ability of modular analysis to exploit
invisible transitions to reduce the state space. Experimental results
show the same mixed results as for modular analysis in general.
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[P3] Testers are an alternative formalism to LTL and Büchi automata for
specifying properties of a reactive system. They have a more refined
view of visibility than standard Büchi automata synchronisation, and
can therefore allow a more fine grained treatment of concurrency to
alleviate the state explosion problem. The problem of on-the-fly verifi-
cation with testers is analysed and solved. An efficient on-the-fly algo-
rithm is presented an proved correct.

[P4] A succinct SAT encoding of the bounded LTL model checking is pre-
sented. The size of the encoding is linear in the bound and the size
of the formula. The encoding has been implemented on top of the
NuSMV2 model checker [28]. Experiments show that the encoding
scales better than previous encodings both in the length of bound and
the size of the formula.

[P5] Based on the LTL encoding in [P4], a SAT encoding of the bounded
PLTL model checking is presented. The size of the encoding is linear
in the bound and quadratic in the size of the formula. However, if
the nesting depth of past operators is fixed the encoding is also linear
in the size of the formula. The experimental results confirm that the
encoding produces smaller SAT instances and that SAT solvers are able
to return results faster than previous implementations.

The Structure of the Dissertation The dissertation consists of five publica-
tions and this dissertation summary, and has the following structure.

In Section 2 we introduce the most important concepts in model check-
ing LTL, the main theme of this dissertation. The automata-theoretic ap-
proach to model checking, with special emphasis on results related to pub-
lications [P1]–[P3] are presented in Section 3. In Section 4 we discuss
bounded model checking and describe the results of publications [P4]–[P5].
Conclusions and future work are discussed in Section 5.
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2 MODEL CHECKING LTL

The basic problem this work examines is model checking the temporal logic
LTL. In this section we introduce the notation used throughout the text and
define the central problems.

We use Kripke structures in their most basic form as the model of compu-
tation. The model is appropriate for reactive computation where the relative
order of events matters but the absolute time difference between events does
not. We restrict our attention to finite state systems. Although this is a fairly
limited model it can with appropriate abstractions capture a large class of
systems.

We define a Kripke structure in the following way.

Definition 1 A Kripke structure is tuple M = 〈S, δ, s0, l〉, where

• S is a finite set of states,

• δ ⊆ S × S is the transition relation such that for all s ∈ S there exists
s′ ∈ S with (s, s′) ∈ δ,

• s0 ∈ S is the initial state and

• l : S → 2AP is a labelling function, where AP is a set of atomic
propositions.

An execution is an infinite sequence of states σ = s0s1s2 . . . such that s0 is
the initial state and (si, si+1) ∈ δ for all i ≥ 0.

A Kripke structure can be seen as defining a language of infinite words over
2AP , a fact which is exploited by the automata theoretic approach to model
checking. The language of a Kripke structure M is denoted L(M) and de-
fined by L(M) = {l(σ) | σ is an excution of M}, where we have generalised
l(s) to sequences in the natural way. Executions σ projected with the la-
belling function l(σ) are referred to as computations. Although we only allow
non-terminating executions we can model deadlocking executions by adding
a selfloop to a deadlocking state.

We use the temporal logic LTL to specify legal computations of a Kripke
structure. An LTL formula ϕ is defined over a set of atomic propositions AP .
The syntax of LTL is given by the following inductive definition:

1. ψ ∈ AP is an LTL formula.

2. Ifψ1 andψ2 are LTL formulae then so are¬ψ1, Xψ1, ψ1 Uψ2, ψ1 Rψ2,
ψ1 ∧ ψ2 and ψ1 ∨ ψ2.

The temporal operators are the next-time operator X , the until-operator U ,
and its dual the release-operator R . Given an LTL formula ψ, the set of
unique subformulas of ψ is denoted by cl(ψ) and the shorthand |ψ| denotes
the cardinality of cl(ψ).
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The semantics of LTL is is defined over computations π = σ0σ1σ2 . . .
with σi ∈ 2AP . We say that π is a model of ψ at position i, denoted πi |= ψ,
when the inductively defined relation ’|=’ holds:

πi |= ψ ⇔ ψ ∈ σi for ψ ∈ AP .
πi |= ¬ψ ⇔ πi 6|= ψ.
πi |= ψ1 ∨ ψ2 ⇔ πi |= ψ1 or πi |= ψ2.
πi |= ψ1 ∧ ψ2 ⇔ πi |= ψ1 and πi |= ψ2.
πi |= Xψ ⇔ πi+1 |= ψ.
πi |= ψ1 Uψ2 ⇔ ∃n ≥ i : πn |= ψ2 and πj |= ψ1 for all i ≤ j < n.
πi |= ψ1 Rψ2 ⇔ ∀n ≥ i : πn |= ψ2 or πj |= ψ1 for some i ≤ j < n.

When π0 |= ψ we usually simply write π |= ψ. Commonly used abbrevia-
tions are the standard Boolean shorthands > ≡ p ∨ ¬p for some p ∈ AP ,
⊥ ≡ ¬>, p ⇒ q ≡ ¬p ∨ q, p ⇔ q ≡ (p⇒ q) ∧ (q ⇒ p), and the derived
temporal operators Fψ ≡ >Uψ (’finally’), Gψ ≡ ¬F¬ψ (’globally’). We
use LTL-X to denote the subset of LTL without the next-operator X .

In some cases it is desirable to rewrite a formula to positive normal form,
where negation only occurs in front of atomic propositions. This can be
accomplished using the dualities ¬ (ψ1 Uψ2) ≡ ¬ψ1 R¬ψ2, ¬ (ψ1 Rψ2) ≡
¬ψ1 U¬ψ2, ¬Xψ ≡ X¬ψ and de Morgan’s laws for propositional logic.

The basic problem of satisfiability for LTL, i.e. does an LTL formula ψ
have any model π such that π |= ψ is PSPACE-complete in the size of
the formula [151]. Determining if an LTL formula accepts all models, the
validity problem, can be solved by negating the given formula and solving the
satisfiability problem. Validity is also a PSPACE-complete problem [151].

There are two interesting model checking problems w.r.t. Kripke struc-
tures. The so called existential model checking problem asks, given a Kripke
structure M and an LTL formula ψ, does M have a computation π such that
π |= ψ. The dual of the existential problem is the universal problem that
asks if all computations π of M are models of ψ (denoted M |= ψ). The
problems are dual in the sense that M 6|= ψ iff π |= ¬ψ for some compu-
tation π of M . Solving the model checking problem for Kripke structures is
PSPACE-complete in the size of the formula [151, 168]. The complexity of
the problem is only linear in the size of the Kripke structure |M |, but |M |
can be very large due to the state explosion problem. The precise complexity
of model checking a single ultimately periodic computation, i.e. deciding
whether π |= ψ, where π = u(v)ω and u, v ∈ (2AP)∗, is currently un-
known [118]. It is an interesting problem because LTL model checking can
be decided by only studying ultimately periodic computations [168]. The
problem is in P and at least NC1-hard [118], but efforts to prove the prob-
lem NL-hard have so far failed. For the at least exponentially more succinct
logic NLTL (a linear temporal logic with forgettable past) the problem is
P-complete [118].

An LTL formula ψ defines a language of infinite words over 2AP given
by L(ψ) = {π ∈ (2AP)ω | π |= ψ}. Consequently, when LTL is used as a
specification language, the language of the formula can be seen as defining
the legal computations of the Kripke structure. In this view a Kripke structure
is a model of an LTL formula ψ iff L(M) ⊆ L(ψ). To solve the satisfiability
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and validity problems for LTL, we must decide whether L(ψ) = ∅ or L(ψ) =
(2AP)ω respectively.

Two important logics that LTL is often compared with are the branching-
time logics CTL and CTL∗ (see e.g. [36]). CTL∗ is a strict superset of LTL,
where a formula can contain arbitrarily nested path quantifiers. The path
quantifiers express existential or universal choice over paths and can be used
to express properties of the form “for all paths in the system, there exists a
path to the initial state from any state of the path”. Model checking CTL∗

is PSPACE-complete [54]. CTL is a syntactic restriction of CTL∗ that is
important because it has polynomial time model checking algorithms w.r.t.
the size of the formula [32].

Although model checking CTL is easier than model checking LTL and
CTL∗ is more expressive than LTL while retaining the same model check-
ing complexity, this work focuses on LTL and its extensions. Vardi [167]
has argued that the linear-time framework is superior to the branching-time
framework for several reasons. We repeat some of the reasons here. In prac-
tice CTL has proven to be difficult to use. Engineers find the branching
nature of time unintuitive. Another important factor is compositional rea-
soning. CTL is neither expressive enough for compositional reasoning, nor
does have it have a complexity theoretical advantage in this domain. All
interesting questions in compositional model checking are at least PSPACE-
complete for CTL w.r.t. the size of the formula (the same complexity as LTL).
There are also issues that are specific to the research conducted in this work.
For branching-time properties it is an open question whether there is any ad-
vantage in treating safety properties as a special case [112]. Bounded model
checking fits naturally in the linear-time framework while it is not compatible
with the general branching-time framework. The work on BMC for branch-
ing time has exclusively focused on the universal fragments of branching
time temporal logics [132, 174].
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3 AUTOMATA-THEORETIC METHODS

The automata-theoretic approach to model checking [115, 168, 166] exploits
the close connection between LTL and automata on infinite words. By view-
ing both the system and the specification as automata, the approach provides
a uniform way of deciding essentially all problems related to model checking
LTL.

The connection between LTL and automata on infinite words is usually
established through languages. An LTL formula defines a language over
infinite strings that can be accepted by an automaton on infinite words. The
most basic type of automaton on infinite words is called a Büchi automaton.

Let w ∈ Σω be an infinite word over the alphabet Σ. A Büchi automaton
is a tuple A = 〈Σ, Q, δ,Q0, F 〉, where Σ is the alphabet, Q is a finite set of
states, δ : (Q× Σ) → 2Q is the transition function, Q0 ⊆ Q the set of initial
states, and F ⊆ Q is a set of accepting states. A run of the automaton A on
a word w = σ0σ1σ2 . . . ∈ Σω is a mapping ρ : N → Q such that ρ(0) ∈ Q0

and ρ(i + 1) ∈ δ(ρ(i), σi) for all i ≥ 0. Let inf (ρ) to denote the set of states
occurring infinitely often in the run. A word w is accepted if there is a run ρ
on w such that inf (ρ) ∩ F 6= ∅.

A generalised Büchi automaton generalises the acceptance condition of a
standard Büchi automaton. The single set of accepting states F is replaced
by a family of sets F = {F1, F2, . . . , Fk}. A word w is accepted if there is a
run ρ on w such that

∧k
i=1 inf (ρ) ∩ Fi 6= ∅.

A number of papers have considered the problem of efficiently generat-
ing a Büchi automaton A that accepts exactly the same language as a given
LTL formula (see e.g. [67, 44, 64, 156]). The worst case complexity for the
size of the automaton is exponential in the size of the formula, which is not
surprising since the LTL satisfiability problem can be solved in linear time
w.r.t. the size of Büchi automaton representing the LTL formula. Recall that
for an LTL formula ψ and a system M , the property ψ holds in the system
iff L(M) ⊆ L(ψ). This is equivalent to L(M) ∩ L(¬ψ) = ∅. From this it is
straight-forward to derive an automata-theoretic approach to solve the model
checking problem. We start by constructing the Büchi automaton A¬ψ for
the negation of the property ψ. Next, the product M × A¬ψ is computed
which accepts the intersection of the languages L(A¬ψ) ∩ L(M) of the two
automata M and A¬ψ. Clearly, M |= ψ if and only if L(M × A¬ψ) = ∅.
This can be checked by fairly simple graph algorithms, since the language of
a Büchi automaton is empty iff there is no reachable accepting state q ∈ F
such that q can be reached from itself by a non-empty path. We can thus
reduce the LTL model checking problem to checking if the language of the
product automaton is empty. This is referred to as an emptiness check of an
automaton on infinite words.

In the previously presented approach it is important that we can directly
construct the automaton for the negation of the property. Complementing
a Büchi automaton is complicated and has an exponential (2O(n logn)) worst
case lower bound [139]. If the automaton for the LTL formula is determin-
istic, complementing the Büchi automaton is a linear-time procedure that
only doubles the size of the automaton [114]. However, deterministic Büchi
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automata cannot express all LTL properties (see e.g. [166]).
There are several possible ways of determining whether L(M×A¬ψ) = ∅.

If we are working in a explicit state context the most common solutions ei-
ther use some variant of the nested depth-first algorithm [42, 90] or an al-
gorithm based on Tarjan’s algorithm to compute the maximal strongly con-
nected components (SCCs) for a directed graph [155]. An SCC is a maximal
subset of states C ⊆ Q of the automaton such that for all qi, qj ∈ C there
is a path from qi to qj and vice versa. Both approaches solve the emptiness
problem in linear time w.r.t. the size of the automaton. Section 3.3 discusses
explicit state algorithms for checking emptiness in detail.

3.1 MODEL CHECKING SAFETY PROPERTIES

A very interesting subclass of all properties specifiable with LTL (or more
generally all ω-regular properties) are those for which all counterexamples
are finite. LTL is defined over infinite words but a finite counterexample can
be understood as saying that any continuation of a finite counterexample is
also a counterexample. For this subclass of properties, it is possible to detect
violations of the property by analysing only finite computations. Thus, these
properties in one sense require that “nothing bad happens”, because once a
system leaves the set of safe states the property is irrevocably violated. The
properties are therefore referred to as safety properties. Properties for which
all counterexamples are infinite are called liveness properties. Any property
can be expressed as a conjunction of a safety and a liveness property [3].
More details on the classification can be found in [4].

Since safety properties have finite counterexamples, we can for each LTL
safety property construct a standard automaton on finite words (FSA) that
accepts all violating computations for the given property. This automaton
can be doubly exponential in the size of the formula in the worst case [112].
However, if we restrict ourselves to safety properties with so called informa-
tive counterexamples (also called non-pathological formulas), only a worst
case singly exponential automaton is required. This is interesting because
the algorithmics for finite automata is simpler than for Büchi automata. The
language of a standard finite automaton is non-empty if some final state can
be reached. Model checking safety formulas can therefore be reduced to
reachability. Compared with general LTL properties where model check-
ing is reduced through Büchi automata to repeated reachability of a set of
accepting states, model checking safety properties is much simpler.

Model checking safety properties is an interesting special case of the gen-
eral model checking problem. Although model checking finite state systems
remains PSPACE-complete w.r.t. the given LTL safety formula [150], the
simpler algorithms required for model checking safety properties can in some
cases reduce an undecidable problem to a decidable one. One concrete ex-
ample is model checking state-based LTL for (unbounded) Petri nets [58].
Another example, where the difference is not quite as radical, is BDD-based
model checking. Solving the problem for the safety case can in practice be
considerably easier than the general case [61], although the difference in the
number of image computations is linear vs. n log n [18] or quadratic [53],
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depending on the used approach. Also for finite complete prefixes safety is
much easier than the general case [84].

There are three basic problems to be solved when applying the automata-
theoretic approach to model checking safety properties:

• Deciding if the given LTL specification is actually a safety property.

• Deciding if the given LTL specification is pathologically safe.

• Constructing an FSA accepting all computations violating the safety
specification.

The two first problems are PSPACE-complete in the size of the formula [150,
112].

3.1.1 Safety Properties

LTL safety properties can be formally defined using the language character-
isation of properties (see e.g. [112]). Let L ⊆ Σω be a language on infinite
words over an alphabet Σ. We say that a finite word x ∈ Σ∗ is a bad prefix for
a language L, if for every y ∈ Σω we have that x · y 6∈ L. Given a language
L, if all w ∈ Σω \ L have a bad prefix we call L a safety language. An LTL
formula is a safety property if it defines a safety language.

Safety properties with only informative counterexamples are of special
interest, since a singly exponential FSA can capture all counterexamples
(bad prefixes). An informative counterexample for an LTL formula can be
seen as explaining the failure of each subformula for the given formula. All
subformulas in the original formula have a reason for not holding. Let ψ
be an LTL formula in positive normal form and π a finite computation
π = σ0σ1 . . . σn. The computation π is informative for ψ iff there exists a
mapping L : {0, . . . , n + 1} → 2cl(¬ψ) such that the following conditions
hold:

• ¬ψ ∈ L(0),

• L(n+ 1) is empty, and

• for all 0 ≤ i ≤ n and ϕ ∈ L(i), the following hold.

– If ϕ is an atomic proposition, then ϕ ∈ σi.
– If ϕ = ϕ1 ∨ ϕ2, then ϕ1 ∈ L(i) or ϕ2 ∈ L(i).

– If ϕ = ϕ1 ∧ ϕ2, then ϕ1 ∈ L(i) and ϕ2 ∈ L(i).

– If ϕ = Xϕ1, then ϕ1 ∈ L(i+ 1).

– If ϕ = ϕ1 Uϕ2, then (i) ϕ2 ∈ L(i) or (ii) (ϕ1 ∈ L(i) and
ϕ1 Uϕ2 ∈ L(i+ 1)).

– If ϕ = ϕ1 Rϕ2, then (i) ϕ2 ∈ L(i) and (ii) (ϕ1 ∈ L(i) or
ϕ1 Rϕ2 ∈ L(i+ 1)).

If π is informative for ψ, the mapping L is called the witness for ¬ψ in π.
The bad prefixes for a safety formula ψ can be used to classify formu-

las based on how well their counterexamples explain the violation of the
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property. A safety formula ψ is intentionally safe iff all the bad prefixes for
ψ are informative. The formula pU q ∨ G p is intentionally safe. A for-
mula ψ is accidentally safe iff every computation that violates ψ has an in-
formative prefix. In other words, ψ can have bad prefixes which are not
informative. Every computation is, however, guaranteed to have at least
one informative prefix. For instance, G (p⇒ (XG q ∧ ¬X q)) is acciden-
tally safe. A safety formula ψ is pathologically safe if there is a computa-
tion that violates ψ and has no informative bad prefix. The formula G q ∨
G r ∨ (G (q ∨ FG p) ∧G (r ∨ FG¬p)) is pathologically safe [112]. A
safety property for which all bad prefixes are not informative must contain
some conflicting requirements or be vacuous in some sense. A pathological
formula is always equivalent to some intentionally safe formula [112], but no
procedure to rewrite a pathologically safe formula to an equivalent intention-
ally safe formula has been described in the literature.

3.1.2 Algorithms

Kupferman and Vardi [112] have showed that it is possible to construct an
automaton, exponential in the size of the formula, which recognises all in-
formative bad prefixes. An automaton recognising all informative bad pre-
fixes can be used for model checking all non-pathological formulas but could
potentially miss counterexamples for pathological safety formulas. Thus, if
we want to avoid the doubly exponential construction to detect all bad pre-
fixes, a method for determining whether a formula is pathological is needed.
Sistla [150] has showed that the temporal operators G , R and X form a syn-
tactically safe subset of LTL when only positive combinations of these opera-
tors are allowed. Syntactically safe LTL formulas are always either intention-
ally safe or accidentally safe [112]. If all interesting properties could easily
be expressed in this subset we would not need to check whether a formula is
pathological. However, many interesting safety formulas are not syntactically
safe. One example is the safety formula G ((q ∧ ¬r ∧ F r) ⇒ ¬pU r) from
the specification pattern templates [50] that expresses “p is false between q
and r”.

Let ψ be an LTL formula and Ai
¬ψ an FSA accepting all informative bad

prefixes of ψ. Ai
¬ψ can define a language over infinite strings, which we

denote by Lω(Ai
¬ψ), if we see Ai

¬ψ as defining the good finite prefixes of the
language. An infinite string belongs to Lω(Ai

¬ψ) iff it has finite good prefix.
A Büchi automaton accepting Lω(Ai

¬ψ) can be obtained by interpretingAi
¬ψ

as a Büchi automaton and adding a selfloop labelled with 2AP to the unique
accepting state of Ai

¬ψ. Then, ψ is not pathological iff L(¬ψ) ⊆ Lω(Ai
¬ψ)

In [P1] we presented a decision procedure for pathological formulas. The
procedure is not complexity theoretically optimal, but seems to work fairly
well in practice. Let Āi

¬ψ denote the complement of Ai
¬ψ when it is seen

as a Büchi automaton. Recall that deterministic Büchi automata can be
complemented with a linear-time procedure. Given an LTL formulas ψ, the
steps in the procedure are the following:

1. Construct a deterministic finite automaton Ai
¬ψ for the informative

bad prefixes of ψ.
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2. Construct a Büchi automaton B¬ψ for ¬ψ.

3. Interpret Ai
¬ψ as a Büchi automaton, and complement this determin-

istic Büchi automaton to produce the automaton Āi
¬ψ.

4. Emptiness check Āi
¬ψ ×B¬ψ. Then, ψ is not pathological iff L(Āi

¬ψ ×
B¬ψ) = ∅.

As long as the size of Ai
¬ψ remains reasonable this procedure works fairly

well. An interesting property of the definition of pathological safety formulas
is that any non-safety property will also be classified as pathological. No
separate test is therefore needed. This can bee seen from the definition of
safety languages. Any non-safety formula ϕ must have at least one infinite
counterexample that does not have a bad prefix and can therefore not be
captured by Lω(Ai

¬ψ).
A prerequisite for checking if a formula is pathologically safe is the ability

to construct a deterministic automaton that accepts all informative prefixes.
Kupferman and Vardi [112] have derived an algorithm from the definition
of informativeness. The algorithm produces a reverse deterministic finite
automaton exponential in the size of the formula which is suitable for use in
symbolic model checkers. An automaton is reverse deterministic if for a fixed
letter σ ∈ Σ each state has unique predecessor for that letter. This automaton
is especially suitable for backwards symbolic reachability analysis [112].

In [P1] we presented an algorithm for an automaton accepting all infor-
mative prefixes of a safety property. The algorithm is a refinement the al-
gorithm presented in [112]. Our version is more suitable for explicit state
model checkers. The refined algorithm applies some of the standard re-
duction tricks already presented in [44] to produce small automata. Addi-
tionally, the implemented tool can determinise and minimise the produced
reverse deterministic automaton. Minimisation was implemented after [P1]
had been published. Determinising the automaton is usually a good idea
for two reasons: the determinisation procedure usually makes the automaton
smaller [P1], and deterministic automata tend to produce smaller product
state spaces [60, P1, 145]. It is of course possible that determinising the au-
tomaton causes an exponential blow-up.

The algorithm as presented in [P1] contained a two small bugs, and addi-
tionally we have recently discovered a way to make the algorithm more effi-
cient in the case where the LTL formula contains the next-operator. There-
fore, we show the improved and correct construction here. The two small
bugs that have been corrected are the following: In [P1] line 26 was placed
between lines 24 and 25. This would cause incorrect results in the compu-
tation of S ′, since sat(S, S ′, ψ) would return the wrong results. The second
error was that the if on line 29 was missing, and thus all states would be added
to the working set X without checking whether they had been encountered
before. In order for the algorithm to terminate, the if is required.

We have recently discovered a way to optimise the algorithm when the
formula under inspection contains the X -operator. The optimisation does
not require any changes in the pseudocode of the algorithm. Only the defi-
nitions of rcl(ψ) and sat(S, S ′, ψ) change slightly. The new definitions are
given below.

3. AUTOMATA-THEORETIC METHODS 15



As only the absolutely necessary notation is defined here, we refer to [P1]
for a more detailed explanation of the construction. The construction is
based on labelling the states of the automaton with subformulas. A label can
be seen as corresponding to a proof requirement. If we reach a state with the
empty label, there are no proof requirements left and we have found a witness
for the formula. Symmetrically, all states labelled with the full formula are
designated as initial states.

We define the restricted closure rcl(ψ) of an LTL formula ψ (in positive
normal form) as smallest set satisfying the following constraints.

• ψ ∈ rcl(ψ).

• If ψ1 Uψ2 ∈ cl(ψ), then ψ1 Uψ2 ∈ rcl(ψ).

• If ψ1 Rψ2 ∈ cl(ψ), then ψ1 Rψ2 ∈ rcl(ψ).

• If Xψ1 ∈ cl(ψ) then ψ1 ∈ rcl(ψ).

The intuition behind the restricted closure is that we only include the in-
formation which is necessary to remember for evaluating the temporal for-
mulas. Because we minimise the information in the labels of the states, the
missing information must be computed and expressed in the transitions from
one state to another. Let S, S ′ be subsets of cl(ψ). We define the function
sat(ψ, S, S ′) in the following way.

• sat(true, S, S ′) = true and sat(false, S, S ′) = false.

• sat(ψ, S, S ′) = true if ψ ∈ S, otherwise sat(ψ, S, S ′) = false.

• ψ = ψ1 ∧ ψ2 : sat(ψ, S, S ′) = sat(ψ1, S, S
′) and sat(ψ2, S, S

′).

• ψ = ψ1 ∨ ψ2 : sat(ψ, S, S ′) = sat(ψ1, S, S
′) or sat(ψ2, S, S

′).

• ψ = Xψ1 : sat(ψ, S, S ′) = sat(ψ1, S
′, ∅).

The algorithm constructs the automaton by starting from an empty set of
requirements and working backwards to construct all predecessors. For each
state, we analyse which proof requirements can be discarded by moving to the
current state from a potential predecessor. Each predecessor is the maximal
set of subformulas compatible with moving to the current state on a certain
atomic proposition.

The size of the automaton is in the worst case exponential in the number
of temporal operators of the formula. This is better thanO(2|cl(ψ)|) that could
be achieved with a direct implementation of the algorithm by Kupferman
and Vardi [112].

Theorem 2 The number of states of the automaton Ai
ψ bounded by 2|rcl(ψ)|.

This bound is in O(2|tf (ψ)|), where tf (ψ) is the set of temporal subformulas
of ψ.

Constructing finite automata for model checking temporal logic has been
considered in several papers. Many of these papers are concerned with the
problem of monitoring software or runtime verification. Monitoring running
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1 Input: A formula ψ in positive normal form.
2 Output: A finite automaton Ai

ψ = 〈Σ, Q, δ,Q0, F 〉.
3 proc translate(ψ)
4 F := {∅}; Σ := 2AP ;
5 Q := X := {∅};
6 while(X 6= ∅) do
7 S :=”some set in X”; X := X \ {S}
8 for each σ ∈ 2AP do
9 S ′ := σ;
10 for each ϕ ∈ rcl(ψ) do //in increasing subformula order
11 switch(ϕ) begin
12 case ϕ = ψ1 ∨ ψ2:
13 if (sat(ψ1, S

′, S) or sat(ψ2, S
′, S)) then S ′ := S ′ ∪ {ϕ};

14 case ϕ = ψ1 ∧ ψ2:
15 if (sat(ψ1, S

′, S) and sat(ψ2, S
′, S)) then S ′ := S ′ ∪ {ϕ};

16 case ϕ = Xψ1:
17 if (ψ1 ∈ S) then S ′ := S ′ ∪ {ϕ};
18 case ϕ = ψ1 Uψ2:
19 if (sat(ψ2, S

′, S) or (sat(ψ1, S
′, S) and ϕ ∈ S))

20 then S ′ := S ′ ∪ {ϕ};
21 case ϕ = ψ1 Rψ2:
22 if (sat(ψ2, S

′, S) and (sat(ψ1, S
′, S) or ϕ ∈ S))

23 then S ′ := S ′ ∪ {ϕ};
24 end
25 od
26 if σ 6∈ rcl(ψ) then S ′ := S ′ \ {σ};
27 if(sat(ψ, S ′, ∅)) then Q0 := Q0 ∪ {S ′};
28 δ(S ′, σ) = δ(S ′, σ) ∪ {S};
29 if S ′ 6∈ Q then X := X ∪ {S ′}; Q := Q ∪ {S ′};
30 od
31 od

Figure 3.1: Algorithm for constructing a finite automaton for informative
prefixes.
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software either requires a deterministic automaton or on-the-fly determin-
isation of the automaton representing the illegal behaviours. Geilen [65]
presents a tableau construction for monitoring bad and good prefixes of LTL
formulas. The construction is essentially a forward version of the algorithm
of Kupferman and Vardi [112] and has the same complexity. Havelund and
Roşu [83] describe an algorithm for synthesising monitors for a past tempo-
ral logic. The method is similar to the history variables method presented
in [12]. Both methods could be used to generate a deterministic finite au-
tomaton for a past temporal logic with the syntactic form Gψ, where the
temporal operators in ψ must be past operators. See Section 4 for an exam-
ple of a temporal logic with past operators.

Sen et al. [146] describe a method based on coinduction to generate a
minimal deterministic finite automaton for all bad prefixes. The intended
target application is monitoring of software. The advantage of the method
compared with the method described in [112] is that the method generates
the optimal (potentially doubly exponential) automaton directly. In [112] an
exponential Büchi automaton is generated as an intermediate step.

An automaton for informative bad prefixes can be used to detect minimal
counterexamples for intentionally safe formulas. Since not all bad prefixes
are detected, minimality for accidentally safe formulas is not guaranteed.
However, it is questionable if non-informative counterexamples are useful
for debugging purposes. By definition, the non-informative counterexam-
ples are due to formulas that are malformed in the sense that they do not
have only informative counterexamples. However, as long as there is no ef-
ficient procedure to transform pathological formulas to non-pathological for-
mulas, completeness of a safety model checking procedure cannot be guaran-
teed without detecting all counterexamples. Understanding and minimising
counterexamples is an area which has received a fair amount of attention
lately [100, 135, 73, 148, 143].

3.2 MODEL CHECKING LIVENESS PROPERTIES OF MODULAR PETRI NETS

A popular way of describing systems is using Petri nets [136]. Petri nets can
be seen as a generalisation of communicating automata. Concurrency can
easily be described with Petri nets and synchronisation is described explicitly.

In their most basic form Petri nets have no concept of a module or a pro-
cess that could be used to split a system description into parts. Petri nets
describe a system as one monolithic object. However, splitting the descrip-
tion is convenient for designers and it has many benefits. Reasons often cited
are that a modular description (i) matches the system design better, (ii) facil-
itates reuse of the design, (iii) enables reuse of analysis results and (iv) makes
it is easier to get an overview of the system.

Modular Petri nets [26] extend Petri nets by adding a module/process
structure to Petri nets. In modular Petri nets modules interact through transi-
tion fusion and shared places. We will however restrict our attention to nets
using only transition fusion. Shared places can always be simulated by tran-
sition fusion [26]. This section presents an automata-theoretic method for
model checking modular Petri nets.
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3.2.1 Petri Nets and Modular Nets

This section presents the relevant notations and definitions.

Definition 3 A Place/Transition net (PT-net) is a tuple N = (P, T,W,M0)
where P is a finite set of places, T is a finite set of transitions such that P∩T =
∅, W : (P × T ) ∪ (T × P ) → N is the arc weight function and M0 : P → N
is the initial marking.

A marking is a multiset over P . For a transition t ∈ T we identify t• (•t) with
the multiset given by t•(p) = W (t, p) (•t(p) = W (p, t)) for any p ∈ P .

A transition t ∈ T is enabled in a marking M iff •t ⊆ M . In a marking
M , an enabled transition t can occur resulting in the marking M ′ = M −
•t + t•. This is denoted M

t→ M ′. The notation can be generalised to a
sequence σ = t1t2 . . . tn of transitions: M1

σ→Mn+1 denotes that there exists
a sequence of markings such that M1

t1→ M2
t2→ · · · tn→ Mn+1. A marking

in which no transition is enabled is called a deadlocking marking, while any
marking that can be produced by the occurrence of a sequence of transitions
from the initial marking is called reachable.

A modular Petri net describes a system as a collection of Petri nets. Syn-
chronisation between the modules is accomplished using transition fusion.

Definition 4 A modular PT-net is a tuple N = (S,TF ) where:

• S is a finite set of modules:

– each module s ∈ S is a PT-net s = (Ps, Ts,Ws,M0s),

– the sets of nodes corresponding to different modules are pairwise
disjoint, i.e., for all s1, s2 ∈ S : s1 6= s2 ⇒ (Ps1 ∪ Ts1) ∩ (Ps2 ∪
Ts2) = ∅.

• Let T =
⋃
s∈S Ts be the set of all transitions. TF ⊆ 2T is a finite

set of transition fusion sets such that for all tf ∈ TF we have that if
ti, tj ∈ tf and i 6= j then ti ∈ Ts ⇒ tj 6∈ Ts. In other words, a
module may contribute only one transition to a fusion transition but a
transition can participate in several fusion transitions.

A global marking M of a modular net is simply the union of the markings
of the subnets, since the places of the subnets are disjoint. We call a transi-
tion not part of any transition fusion set an internal transition. By M [[σ〉〉M ′,
where σ = t0t1t2 . . . tntf , we denote that M ′ is reachable from M by a se-
quence of internal transitions t0t1t2 . . . tn followed by a fused transition tf .
Christensen and Petrucci [26] have presented a method for computing a syn-
chronisation graph. The graph shows the global behaviour of the system in
terms of the fusion transitions.

Definition 5 Let N = (S,TF ,M0) be a modular net with the initial mark-
ing M0. The synchronisation graph G = (V,E,v0) of the net is defined
inductively as follows:

• v0 = M0 ∈ V.
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• If M ∈ V and M [[t1t2 . . . tntf 〉〉M ′′ then (M, tf ,M ′′) ∈ E and M ′′ ∈
V.

• V and E contain no other elements.

The synchronisation graph has a few attractive features. It can in some cases
be constructed even if the local components have infinite state spaces when
considered in isolation [26]. Since the synchronisation graph only includes
fusion transitions, it can be much smaller than the reachability graph repre-
senting the full behaviour. It is fairly straight-forward to compute interesting
properties such as absence of deadlocks using the synchronisation graph, by
checking some simple conditions local to the modules [26]. Mäkelä [123]
has extended the basic results from standard modular Petri nets to nested
modular high-level Petri nets. Nesting allows succinct description of hierar-
chy and can be very expressive when modelling large systems. Mäkela also
describes an implementation of computing the synchronisation graph in the
Petri net reachability analyser Maria [122].

It is possible to prove any LTL-X property using an adapted automata the-
oretic model checking algorithm [P2]. Essentially the model checking prob-
lem is reduced to an instance of tester verification, a topic which is discussed
in Section 3.3. We say that a transition is invisible if it cannot affect the truth
value of the atomic propositions of the given LTL formula. The presented
method requires that all visible transitions are present in the synchronisation
graph. Currently only a simple analysis is made to determine whether a tran-
sition is visible and the result is a safe over-approximation. A potential avenue
of future work is computing more accurate over-approximations of visibility
of transitions.

Constructing the synchronisation graph is similar to a few other methods
for alleviating the state explosion problem. Katz and Miller [105] present a
method for pruning invisible transitions from the state graph. The method
produces a stuttering equivalent [117] state graph w.r.t. to the original state
graph at the cost of an additional traversal of the original state graph. Since
the reduced state graph is stuttering equivalent to the original state graph,
it preserves all LTL-X properties. By applying partial order reduction meth-
ods and state space caching methods [69] the performance of the reduction
method can be improved significantly. The use of state space caching avoids
the overhead of ever having to remember the full state graph while the use of
partial order reduction methods both reduces the memory overhead and im-
proves the final result. A disadvantage of the method is that it is incompatible
with on-the-fly model checking methods (see below).

Yorav [175] describes a method for path reduction in both sequential pro-
gram and parallel programs. Again, the idea is based on eliminating all in-
visible transitions (w.r.t. the specification) from the state graph. The method
works on the level of the control flow graph of the given program and pro-
duces a reduced control flow graph. The sequential case is extended to
the parallel case by applying a modified path reduction to the individual
processes which also preserves send and receive statements. The reduced
program is stuttering bisimiliar with the original program and therefore pre-
serves all CTL∗-X properties. Kurshan et al. [116] present a method similar
to Yorav’s method for compressing invisible transitions. Their reasoning is
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explicitly based on partial order reduction methods for producing a reduced
control flow graph. They argue that their method can reduce the state space
more aggressively than Yorav’s because they can use the theory for partial or-
der reductions instead of only depending on static syntactic transformations.

Compared with the methods of Katz and Miller and Kurshan et al., and
Yorav’s path reduction method, there are some subtle differences in how
model checking is performed in [P2]. The most notable difference is in
how loops of invisible transitions are treated. All three previous methods can
guarantee that all loops of invisible transitions have their counterparts in the
reduced state graph. This allows them to use standard automata theoretic
techniques for model checking the state graph. Loops of invisible transition
are not preserved by the synchronisation graph. We could force all invisible
transitions to appear in the synchronisation graph, but this would certainly
eliminate any reduction in the state space we could gain by using it. We
therefore choose to modify the standard automata theoretic procedure to use
a weaker form of synchronisation and reduce the model checking problem
to an instance of tester verification. An interesting topic for future work is
whether the definition of the synchronisation graph could be modified to
preserve loops of invisible transitions while allowing maximal reduction.

3.3 ON-THE FLY VERIFICATION USING TESTERS

An alternative approach to using Büchi automata for model checking and
verification is using testers. Testers are a special form of automata that are
structurally very similar to Büchi automata. In model checking using Büchi
automata the system synchronises at each step with the Büchi automaton.
When performing verification with a tester, a more general form of synchro-
nisation is used. The synchronisation explicitly considers the visibility of tran-
sitions and a tester only synchronises with visible actions of the system under
inspection. This allows testers to be used for verifying systems where a tighter
form of synchronisation would reduce the efficiency of certain state space
reduction methods such as net unfoldings [59] and modular analysis (see
above).

To be able to express all relevant properties, while hampered by the looser
than normal synchronisation with the system, the acceptance condition of
testers is strictly more general than for Büchi automata. The stronger accep-
tance condition also allows deterministic testers to accept some languages
that require non-deterministic Büchi automata. However, there are lan-
guages that cannot be accepted by a deterministic tester but can be captured
a non-deterministic one [81].

Verification with techniques related to testers has been considered in sev-
eral papers. Valmari [163] introduced the tester framework to allow efficient
use of stubborn sets, a partial order reduction method. Esparza and Hel-
janko [59] borrow techniques from testers to facilitate model checking of
Petri net unfoldings. As explained in Section 3.2, a similar method is used
for model checking modular Petri nets in [P2]. Testers are also relevant for
compositional verification techniques using compositional behavioural pre-
orders like the NDFD preorder, which is the weakest compositional preorder
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and equivalence that preserves LTL-X properties [103]. Testers can be used
to decide the CFFD behavioural preorder [86], a closely related preorder to
NDFD.

3.3.1 Labelled Transition Systems and Testers

Testers are usually defined in the framework of labelled transition systems
(LTSs). An LTS describes a system as an automaton with named actions.

Definition 6 A labelled transition system is a quadruple P = (S,Σ,∆, s0)
where S is the finite set of states, Σ is the finite set of actions, ∆ ⊆ S×Σ×S
is the set of transitions and s0 ∈ S is the initial state.

In most cases a system is modelled as a collection of communicating LTSs.
Communication is achieved by forcing the LTSs to synchronise on common
actions. An LTS may perform an action independently of the other compo-
nents in the system if the action does not appear in the alphabet of the other
components.

Definition 7 Let P1 = (S1,Σ1,∆1, s01), . . . , Pk = (Sk,Σk,∆k, s0k) be LTSs
for some k ≥ 1. The parallel composition of P1, P2, . . . , Pk is the LTS
P1‖P2‖ · · · ‖Pk = (S,Σ,∆, s0), where

• S = S1 × · · · × Sk;

• Σ =
⋃k
i=1 Σi;

• for all s = (s1, s2, . . . , sk), s
′ = (s′1, s

′
2, . . . , s

′
k) ∈ S and a ∈ Σ,

(s, a, s′) ∈ ∆ iff, for all 1 ≤ i ≤ k,

– if a ∈ Σi, then (si, a, s
′
i) ∈ ∆i and

– s′i = si otherwise.

We define the following notation.

Definition 8 Let P = (S,Σ,∆, s0) be an LTS.

• For all s, s′ ∈ S and a ∈ Σ, s−−−a−→s′ iff (s, a, s′) ∈ ∆.

• For all n ≥ 0, s, s′ ∈ S and σ = a1a2 . . . an ∈ Σn, s−−−σ−→s′ iff
there exist states s1, . . . , sn+1 ∈ S such that s1 = s, sn+1 = s′, and
si−−−ai−→si+1 holds for all 1 ≤ i ≤ n.

Properties of LTSs are described in terms of the possible sequences of tran-
sitions. In most cases we are only interested in a designated set Σvis ⊆ Σ
of visible actions. Similarly as in the automata-theoretic approach, an ex-
tended LTS called a tester is used to define the illegal behaviours. A tester is
structurally similar to a Büchi automaton but has more general acceptance
conditions. The synchronisation used when model checking with Büchi au-
tomata can simulated by setting Σvis = Σ.

Definition 9 [163] Let Σvis be the set of visible actions of an LTS PS =
(SS,ΣS,∆S, s0S). A tester (for PS) is a tuple T = (PT , SR, SD, SL, S∞),
where
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• PT = (ST ,ΣT ,∆T , s0T ) is an LTS;

• ΣT = Σvis ∪ {τT}, where τT is a new action unique to the tester (i.e.,
τT /∈ ΣS);

• SR ∪ SD ∪ SL ∪ S∞ ⊆ S;

• ∆T contains no τT -loops;

• if (s, τT , s
′) ∈ ∆T for some s, s′ ∈ ST , then s /∈ SD.

The sets SR through S∞ are called reject states, deadlock monitor states,
livelock monitor states, and infinite trace monitor states, respectively.

The errors a tester can detect can be defined through the parallel composi-
tion of the system and the tester.

Definition 10 [163] Let PT = (ST ,ΣT ,∆T , s0T ) be an LTS associated with
a tester for the LTS PS = (SS,ΣS,∆S, s0S), and let (PT‖PS) = P =
(S,Σ,∆, s0) be the parallel composition of PT and PS .

• PS has an illegal finite trace iff there exists a state s = (sT , sS) reach-
able in P such that sT ∈ SR.

• PS has an illegal stable failure iff there exists a state s = (sT , sS) reach-
able in P such that sT ∈ SD and s has no outgoing transition.

• PS has an illegal divergence trace iff there exists a state sT ∈ SL, states
s1s2 . . . sn (n ≥ 1) and actions a1, a2 . . . , an ∈ ΣS \ Σvis such that
(sT , s1) is reachable in P , and ((sT , si) , ai, (sT , si+1)) ∈ ∆ for all 1 ≤
i < n and ((sT , sn) , an, (sT , s1)) ∈ ∆.

• PS has an illegal infinite trace iff there exists a state sT ∈ S∞, and a
sequence of actions σ = a1a2 . . . an ∈ (ΣS ∪ {τT})∗ (n ≥ 1) such that
(sT , sS) is reachable in P , (sT , sS)−−−σ−→(sT , sS) and ai ∈ Σvis for
some 1 ≤ i ≤ n.

Illegal finite traces are a convenient way of specifying violations of safety prop-
erties. The illegal infinite traces are defined like Büchi automata acceptance
and can e.g. be used to capture violation of fairness properties. Stable failures
are mostly used to distinguish between legal and illegal deadlocking situa-
tions. The need for illegal divergence traces is a result of that not all actions
are visible. Illegal divergence traces can capture situations where the system
can still advance, but nothing visible occurs. For more detailed explanations
please see [P3].

3.3.2 Algorithms

Several algorithms have been developed for finding errors in systems. Most
algorithm are so called on-the-fly algorithms that detect errors while the state
space is being constructed: there is no need to pre-compute the full state
space. This is a desirable property because constructing the full state space
can be very time consuming and we can still potentially find some errors
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1 proc dfs(s)
2 visited := visited ∪ {(s, 0)};
3 foreach successor t of s do
4 if (t, 0) 6∈ visited then dfs(t) fi
5 od
6 if accepting(s) then seed := s; ndfs(s); fi
7 end

1 proc ndfs(s)
2 visited := visited ∪ {(s, 1)};
3 foreach successor t of s do
4 if (t, 1) 6∈ visited then ndfs(t)
5 elsif seed = t report “cycle found”;
6 fi
6 od
7 end

Figure 3.2: Nested depth-first search algorithm (NDFS).

even though constructing the full state space is not within the available com-
putational resources. Detecting illegal finite traces or illegal stable failures
specified by testers can be easily reduced to the reachability of illegal states
in the parallel composition of the system and the tester. Possible complete so-
lutions include using standard depth-first search (DFS), breadth-first search
(BFS), or any number algorithms which are guaranteed to visit all states in
the parallel composition, including heuristic searches based on e.g. the A∗

algorithm [82]. Finding an illegal divergence trace entails finding a loop
of invisible transitions when the tester is in a livelock monitor state. Holz-
mann [88] describes an algorithm for detecting non-progress cycles that can
be easily adapted to finding illegal divergence traces. The algorithm searches
for livelock monitor states in the parallel composition using DFS. A second
DFS is started from all encountered livelock monitor states. The second
DFS only traverses invisible transitions and tries to complete a loop return-
ing to the start state. Valmari [163] presents an algorithm that can find illegal
divergence traces in one pass of the state space of the parallel composition.
The algorithm maintains a frontier of states from where it starts a DFS that
only traverses invisible transitions and livelock monitor states. States that do
not qualify are added to the frontier. If the DFS finds a loop a livelock error
is reported.

Finding an illegal infinite trace requires finding a loop in the state space
that satisfies two independent conditions: i) at least one state on the loop must
be an infinite trace monitor state and ii) at least one of the transitions on the
loop must be visible. Solving this problem can be reduced to performing an
emptiness check of a generalised Büchi automaton with two accepting sets.
To solve the case with only one acceptance condition the most common
solution is the nested depth-first search algorithm [42]. The algorithm is
shown in Figure 3.2.
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Nested depth-first search (NDFS) works by searching for accepting states
in a depth-first manner. When the top-level DFS backtracks from an accept-
ing state, a second DFS is started (line 6). The second DFS works in its own
copy of the state space and reports an accepting cycle (line 5) if it encounters
the seed state, i.e. the state where the second search was started. Godefroid
and Holzmann [68] showed that the second copy of the state space can be
maintained by using only two additional bits for each stored state. Changing
line 5 in the second DFS to report a cycle if a state on the DFS stack of the
dfs(s) procedure can allow earlier detection counterexamples at the cost of
storing one additional bit per state [90]. A version of the algorithm where one
of the three bits can be eliminated is described in [36].

The tester verification problem requires solving the generalised Büchi
emptiness problem with two accepting sets as a subproblem. One solution
to the generalised Büchi emptiness problem can be obtained by reducing
the generalised Büchi automaton to a standard Büchi automaton [55, 42].
Given a generalised Büchi automaton A = 〈Σ, Q, δ,Q0,F〉, where F =
{F1, . . . , Fk} the equivalent standard automaton As = 〈Σ, Qs, δs, Q

s
0, Fs〉 is

defined by the following.

• Qs = Q× {1, 2, . . . , k}

• Qs
0 = Q0 × {1}

• Fs = F1 × {1}

•
δs((q, i), a) =

{
δ(q, a)× {i} if q 6∈ Fi
δ(q, a)× {1 + (i mod k)} if q ∈ Fi

The basic idea of the construction is to “unfold” the generalised Büchi au-
tomaton into k interconnected copies where moving from a certain copy i
to the next copy 1 + (i mod k) is only allowed when an accepting state in Fi
is encountered. Thus, if we encounter states in Fs infinitely often we must
have seen states in all F1, F2, . . . Fk infinitely often. The unfolded automa-
ton is k times bigger than the original and accepts exactly the same language
as the original automaton. NDFS algorithms which unfold the generalised
Büchi automaton on-the-fly while exploring the state space are referred to as
generalised NDFS algorithms.

The solution to the tester verification problem presented in [P3] is based
on a generalised NDFS combined with Valmari’s algorithm [163]. The two
key observations of the paper are that a generalised NDFS is actually re-
quired (i.e. two Büchi acceptance sets are needed), and that the correctness
of NDFS is not dependent on the search order of the second search. Only in
the the top-level search is the post-order calling of the nested search critical.
This observation allows the second DFS to be replaced by a modified version
of Valmari’s algorithm. In the worst case the algorithm traverses the original
product state space four times and uses seven bits of additional memory per
state [P3]. An important property of the algorithm is that is works on-the-fly.

There are several papers which have studied different ways of improv-
ing the basic NDFS for solving the Büchi emptiness problem. We survey
the most important ones and discuss if the suggested improvements could
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adapted to the solution presented in [P3]. Brim et al. [20] present a mod-
ification of the basic NDFS where states are randomly removed from the
set of visited states to conserve memory. The method is somewhat similar
to state space caching [69] where the basic idea is also not to store all vis-
ited states. Both methods result in states potentially being re-explored several
times. While a DFS is guaranteed to terminate if all states on the stack are
in the visited set, our algorithm does not trivially have this property since
the second search does not explore states in a depth-first manner. Edelkamp
et al. [51] analyse the SCC structure of the given Büchi automaton to avoid
calling the second DFS. The Büchi automaton is partitioned into compo-
nents according to if all cycles or no cycles in a component go through an
accepting state. In the third category of components only some cycles are
accepting. Properties with Büchi automata that do not have components of
the third kind can be verified in one pass of the state space using a modified
simple DFS. The problem with adapting this optimisation to the tester verifi-
cation problem is lifting the SCC partitioning to the generalised acceptance
condition of testers, which also depends on the visibility of transitions of the
system.

Gastin et al. [63] improve the standard NDFS by detecting some coun-
terexamples using only the top-level DFS and avoiding unnecessary revisits of
states by the second search in NDFS. Schwoon and Esparza [144] analyse the
improvements of Gastin et al. [63] and slightly generalise their result. They
present a more memory efficient way to implement the optimisations using
only two bits of additional memory. By adapting the optimisations of [144]
to the top-level DFS of the algorithm of [P3], it is possible to detect some
illegal infinite traces earlier. This could be accomplished by adding a check
whether the top-level search has encountered an infinite monitor state on the
search stack reached by a visible transition. How much could be gained by
this optimisation is unclear.

Tauriainen [157] has presented a generalised NDFS solving the gener-
alised Büchi emptiness problem in k+1 passes of the state space. Compared
with 2k passes for an algorithm that unfolds the generalised automaton and
applies the standard NDFS algorithm this is a significant improvement. If
the algorithm could be amended to also detect illegal divergence traces essen-
tially without overhead, as has been done for the NDFS algorithm in [P3],
the resulting algorithm could find all violations specified by a tester in three
passes of the state space. This is an open problem.

When one of the algorithms above can detect a counterexample in one
pass of the state space, the underlying reason is the structure of the given
property. Bloem et al. [19] show that if the Büchi automata representing
the negation of the property is weak, a simple DFS can solve the emptiness
problem. A Büchi automaton is weak if the states Q of the automaton can be
partitioned such that the partition forms a partial order w.r.t. the transition
function of the automaton and all states in each partition are either accepting
or non-accepting. Schneider [141] has shown that large classes of properties
can be captured by weak automata. According to [25] approximately 95% of
the properties in the specification pattern database [50] can be captured by
weak Büchi automata.

It is unclear what the relation between weak Büchi automata and testers
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with only livelock monitor states is. However, based on the fact that weak
automata can be characterised by the acceptance condition FG p [141] we
conjecture that all weak automata that accept stuttering invariant languages
have an equivalent tester with only livelock monitor states. As mentioned
above, Valmari’s algorithm [163] can find any violation of these testers in
one pass of the state space.

Instead of applying a NDFS-based approach to solve the tester verification
problem, one could apply an approach based on computing the SCCs in the
product state space. In [P3] we show how the tester verification problem
can be reduced to a Streett automata emptiness check. Streett automata are
automata on infinite words with an acceptance condition similar to strong
fairness (see e.g. [160]). Compared with a generalised Büchi automaton, a
Streett automaton replaces the family of accepting sets F with a family of
acceptance pairs Ω = {(L1, U1), . . . , (Uk, Lk)}. A Streett automaton accepts
a run ρ if

∧k
i=1 (inf (ρ) ∩ Li 6= ∅ ⇒ inf (ρ) ∩ Ui 6= ∅). Emptiness algorithms

for Streett automata are usually based on computing the SCCs of the au-
tomaton. Although emptiness checking algorithms for Streett automata have
non-linear worst case time behaviour [54, 87, 119], the resulting algorithm
is a linear-time algorithm as it uses only two acceptance pairs for the re-
duction to Streett Automata. Other SCC-based single pass linear-time al-
gorithms [44, 66, 144] designed for emptiness checking of Büchi automata
cannot be trivially generalised to solve the tester verification problem. The
key problem that needs to be solved is the detection of illegal divergence
traces.
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4 BOUNDED MODEL CHECKING

Bounded model checking [14] was introduced as an alternative to BDDs
to implement symbolic model checking. The basic idea behind bounded
model checking is to restrict the general model checking problem to a boun-
ded problem. Instead of asking whether the system M violates the property
ψ, we ask whether the system M has any counterexample of length k to ψ.
This bounded problem is mapped to SAT in order to obtain the benefits of a
symbolic representation of the state space. In other words, a Boolean formula
|[M,¬ψ, k]| is generated which is satisfiable iff M has a counterexample of
length k to ψ. This can be checked with a SAT solver.

The key insight behind BMC for LTL is that the infinite paths in the
system that are models for LTL formulas can be captured by a finite path
in two ways: either the finite path represents all its infinite extensions or the
finite path loops and it in fact captures the behaviour of an infinite path.
Let π = s0s1s2 . . . be an infinite path. We say that π is a (k, l)-loop if π =
(s0s1 . . . sl−1)(sl . . . sk)

ω. We write p(π) = k − l + 1 for the period of π.
For finite state systems all LTL counterexamples can be captured by a (k, l)-
loop [168].

In BMC the transition relation T (s, s′) is represented symbolically as a
propositional formula, where the states s, s′ are modelled as bit vectors. To
capture the finite paths of length k, we unroll the transition relation k times
and get the following Boolean formula:

|[M ]|k := I(s0) ∧
k∧
i=1

T (si−1, si).

Here I(s) is the initial state predicate and T (s, s′) a total transition rela-
tion. Since only counterexamples to the given LTL formula ψ should be
accepted, additional constraints must be generated to restrict the models of
the Boolean formula. If we denote the formula constraints by |[¬ψ]|k, the
Boolean formula |[M,¬ψ, k]| := |[M ]|k ∧ |[¬ψ]|k is satisfiable iff M has a
counterexample of length k to ψ.

Compared with using BDDs to implement symbolic model checking,
BMC has a few advantages. BMC can leverage the impressive gains that have
been achieved in SAT solver technology in the recent years. SAT solvers are
comparatively memory efficient and can be instructed to use only a linear
amount of memory w.r.t. size of the given Boolean formula. However, this
restricts the use of the very efficient learning heuristics. The increase in effi-
ciency of the solvers can directly be translated to more effective BMC. An-
other important advantage of BMC is that the counterexamples produced by
most BMC encodings are minimal. Producing short counterexamples using
BDDs is a fairly involved process [35] and minimality is seldom guaranteed.
In many cases producing the counterexample consumes more resources than
answering the model checking query [35]. However, recently a BDD model
checking procedure [143] based on the BMC encoding of [P5] was presented
that provably produces minimal counterexamples. The method appears to
consume more memory than standard BDD model checkers, but can in
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some cases be faster. Another advantage of BMC is that Boolean formulas
are a more compact encoding than BDDs for many Boolean functions: there
are Boolean functions whose BDDs are exponential in the number of propo-
sitional variables [22]. BMC is not always more space efficient than using
BDDs. For a simple binary counter system an exponential number of un-
rollings of the transition relation is required before the system loops and we
can be sure that the whole behaviour has been covered. Thus, even though
the SAT solver is memory efficient, we may end up using an exponential
amount of memory w.r.t. system description. However, unlike for BDDs the
increase in memory consumption for BMC is predictable w.r.t. increases in
the bound k.

From its inception BMC has been predominantly seen as an efficient
method for finding bugs. BDD-based methods have had the advantage of be-
ing complete and thus being able to prove that no counterexample exists. To
prove that a system has no counterexamples for a given property with BMC,
we must prove that no counterexample can be longer than a certain bound,
the completeness threshold, and prove that there are no shorter counterex-
amples. Determining the completeness threshold is challenging. However,
several methods have been developed in the recent years which can be used
to achieve completeness with BMC.

An efficient method of finding small completeness thresholds for invari-
ant properties is using induction. Sheeran et al. [147] present an inductive
scheme for invariants. They show that invariants can be proven by strength-
ening induction: no path of length k may break the invariant and there is no
loop-free path, which does not visit an initial state, of length k + 1. The ap-
proach can be formulated in automata-theoretic terms: A deterministic FSA
for the property F¬p (p is the invariant) is synchronised with the system. We
stop when either a counterexample is found or we cannot increase the bound
without closing a loop in the product system. The initial state optimisation
of [147] is the only feature missing from this formulation.

The longest initialised loop-free path in the state graph is called the recur-
rence diameter, and for a bound k a straightforward encoding of the predi-
cate required to express this is of the size O(k2). The recurrence diameter
can be used as an upperbound for the completeness threshold when proving
invariants. Kroening and Strichman [110] show that the size of this loop-free
predicate can be optimised to O(k log2 k) using sorting networks. They also
suggest ways to leave out state bits from the loop-free predicate to improve
efficiency while maintaining completeness. The benefits of having a smaller
predicate are two-fold: a smaller predicate is easier to manage for the SAT
solver and with fewer state variables we can prove properties at shallower
depths because the system loops earlier.

The inductive method can easily be generalised to safety properties (e.g.
using the method described in 3.1), and by using the liveness-to-safety trans-
formation presented in [142] generalised to general LTL properties. The
liveness-to-safety transformation doubles the number of state variables in the
model. This increases the size of the already prohibitively large loop-free
predicate. In addition, practical experience seems to indicate that already
model checking general safety properties using induction is challenging [7].
Simply synchronising an FSA representing a safety property with the system
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to model check safety properties does not scale well, and forces model check-
ers to go deeper than the current capacity of SAT solvers. One reason is the
non-determinism in the FSA representing the property [7]. Perhaps specifi-
cations using deterministic FSAs could be treated more efficiently [P1].

Two papers that consider strengthening of induction without always do-
ing deeper BMC queries, which is expensive, are [47, 7]. In [47] the in-
ductive method of [147] is generalised to an induction scheme based on
simulations. Inductive invariants are automatically strengthened from failed
induction proofs using a procedure based on existential quantification. Since
existential quantification is resource intensive, a method for quantifying on
demand is developed. Another approach is presented in [7]. They develop
a methodology for flexible manual strengthening of induction. The key idea
idea is to make the induction scheme part of the specification to allow a high
degree of control of the induction process. Counterexamples produced by
the model checker aid the designer in choosing new invariants.

Finding a completeness threshold for general LTL properties has proven
fairly challenging. Clarke et al. [37] show how the completeness threshold
can be computed for general LTL properties by computing the recurrence
diameter of the product of the system and a Büchi automaton represent-
ing the negation of the property. Awedh and Somenzi [8] apply the same
approach, but they use a refined method for calculating the completeness
threshold. Both papers have the problem that they use an explicit represen-
tation of Büchi automata in their implementations. Thus, they potentially
use an exponential number of state bits in the size of the formula to represent
the Büchi automaton. The Büchi automaton is obtained from a generalised
Büchi automaton using a procedure similar to the one presented in Sec-
tion 3.3. These Büchi automata cannot capture minimal counterexamples
of the LTL properties [8], and they might therefore have to proceed deeper
to prove properties than methods based on generalised Büchi automata.

A different approach to proving completeness is taken by McMillan [127].
He uses interpolants derived from unsatisfiability proofs of BMC counterex-
ample queries to over-approximate symbolic reachability. The deeper the
BMC query is, the more exact the over-approximation is. The method is
complete and can be extended to LTL model checking through the live-
ness to safety transformation [142]. Although the method can in many cases
converge more quickly than the recurrence diameter, which is the relevant
bound for most other methods, the unsatisfiability proofs can be of exponen-
tial size and cause a blow-up.

4.1 A NEW ENCODING FOR BMC

One of the key factors affecting the efficiency of BMC is the size of encod-
ing |[M,ψ, k]|. If the encoding produces unnecessarily large formulas the
solver will be quickly overwhelmed and we may not be able to proceed deep
enough to find all violations to the specification in the design.

In [P4] we presented a BMC encoding for LTL which is linear in k
that outperformed previous encodings. We briefly review our encoding for
bounded model checking LTL. It consists of three types of constraints: model
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constraints, loop constraints and LTL constraints. Model constraints encode
legal initialised finite paths of the model M of length k:

|[M ]|k := I(s0) ∧
k∧
i=1

T (si−1, si),

where I(s) is the initial state predicate and T (s, s′) is a total transition re-
lation. The loop constraints are used to non-deterministically select loops.
We introduce k fresh loop selector variables l1, . . . , lk which select where the
path loops. At most one loop selector variable is allowed to be true. If li is
true then si−1 = sk. In this case the LTL constraints treat the bounded path
as a (k, i)-loop. If no loop selector variable is true the LTL constraints treat
the path as a simple path without a loop. This optimisation can allow earlier
detection of some counterexamples (informative safety counterexamples to
be exact). This is accomplished with the following constraints:

|[LoopConstraints ]|k ⇔ Loopk ∧ AtMostOnek.

Loopk ⇔
∧k
i=1 (li ⇒ (si−1 = sk)) .

AtMostOnek ⇔
∧k
i=1

(
InLoopi−1 ⇒ ¬li

)
.

InLoop0 ⇔ ⊥.
InLoopi ⇔ InLoopi−1 ∨ li, where 0 < i ≤ k.

InLoopi is true if the position i is in loop part of the path. The loop selector
variables indicate where the bounded path loops and select a (k, l)-loop from
the model. Finally, LTL constraints check if the bounded path defined by the
model constraints and loop constraints is a model of the LTL formula. The
LTL encoding utilises the fact that for (k, l)-loops the semantics of CTL and
LTL coincide [112, 158]. Essentially, the encoding can be seen as a CTL
model checker for lasso-shaped Kripke structures based on using the least
and greatest fixpoint characterisations of U and R . The computation of
the fixpoints for U and R is done in two parts. The auxiliary translation
〈〈·〉〉 computes an over-approximation for greatest fixpoints and an under-
approximation for least fixpoints. The approximations are refined to exact
values by |[·]|.

The auxiliary translation 〈〈·〉〉 under-approximates ψ1 Uψ2-formulas by
assuming that ψ2 does not hold beyond the end point. Thus, the recursive
characterisation of U will evaluate to true only in states when ψ2 holds in
a future state. Conversely, ψ1 Rψ2 is over-approximated by assuming that
ψ1 Rψ2 holds beyond the end point. Both of these approximations are exact
at i = l because of the simple looping structure of the models.

ϕ 0 ≤ i < k i = k

|[p]|i pi pi

|[¬p]|i ¬pi ¬pi

|[ψ1 ∧ ψ2]|i |[ψ1]|i ∧ |[ψ2]|i |[ψ1]|i ∧ |[ψ2]|i
|[ψ1 ∨ ψ2]|i |[ψ1]|i ∨ |[ψ2]|i |[ψ1]|i ∨ |[ψ2]|i
|[Xψ1]|i |[ψ1]|i+1

Wk
j=1

“
lj ∧ |[ψ1]|j

”
|[ψ1 Uψ2]|i |[ψ2]|i ∨

“
|[ψ1]|i ∧ |[ψ1 Uψ2]|i+1

”
|[ψ2]|i ∨

“
|[ψ1]|i ∧

“Wk
j=1

“
lj ∧ 〈〈ψ1 Uψ2〉〉j

”””
|[ψ1 Rψ2]|i |[ψ2]|i ∧

“
|[ψ1]|i ∨ |[ψ1 Rψ2]|i+1

”
|[ψ2]|i ∧

“
|[ψ1]|i ∨

“Wk
j=1

“
lj ∧ 〈〈ψ1 Rψ2〉〉j

”””
〈〈ψ1 Uψ2〉〉i |[ψ2]|i ∨

“
|[ψ1]|i ∧ 〈〈ψ1 Uψ2〉〉i+1

”
|[ψ2]|i

〈〈ψ1 Rψ2〉〉i |[ψ2]|i ∧
“
|[ψ1]|i ∨ 〈〈ψ1 Rψ2〉〉i+1

”
|[ψ2]|i
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The conjunction of these three sets of constraints forms the full encoding of
the bounded model checking problem into SAT:

|[M,ϕ, k]| := |[M ]|k ∧ |[LoopConstraints ]|k ∧ |[ϕ]|0.

The LTL formula ϕ has a witness in M that can represented by a looping
path of length k iff the encoding is satisfiable [P4].

The encoding has a few desirable properties of which the most important
one is that when the encoding is seen as a Boolean circuit the size of the
generated formula is O(|I|+ k · (|T |+ |ψ|). The encoding also has a unique
model property in the following sense: if the (k, l)-loop is given (i.e. the com-
putation π and li variables are fixed), the Boolean circuit representing the
LTL encoding has no free variables and thus uniquely decides if the formula
holds. In addition, if loop selector variables, atomic propositions and their
negations are seen as inputs to the circuit, the circuit for the LTL encoding
|[ψ]|0 is monotonic.

The encoding is also fairly simple to describe and understand. Imple-
menting the encoding is straightforward and its simple structure should make
it possible to adapt the encoding to an incremental setting [171, 154, 52]. In
incremental bounded model checking the efficiency of the SAT solver is im-
proved by exploiting the similarities between two consecutive instances of
BMC: the solver does not need to recompute everything if it can learn from
previous instances.

The original encoding [14] and its improved version [29] both result in
formulas that are at least quadratic w.r.t. k. Frish et al. [62] have presented an
alternative encoding based on normal forms for LTL. The so called fixpoint
encoding is more efficient than previous attempts, but it produces formulas
that are non-linear w.r.t. k [P4]. An improved version of the fixpoint en-
coding, which includes a generalisation to LTL with past operators, is linear
w.r.t. k [30]. The normal form used in the fixpoint encoding [62] is sim-
ilar to tableau methods for constructing a symbolic Büchi automaton Aψ

representing an LTL formula ψ. It is also possible to do BMC by applying
the automata theoretic approach and symbolically encode a product system
M × A¬ψ [46, 37]. BMC is performed by searching for fair loops [46, 37]
in the product system. This approach does not produce a linear sized for-
mula |[M,ψ, k]| unless the search for fair loops is encoded with an improved
encoding such as [29, P4]. Since this method only searches for looping coun-
terexamples, it must sometimes go deeper than other methods also accepting
simple paths as counterexamples.

The new encoding also has similarities with symbolic Büchi automata for
LTL. If we consider the symbolic automata encoding of [33], the basic re-
cursion used for the temporal operators is the same. The symbolic Büchi
automaton uses fairness constraints to ensure that eventualities are not disre-
garded while our auxiliary translation essentially performs the same function.
In the case of the Büchi automaton fairness constraints are only generated for
U -operators and, indeed, with small modifications the auxiliary translation
could also be eliminated for R -operators from our encoding. The reason is
that the release operator ψ1 Rψ2 is a so called weak temporal operator and
does not require that ψ1 must eventually hold at some point. However, with
this optimisation the encoding would loose its unique model property. Eval-
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uating the impact the optimisation and the exact implementation details are
left for further work.

The relation between symbolic Büchi automata and BMC encodings is
something that should be investigated further. Schuppan and Biere [143]
have initiated work on this but there are still unanswered questions. For in-
stance, could the optimisations for symbolic Büchi automata construction
discussed in [141] be applied in the context of BMC? The relationship be-
tween weak alternating automata and the fixpoint encoding [62] has been
investigated in [149]. A natural question is could optimisations developed for
alternating automata [64, 156] be applied in the BMC context.

4.2 LTL WITH PAST

LTL can be extended with past temporal modalities, i.e. temporal operators
that refer to the truth of subformulas in the past. The resulting logic is usu-
ally referred to as PLTL. Although the past operators do not add expressive
power to LTL [151], it has been argued that PLTL is easier and more in-
tuitive to use [120]. Some of this ease-of-use probably stems from the fact
that PLTL is exponentially more succinct than LTL [118]. However, despite
the succinctness gap between PLTL and LTL, the model checking problem
is PSPACE-complete for both [151]. Practical model checking algorithms
should be specially made for PLTL without going via a translation to LTL.
Extending LTL with past operators has proven useful in compositional model
checking [120], requirements engineering [165], runtime verification [83],
and bounded model checking [11, 30].

PLTL has six new operators compared with LTL. The previous-operators
Y ψ,Zψ state that ψ was true in the previous state but differ in their treat-
ment of the initial state. The two other unary operators once Oψ and his-
torically Hψ express that ψ was true once in the past and always in the past
respectively. The since-operator ψ1 Sψ2 requires that ψ2 was true once in the
past and that ψ1 has been true since. The dual of the since-operator is the
trigger-operator ψ1 Tψ2. It states that ψ2 must have been true from the point
onward where ψ1 was true. The requirement on ψ1 is weak in the sense that
if ψ2 was always true in the past the trigger-operator is satisfied. We define
the semantics of PLTL by extending the formal semantics of LTL. Only the
semantics for the new operators are given.

πi |= Y ψ ⇔ i > 0 and πi−1 |= ψ.
πi |= Zψ ⇔ i = 0 or πi−1 |= ψ.
πi |= Oψ ⇔ πj |= ψ for some 0 ≤ j ≤ i.
πi |= Hψ ⇔ πj |= ψ for all 0 ≤ j ≤ i.
πi |= ψ1 Sψ2 ⇔ ∃ 0 ≤ j ≤ i : πj |= ψ2 and πn |= ψ1 for all j < n ≤ i.
πi |= ψ1 Tψ2 ⇔ ∀ 0 ≤ j ≤ i : πj |= ψ2 or πn |= ψ1 for some j < n ≤ i.

We denote by δ(ψ) the maximum nesting depth of past formulas in the PLTL
formula ψ.

A simple example of a PLTL formula is Z⊥, which is only true in the first
state of a model. A more complex example is the formula GF (pT¬q) that
accepts models where p ∧ ¬q is true infinitely often or q becomes false when
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Figure 4.1: A simple incrementing counter that resets to two when the
counter reaches x = 5.

p is true at some point and remains false.
If we only consider the case of non-looping counterexamples, construct-

ing a BMC encoding for PLTL is fairly easy. Since past operators look back-
wards, one simply has to examine the finite past of the current position i in
the simple path π = s0s1 . . . sk under consideration. If we consider loop-
ing counterexamples the situation becomes more complex. PLTL formulas
cannot be evaluated as easily for the states inside the loop. A simple counter
system (adapted from [11]) suffices to demonstrate the point. The counter
increments a variable x until it reaches x = 5, at which point the variable
is reset to x = 2. The situation is depicted in Figure 4.1. The system has a
single execution 012(3452)ω that corresponds to a (6, 3)-loop. The formula
O (x = 3 ∧Ox = 4) holds for the first time at i = 7. Specifically it does
not hold at i = 3 which is the equivalent state to i = 7 w.r.t. the (6, 3)-loop.
The conclusion is that PLTL can distinguish between different unrollings of
a (k, l)-loop. We formalise this intuition below.

Consider a (k, l)-loop π = s0s1 . . . sk. We define that a time point i ≥ 0 in
π belongs to the d-unrolling of the loop iff d ≥ 0 is the smallest integer such
that i < l + ((d+ 1) · p(π)). A result independently discovered by [118]
and [11] shows that a PLTL formula can distinguish between different d-
unrollings of a (k, l)-loop up to the past depth of the formula.

Proposition 1 Let π be a (k, l)-loop and ψ a PLTL formula. For all i ≥
l + p(π) · δ(ψ), πi |= ψ iff πi+p(π) |= ψ. Specifically, if the time point i
belongs to a d-unrolling such that d ≥ δ(ψ) we have that πi |= ψ iff πj |= ψ
where j = i− ((d− δ(ψ)) · p(π)).

Proof: The proof proceeds as an induction on the structure of the formula.
For pure LTL formulas the result follows directly from the fact that the suf-
fixes of π starting at i and j are identical. Let us consider the case ψ =
ψ1 Sψ2. We start by proving the ’⇒’ direction. Assume that πi |= ψ. By
the semantics of S there exists an m ≤ i such that πm |= ψ2 and for
all m < n ≤ i we have that πn |= ψ1. Applying the induction hypoth-
esis we can infer that if m ≥ i − p(π), then πm+p(π) |= ψ2 and for all
m+p(π) < m′ ≤ i+p(π) we can conclude that πm′ |= ψ1. Combining these
we can deduce that πi+p(π) |= ψ. On the other hand if m < i− p(π) the se-
mantics of the since-operator guarantees that πn |= ψ1 for n = i−p(π), . . . , i.
By the induction hypothesis πn |= ψ1 also for n = i, . . . , i + p(π). Conse-
quently πi+p(π) |= ψ.

To prove the other direction ’⇐’ we start by assuming that πi+p(π) |= ψ.
By the semantics we can again conclude that there is an m ≤ i + p(π) such
that πm |= ψ2 and for all m < n ≤ i + p(π) we have that πn |= ψ1. If
m ≤ i we can directly infer that πi |= ψ. In the case m > i, we can apply
the induction hypothesis and see that πm−p(π) |= ψ2 and πn |= ψ1 for all
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Figure 4.2: Black arcs show the Kripke structure induced by virtual unrolling
of the loop for k = 6 up to depth 2 (i.e., δ(ψ) = 2) when l3 holds

m − p(π) < n ≤ i. Thus, πi |= ψ. The rest of the past temporal operators
can be proven in a similar manner.

The specific part of proposition is a direct corollary of the first part. ut

Benedetti and Cimatti [11] used this observation to design a BMC encod-
ing for PLTL. The basic idea was to extend the standard BMC encoding for
LTL by virtually unrolling the (k, l)-loop δ(ψ) times. Figure 4.2 depicts the
situation for δ(ψ) = 2 with the simple counter system. For the virtually un-
rolled (k, l)-loop it is again fairly straightforward to encode the semantics of
the past operators. The future operators behave as before since the evalua-
tions for the subformulas in the loop have stabilised in the δ(ψ)-unrolling.

The encoding in [P5] also uses virtual unrolling for encoding PLTL. The
past operators are encoded by using their recursive characterisations. Un-
rolling of the (k, l)-loop is accomplished by copying each subformula once
for each unrolling of the loop. The loop selector variables make encoding
the unrolled (k, l)-loop fairly straightforward. If we consider the (6, 3)-loop
in Fig 4.2, past operators are evaluated along the path obtained by traversing
the straight black arrows in the reverse direction.

The new encoding is very efficient and performs well. Experimental com-
parison [P5] with the original encoding of [11] shows that the new encod-
ing clearly outperforms the original one. The size of the new encoding is
O(|I| + k|T | + k|ψ| · δ(ψ)). The additional δ(ψ)-term compared with the
future case is due to virtual unrolling. Virtual unrolling facilitates detection
of minimal counterexamples but it comes at a price. The new encoding is
quadratic w.r.t. the size of the formula in the worst case. A BMC encoding
for PLTL that does not perform virtual unrolling was presented in [30]. The
encoding can miss minimal counterexamples but the size of the encoding
is linear in |ψ|. The paper contained some errors in the presented encod-
ing. The encoding would erroneously report a counterexample in the simple
counter model of Figure 4.1 for the formula ¬GFY (x = 2). However, the
encoding can be fairly easily fixed [27].

4. BOUNDED MODEL CHECKING 35



PLTL has also been considered in other contexts than BMC. Lichten-
stein et al. [120] described the first decision procedure for full PLTL. A sym-
bolic tableau algorithm for constructing a Büchi automaton was presented
in [109]. The paper also described symbolic algorithms for efficiently model
checking systems with strong fairness constraints. In the BMC context fair-
ness can be easily and efficiently dealt with by integrating the fairness con-
straints in the LTL specification. Schneider [141] has also considered the
problem of generating a symbolic Büchi automaton for full PLTL. He shows
several ways of producing optimised symbolic Büchi automata. The pre-
sented procedure is able to produce weak Büchi automata (see Section 3.3.2)
from a large class of formulas. Schuppan and Biere [143] consider the prob-
lem of finding the shortest counterexamples when model checking PLTL.
They analyse the capability of different symbolic Büchi automata construc-
tions to accept minimal counterexamples. Additionally, using the liveness
to safety construction [142] they present a BDD model checking procedure
that accepts minimal counterexamples based on an adapted version of [P5].
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5 CONCLUSIONS

The goal of this work has been developing efficient methods for model check-
ing. We have focused on the algorithmic aspects of model checking. The two
central themes of this work are the automata-theoretic approach to model
checking and bounded model checking.

In publication [P1] we investigate the benefits of treating safety properties
as a special case in LTL model checking. We think that treating safety as a
special case is worth the effort. Our results show that deterministic automata
can lead to smaller product state spaces than smaller non-deterministic au-
tomata expressing the same property. In addition, the first implementation
for checking whether a formula is pathologic is presented.

Publication [P2] describes how modular analysis, a state space reduction
method, can efficiently be combined with LTL-X model checking. The tester
verification problem that results from the construction in [P2] is solved in full
generality in publication [P3]. We analyse the tester verification problem and
present a memory efficient algorithm that is proven correct.

Publications [P4, P5] consider efficient encodings for bounded model
checking. In [P4] an encoding of the LTL bounded model checking problem
linear in the size of the system, the size of the specification and the length
of the bound is presented. Experimental results confirm that the encoding is
more compact and efficient than previous encodings. In [P5] we generalise
our encoding to bounded model checking PLTL. The generalised encoding
is also linear in the length of the bound but quadratic in the size of the
specification.

5.1 TOPICS FOR FURTHER RESEARCH

To further develop faster algorithms for verification with testers, another look
at SCC-based algorithms is warranted. For solving the generalised Büchi
emptiness problem, SCC-based algorithms seem to be very suitable [144].
They could possibly be extended to also solve the tester verification problem
efficiently.

Model checking for modular Petri nets could be developed by refining
the visibility concept. Since the method is fairly efficient at pruning states
from the reachability graph, combining it with a method pruning arcs from
the reachability graph could result in a significant improvement. Katz and
Miller [105] show promising results for combining partial order methods
with pruning invisible transitions.

Both the LTL and PLTL BMC encodings describe monotonic Boolean
circuits when the state variables, their negations and the loop selector vari-
ables are seen as inputs of the circuit. This could be utilised in SAT solver
optimisations.

Promising results for bounded model checking have been obtained using
incremental SAT solvers [171, 154, 52, 101]. The basic idea is that since two
BMC instances |[M,ψ, k]|k and |[M,ψ, k]|k+1 are so similar, the solver could
learn from the unsatisfiability proof of the earlier instances. The simplicity
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and clarity of our LTL and PLTL encodings make them amenable for an
incremental encoding where many clauses could easily be forwarded to the
next round.

One of the biggest shortcomings of bounded model checking is that it
is an incomplete method. The method can find bugs, but cannot prove
their absence. Completeness can be achieved by proving that after a bound
k no counterexample can be found. One way of achieving this is to com-
bine the inductive method of [52] with the safety to liveness transformation
of [142]. Another possible approach would be to apply a Büchi automata
based method similar to the method presented by Awedh and Somenzi [8].
In general, the possibility of exploiting optimisations developed for gener-
ating small Büchi automata [141, 64, 156] in BMC should be investigated
further. After the submission of this work, we have developed an incremental
encoding supporting induction for full PLTL [85].
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