
A Graphical Environment and Applications for

Discrete Event and Hybrid Systems in Robotics and Automation

Tarek M . Sobh, Peter-Pike Sloan, and Mohamed Dekhil1

UUCS-94-030

Department of Computer Science

University of Utah

Salt Lake City, U T 84112, USA

November 10, 1994

A b stra c t

In this paper we present an overview for the development of a graphical environment for simulat­

ing, analyzing, synthesizing, monitoring, and controlling complex discrete event and hybrid systems

within the robotics, automation, and intelligent system domain. W e start by presenting an overview

of discrete event and hybrid systems, and then discuss the proposed framework. W e also present two

applications within the robotics and automation domain for such complex systems. The first is for

formulating an observer for manipulating agents, and the second is for designing sensing strategies

for the inspection of machine parts.

'This work was supported in part by NSF grant ODA 9024721, and a University of Utah Research Committee grant.
All opinions, findings, conclusions or recommendations expressed in this document are those of the authors and do not
necessarily reflect the views of the sponsoring agencies. This report was submitted as a paper to the 1995 1EEE/RSJ
International Conference on Intelligent Robots and Systems (IROS ’95).

A Graphical E n v i r o n m e n t a n d Applications for

Discrete E v e n t a n d H y b r i d S y s t e m s in Robotics a n d A u t o m a t i o n

T arek M . S o b h , Peter-Pike Sloan, an d M o h a m e d Dekhil*

Abstract

In this paper we present an overview for the development of a graphical environment for simulating,

analyzing, synthesizing, monitoring, and controlling complex discrete event and hybrid systems

within the robotics, automation, and intelligent system domain. W e start by presenting an overview

of discrete event and hybrid systems, and then discuss the proposed framework. W e also present

two applications within the robotics and automation domain for such complex systems. The first

is for formulating an observer for manipulating agents, and the second is for designing sensing

strategies for the inspection of machine parts.

1 Introduction

Hybrid systems, in which digital and analogue devices and sensors interact over time, is attracting

the attention of researchers. Representation of states and the physical system condition includes

continuous and discrete numerics, in addition to symbols and logical parameters. Most of the cur­

rent robotics, automation, and intelligent systems problems, as well as problems in other domains,

fall within the description of hybrid systems. There are many issues that need to be resolved,

among them, definitions for observability, stability and stabilizability, controllability in general,

uncertainty of state transitions and identification of the system.

The underlying mathematical representation of complex computer-controlled systems is still insuf­

ficient to create a set of models which accurately captures the dynamics of the systems over the

entire range of system operation. We remain in a situation where we must tradeoff the accuracy

of our models with the manageability of the models. Closed-form solutions of mathematical mod­

els are almost exclusively limited to linear system models. Computer simulation of nonlinear and

discrete-event models provide a means for off-line design of control systems. Guarantees of system

performance are limited to those regions where the robustness conditions apply. These conditions

may not apply during startup and shutdown or during periods of anomalous operation.

Recently, attempts have been made to model low and high-level system changes in automated and

semi-automatic systems as discrete event dynamic systems (DE DS). Several attempts to improve

the. modeling capabilities are focused on mapping the continuous world into a discrete one. However,

repeated results are available which indicate that large interactive systems evolve into states where

minor events can lead to a catastrophe. Discrete event and hybrid system formulations have

been used in many domains to model and control system state changes within a process. Some

of the domains include: Manufacturing, Robotics, Autonomous Agent Modeling, Control Theory,

*This work was supported in part by NSF grant CDA 9024721, and a University of Utah Research Committee
grant. All opinions, findings, conclusions or recommendations expressed in this document are those of the authors
and do not necessarily reflect the views of the sponsoring agencies.

1

Assembly and Planning, Concurrency Control, Distributed Systems, Hierarchical Control, Highway

Traffic Control, Autonomous Observation Under Uncertainty, Operating Systems, Communication

Protocols, Real-Time Systems, Scheduling, and Simulation.

A number of tools and modeling techniques are being used to model and control discrete event

systems in the above domains. Some of the modeling strategies include: Timed, untimed and

stochastic Petri Nets and State Automata, Markovian, Stochastic, and Perturbation models, State

Machines, Hierarchical State Machines, Hybrid Systems Modeling, Probabilistic Modeling (Uncer­

tainty Recovery and Representation), Queuing Theory, and Recursive Functions.

W e next review the development of a graphical environment for simulating, analyzing, synthesizing,

monitoring, and controlling complex discrete event and hybrid systems. Then we proceed to discuss

two applications within robotics and automation.

2 T h e P r o p o s e d E n v i r o n m e n t

W e have built a software environment to aid in the design, analysis and simulation of Discrete

Event and Hybrid Systems. The environment allows the user to build a system using either Finite

State Machines or Petri-Nets. The environment runs under X/Motif and supports a graphical D E S

(Discrete Event System) hybrid controller, simulator, and analysis framework. The framework al­

lows for the control, simulation and monitoring of dynamic systems that exhibits a combination of

symbolic, continuous, discrete, and chaotic behaviors, and includes stochastic timing descriptions

(for events, states, and computation time), probabilistic transitions, controllability and observabil­

ity definitions, temporal, timed, state space, petri-nets, and recursive representations, analysis, and

synthesis algorithms. The environment allows not only the graphical construction and mathemati­

cal analysis of various timing paths and control structures, but also produces C code to be used as

a controller for the system under consideration.

Using the environment is fairly simple. For finite state machines the designer uses the mouse to place

states (represented by ovals) and connect them with events (represented by arrows). Transitions

and states can be added, moved and deleted easily. Figure 1 is an example of a simple stochastically

timed FSM , containing 4 states and 5 events.

The probabilities on the events (that is, which path to navigate in the automaton) is designated

using the mark field in the status dialog box. The different timings (on event and state times)

and distribution function type, mean and variance can be assigned through the status dialog box

too. The allowable distributions are currently restricted to Gaussian and exponential functions,

but can be easily extended to arbitrary discrete or continuous distributions. A window shows the

distribution function at a state or event, and also allows the user to do queries. For example:

queries on whether a path time probability is greater or less than a give time, or combined timing

distributions to reach a goal state through various paths, etc. The dialog box allows the user to

perform queries of various kinds. The currently selected state/event is drawn with a dashed line,

and the information in the status window pertains to it. Optimizing paths based on stochastic

timing can also be performed, in that case, windows will pop out with the event path, and the

status window will have the combined distribution function. Figure 2 presents an automaton

model in the environment. The environment also produces C code for controlling the system under

consideration.

In our PN model we have extended the definition of stochastic timed Petri Nets, to have additional

timings. Our model has three times associated with it, a place time, a delay time, and an event

2

Figure 4: A snap shot of the Petri-net environment

The environment for Petri-Nets is similar. Places are represented graphically by circles, transitions

by ellipses, and arcs by arrows. As mentioned above, there are three locations where one can place

timing information, on the events - the event time, which is the time the actual event takes, place

time - when a token is moved, through a transition firing, there is a place time, which hides the

token until it has expired, the final time is a delay time, this comes into effect when a transition

fires, it is the time for the event to reach the transition, the event time will not start until all of its

input tokens delay time has expired. Figure 4 depicts a snap shot of the Petri-Net environment in

action.

The system generates C code for the user hybrid system, so one can simulate and control an actual

system using the code. The C code is currently generated for FSMs (soon code will be generated

for P N ’s too). A Petri Net will be converted to a F SM before code is generated, all of the timing

is then placed on the events. The user has to select the initial state, and provide the function for

simulating/generating the events, the code will keep track of the elapsed simulated time, and will

return when it reaches a state with no transitions.

The environment allows conversion back and forth between the F SM and PN models. Conversion

to a Petri net is straight forward, but one looses the event probabilities. The only thing that’s

needed is to create a transition for every event. Conversion from a Petri-net to a F SM is only

possible if the PN is ^--bounded, which means no place can ever have more than k tokens. The

system generates a state for every possible marking of that net. The states are represented as the

5

marking, the events are just the transitions. Three 3 times are pushed into the events, The system

convolves the maximum of the input delays, with the event, and the maximum of the place times.

The maximum function is a standard convolution, except that the maximum is used instead of

multiplication.

The algorithm for generating all of the markings starts with some initial marking, then goes through

all of the possible transitions, if it can fire, the firing is simulated, and the new marking is inserted

in the set of states, if it is already represented, the transition is kept; otherwise the transition is

kept and recursion is done with the new marking. This process is repeated till no transitions can

be fired.

Our system serves as much-needed graphical simulator, analyzer, synthesizer, monitor, and con­

troller for complex hybrid systems models using either Petri nets or FSMs high-level frameworks.

3 Discrete E v ent Observation U n d e r Uncertainty

W e present a new framework and representation for the general problem of observation. The system

being studied can be considered as a “hybrid” one, due to the fact that we need to report on distinct
and discrete visual states that occur in the continuous, asynchronous and three-dimensional world,

from two-dimensional observations that are sampled periodically. In other word, the system being

observed and reported on consists of a number of continuous, discrete and symbolic parameters

that vary over time in a manner that might not be “smooth” enough for the observer, due to visual

obscurities and other perceptual uncertainties.

The problem of observing a moving agent was addressed in the literature extensively. It was

discussed in the work addressing tracking of targets and, determination of the optic flow [2,7,15,33],

recovering 3-D parameters of different kinds of surfaces [6,20,31,32], and also in the context of other

problems [1,3,8,11]. However, the need to recognize, understand and report on different visual steps

within a dynamic task was not sufficiently addressed. In particular, there is a need for high-

level symbolic interpretations of the actions of an agent that attaches meaning to the 3-D world

events, as opposed to simple recovery of 3-D parameters and the consequent tracking movements

to compensate their variation over time.

In this work we establish a framework for the general problem of observation, recognition and

understanding of dynamic visual systems, which may be applied to different kinds of visual tasks.

W e concentrate on the problem of observing a manipulation process in order to illustrate the

ideas and motive behind our framework. W e use a discrete event dynamic system as a high-

level structuring technique to model the visual manipulation system. Our formulation uses the

knowledge about the system and the different actions in order to solve the observer problem in

an efficient, stable and practical way. The model incorporates different hand/object relationships

and the possible errors in the manipulation actions. It also uses different tracking mechanisms

so that the observer can keep track of the workspace of the manipulating robot. A framework

is developed for the hand/object interaction over time and a stabilizing observer is constructed.

Low-level modules are developed for recognizing the “events” that causes state transitions within

the dynamic manipulation system. The process uses a coarse quantization of the manipulation

actions in order to attain an active, adaptive and goal-directed sensing mechanism.

6

The work examines closely the possibilities for errors, mistakes and uncertainties in the visual

manipulation system, observer construction process and event identification mechanisms, leading

to a D E D S formulation with uncertainties, in which state transitions and event identification is

asserted according to a computed set of 3-D uncertainty models.

W e motivate and describe a D E D S automaton model for visual observation in the next section and

then proceed to formulate our framework for the manipulation process and the observer construc­

tion. Then we develop efficient low-level event-identification mechanisms for determining different

manipulation movements in the system and for moving the observer. Next, the uncertainty levels

are discussed. Some results from testing the system are enclosed.

3 .1 H y b r id a n d Discrete E vent D y n a m ic System s for R o b o tic Observation

Hybrid systems, in which digital and analogue devices and sensors interact over time, is attracting

the attention of researchers. Representation of states and the physical system condition includes

continuous and discrete numerics, in addition to symbols and logical parameters. Most of the cur­

rent vision and robotics problems, as well as problems in other domains, fall within the description

of hybrid systems. There as many issues that need to be resolved, among them, definitions for

observability, stability and stabilizability, controllability in general, uncertainty of state transitions

and identification of the system. The general observation problem falls within the hybrid system

domain, as there is a need to report, observe and control distinct and discrete system states. There

is also a need for recognizing continuous 2-D and 3-D evolution of parameters. Also, there should

be a symbolic description of the current state of the system, especially in the manipulation domain.

W e do not intend to give a solution for the problem of defining, monitoring or controlling such hybrid

systems in general. What we intend to present in this work is a framework that works for the class

of hybrid systems encountered within the robotic observation paradigm. The representation we

advocate allows for the symbolic and numeric, continuous and discrete aspects of the observation

task. W e conjecture that the framework could be explored further as a possible basis for providing

solutions for general hybrid systems representation and analysis problems.

W e suggest the use of a representation of discrete event dynamic systems, which is augmented by

the use of a concrete definition for the events that causes state transitions, within the observation

domain. W e also use some uncertainty modeling to achieve robustness and smoothness in asserting

state and continuous event variations over time.

Dynamic systems are sometimes modeled by finite state automata with partially observable events

together with a mechanism for enabling and disabling a subset of state transitions [19,22,23], the

reader is referred to those references for more information about this class of D E D S representation.

W e propose that such a D E D S skeleton is a suitable high-level framework for many vision and

robotics tasks, in particular, we use the D E D S model as a high-level structuring technique for a

system to observe a robot hand manipulating an object.

3.1.1 Discrete event dynamic systems for active visual sensing

An example of a high-level D E D S controller for part inspection can be seen in Figure 5. This

finite state machine has some observable events that can be used to control the sequencing of the

process. The machine remains in state A until a part is loaded. When the part is loaded, the

machine transitions to state B where it remains until the part is inspected. If another part is

7

available for inspection, the machine transitions to state A to load it. Otherwise, state C, the

ending state, is reached. If an interruption occurs, such as a misloaded part or inspection error,

the machine goes to state D, the error state.

Our approach uses D E D S to drive a semi-autonomous visual sensing module that is capable of

making decisions about the visual state of the manipulation process taking place. This module

provides both symbolic and parametric descriptions which can be used to observe the process

intelligently and actively.

c \

<loading part>

<inspect>

/ <next part>

\ <interrupt>

<inspecting> (^ Y g Y

j k >

<done> \

<interrupt>

Figure 5: A Simple FSM

A D E D S framework is used to model the tasks that the autonomous observer system executes. This

model is used as a high level structuring technique to preserve and make use of the information we

know about the way in which a manipulation process should be performed. The state and event

description is associated with different visual cues; for example, appearance of objects, specific

3-D movements and structures, interaction between the robot and objects, and occlusions. A

D E D S observer serves as an intelligent sensing module that utilizes existing information about the

tasks and the environment to make informed tracking and correction movements and autonomous

decisions regarding the state of the system.

To be able to determine the current state of the system we need to observe the sequence of events

occurring in the system and make decisions regarding the state of the automaton. State ambiguities

are allowed to occur, however, they are required to be resolvable after a bounded interval of events.

In a strongly output stabilizable system, the state of the system is known at bounded intervals and

allowable events can be controlled (enabled or disabled) in a way that ensures return in a bounded

interval to one of a desired and known set of states (visual states in our case).

One of the objectives is to make the system strongly output stabilizable and/or construct an

observer to satisfy specific task-oriented visual requirements. Many 2-D visual cues for estimating

3-D world behavior can be used. Examples include: image motion, shadows, color and boundary

information. The uncertainty in the sensor acquisition procedure and in the image processing

mechanisms should be taken into consideration to compute the world uncertainty.

8

The observer framework can be utilized for recognizing error states and sequences. This recognition

task will be used to report on visually incorrect sequences. In particular, if there is a pre-determined

observer model of a particular manipulation task under observation, then it would be useful to de­

termine if something goes wrong with the exploration actions. The goal of this reporting procedure

is to alert the operator or autonomously supply feedback to the manipulating robot so that it can

correct its actions.

3 .1 .2 D E D S for Modeling Observers

D E D S can be considered as very suitable tools for modeling observers. In particular, in the manipu­

lation observer domain, there is a need to recognize and report on distinct and discrete visual states,

which might represent manipulation tasks and/or sub-tasks. The observer should have the ability

to state a symbolic description of the current manipulation agent action. The coarse definition of

D E D S states provide a means for such symbolic state descriptions.

The definition for observers and the observer construction process for discrete event systems are

very coherent with the requirements for an autonomous robotic observer. The purpose of D E D S

observers is to be able to reconstruct the system state, which is exactly the requirements for a visual

observer, which needs to recognize, report and possibly act, depending on the visual manipulation

state. The notions of controllable actions is easily mapped to some tracking and repositioning

procedures that the robotic observer will have to undertake in order to “see” the scene from the

“best” viewing position as the agent under observation moves over time. The actions which the

observer robot might need to perform, depends on the sequence of “observable” events and the

reconstructed state path.

Event description in a visual observer is possibly a combination of different 2-D and 3-D visual data.

The visual primitives used in an observer domain could be motion primitives, matching measures,

object identification processes, structure and shape parameters and/or a number of other visual

cues. The problem with the D E D S skeleton is that it does not allow for smooth state changes under

uncertainty in recovering the events. W e describe in the next sections techniques that make the

transition from a D E D S skeleton into a working hybrid observer for a moving manipulation agent.

Stability and stabilizability issues are resolved in the visual observer domain by supplying suitable

control sequences to the observer robot at intermittent points in time in order to “guide” it into

the “desirable” set of visual states.

3 .2 State M o d e l in g an d Observer Construction

Manipulation actions can be modeled efficiently within a discrete event dynamic system frame­

work. It should be noted that we do not intend to discretize the workspace of the manipulating

robot hand or the movement of the hand, we are merely using the D E D S model as a high level

structuring technique to preserve and make use of the information we know about the way in which

each manipulation task should be performed, in addition to the knowledge about the physical lim­

itations of both the observer and manipulating robots. The high-level state definition permits the

observer recognize and report on symbolic, descriptions of the task and the physical relationships

under observation. W e avoid the excessive use of decision structures and exhaustive searches when

observing the 3-D world motion and structure.

A bare-bone approach to solving the observation problem would have been to try and visually

reconstruct the full 3-D motion parameters of the robot hand, which would have more than six

degrees of freedom, depending on the number of fingers and/or claws and how they move. The

9

motion and shape or structure of the different objects should also be recovered in 3-D, which is

complicated especially if some of them are non-rigid bodies. That process should be done in real

time while the task is being performed. A simple way of tracking might be to try and keep a fixed

geometric relationship between the observer camera and the hand over time. However, the above

formulation is inefficient, unnecessary and for all practical purposes infeasible to compute in real

time. In addition, that formulation does not provide any kind of interpretation for the 7nea7ii7ig of

the scene evolution, nor does it allow for any symbolic recognition for the task under observation.

The limitation of the observer reachability and the extensive computations required to perform

the visual processing are motives behind formulating the problem as a hierarchy of ta.sk-orie.nted

observation modules that exploits the higher-level knowledge about the existing system, in order

to achieve a feasible mechanism of keeping the visual process under supervision.

3.2.1 State Space M odeling

W e do a coarse quantization of the visual manipulation actions which allows modeling both contin­

uous and discrete aspects of the manipulation dynamics. State transitions within the manipulation

domain are asserted according to probabilistic models that determine at different instances of time

whether the visual scene under inspection has changed its state within the discrete event dynamic

system state space. Mapping the desired visual states to a D E D S skeleton is a straight forward pro­

cedure. W e attach a D E D S automaton state to each meaningful visual state within a manipulation

action. The quantization threshold depends on the application requirement. In other words, the

state space can be expanded or contracted depending on the level of accuracy required in reporting

and observing. A surgical operation step, performed by a robotic end effector, will obviously re­

quire an observer that reports (and possibly control the effector within a closed-loop visual system)

with extreme precision. The observer for a robotic manipulator whose task is to pile up heaps of

waste would, most likely, report in a crude fashion, thus needing a small number of states. The

quantization threshold depends heavily on the nature of the task and the application requirements.

The D E D S formulation is flexible, in the sense that it allows different precisions and/or state space

models depending on the requirements.

The task of building D E D S automaton skeletons for observer agents can be performed either m a n u ­
ally or automatically. In the manual formation case, the designer would have to draw the automaton

model that: best suits the task(s) under observation and depending on the application requirements

and implement the code for the state machine. Automatic construction of the state machine could

be done by having a learning stage [17,18] in which a mapping module would form the automa­

ton. This is performed before the actual observation process is invoked. The idea is to supply the

module with sets of possible sequences in the form of strings of a certain language that the D E D S

automaton should minimally accept. The language could be either supplied by an operator, in

which case, the resulting automaton performance depends 011 the relative skill of the operator, or

through showing the module a sequence of visual actions and labeling those actions appropriately.

The language strings should also be accompanied by a set of transitional conditions as event de­

scriptions. The module would then produce the minimal D E D S automaton, complete with event

and state descriptions that accepts the language.

W e next discuss building the manipulation model for some simple tasks, then we proceed to develop

the observer for these tasks. Formulating the models for the state transitions, the inter-state

continuous dynamics and recovering uncertainty will be left for sections 4 and 5 which deal with

the different uncertainty levels and event identification mechanisms.

10

The, ultimate goal of the observation mechanism is to be able to know at all (or most) of the

time what is the current manipulation process and what is the visual relationship between the

hand and the object. The fact that the observer will have to move in order to keep track of the

manipulation process, makes one think of the stabilizability principle for general D E D S as a model

for the tracking technique that has to be performed by the observer’s camera.

In real-world applications, many manipulation tasks are performed by robots, including, but not

limited to, lifting, pushing, pulling, grasping, squeezing, screwing and unscrewing of machine parts.

Modeling all the possible tasks and also the possible order in which they are to be performed

is possible to do within a D E D S state model. The different hand/object visual relationships for

different tasks can be modeled as the set of states X . Movements of the hand and object, either as

2-D or 3-D motion vectors, and the positions of the hand within the image frame of the observer’s

camera can be thought of as the events set T that causes state transitions within the manipulation

process. Assuming, for the time being, that we have no direct control over the manipulation process

itself, we can define the set of admissible control inputs U as the possible tracking actions that can

be performed by the hand holding the camera, which actually can alter the visual configuration of

the manipulation process (with respect to the observer’s camera). Further, we can define a set of

“good” states, where the visual configuration of the manipulation process enables the camera to

keep track and to know the movements in the system. Thus, it can be seen that the problem of

observing the robot reduces to the problem of forming an output stabilizing observer (an observer

that can always return to a set of “good” visual states) for the system under consideration.

It should be noted that a D E D S representation for a manipulation task is by no means unique, in

fact, the degree of efficiency depends on the designer who builds the model for the task, testing the

optimality of a visual manipulation models is an issue that remains to be addressed. Automating

the process of building a model was discussed in the previous section. As the observer identifies

the current state of a manipulation task in a non ambiguous manner, it can then start using a

practical and efficient way to determine the next state within a predefined set, and consequently

perform necessary tracking actions to stabilize the observation process with respect to the set of

good states. That is, the current state of the system tells the observer what to look for in the next

step.

• A Grasping Task

W e present a simple model for a grasping task. The model is that of a gripper approaching an

object and grasping it. The task domain was chosen for simplifying the idea of building a model

for a manipulation task. It is obvious that more complicated models for grasping or other tasks

can be built. The example shown here is for illustration purposes.

As shown in Figure. 6, the model represents a view of the hand at state 1, with no object in sight, at

state 2, the object starts to appear, at state 3, the object is in the claws of the gripper and at state

4, the claws of the gripper close on the object. The view as presented in the figure is a frontal view

with respect to the camera image plane, however, the hand can assume any 3-D orientation as so

long as the claws of the gripper are within sight of the observer, for example, in the case of grasping

an object resting on a tilted planar surface. This demonstrates the continuous dynamics aspects

of the system. In other words, different orientations for the approaching hand are allowable and

observable. State changes occur only when the object appear in sight or when the hand encloses

3.2.2 Building the Model

11

: e

Figure 6: A Model for A Grasping Task

it. The frontal upright view is used to facilitate drawing the automaton only. It should be noted

that these states can be considered as the set of good states E, since these states are the expected

different visual configurations of a hand and object within a grasping task.

States 5 and 6 represent instability in the system as they describe the situation where the hand

is not centered with respect to the camera imaging plane, in other words, the hand and/or object

are not in a good visual position with respect to the observer as they tend to escape the camera

view. These states are considered as “bad” states as the system will go into a non-visual state

unless we correct the viewing position. The set X — {1, 2, 3, 4,5, 6} is the finite set of states, the

set E — {1,2, 3,4} is the set of “good” states. Some of the events are defined as motion vectors

or motion vector probability distributions, as will be described later, that causes state transitions

and as the appearance of the object into the viewed scene. The transition from state 1 to state 2 is

caused by the appearance of the object. The transition from state 2 to state 3 is caused by the event

that the hand has enclosed the object, while the transition from state 3 to state 4 is caused by the

inward movement of the gripper claws. The transition from the set {1, 2} to the set {5, 6} is caused

by movement of the hand as it escapes the camera view or by the increase in depth between the

camera and the viewed scene, that is, the hand moving far away from the camera. The self loops

are caused by either the stationarity of the scene with respect to the viewer or by the continuous

movement of the hand as it changes orientation but without tending to escape a good viewing

position of the observer. In the next section we discus different techniques to identify the events.

The controllable events denoted by V are the tracking actions required by the hand holding

the camera to compensate for the observed motion. Tracking techniques will later be addressed in

detail. All the events in this automaton are observable and thus the system can be represented by

the triple G = (A’, E, T), where X is the finite set of states, E is the finite set of possible events and

T is the set of admissible tracking actions or controllable events.

It should be mentioned that this model of a grasping task could be extended to allow for error

detection and recovery. Also search states could be added in order to “look” for the hand if it is no

where in sight. The purpose of constructing the system is to develop an observer for the automaton

which will enable the determination of the current state of the system at intermittent points in time

12

—*--- c:t ; ----
5,6 , j r 1 ,2

— ' CI ! e0

Figure 7: An Observer for the Grasping System

and further more, enable us to use the sequence of events and control to “guide” the observer into

the set of good states E and thus stabilize the observation process. Disabling the tracking events

will obviously make the system unstable with respect to the set E = {1,2, 3,4} (can’t get back to

it), however, it should be noted that the subset {3,4} is already stable with respect to E regardless

of the tracking actions, that is, once the system is in state 3 or 4, it will remain in E. The whole

system is stabilizable with respect to E , enabling the tracking events will cause all the paths from

any state to go through E in a finite number of transitions and then will visit E infinitely often.

3.2 .3 Developing the Observer

In order to know the current state of the manipulation process we need to observe the sequence

of events occurring in the system and make decisions regarding the state of the automaton, state

ambiguities are allowed to occur, however, they are required to be resolvable after a bounded
interval of events. An observer, have to be constructed according to the visual system for which

we developed a D E D S model. The goal will be to make the system a stabilizable one and/or

construct an observer to satisfy specific task-oriented visual requirements that the user may specify

depending on the nature of the process. It should be noticed that events can be asserted with a

specific probability as will be described in the sections to come and thus state transitions can be

made according to pre-specified thresholds that compliments each state definition. In the case of

developing ambiguities in determining current and future states, the history of evolution of past

event probabilities can be used to navigate backwards in the observer automaton till a strong match

is perceived, a fail state is reached or the initial ambiguity is asserted.

As an example, for the model of the grasping task, an observer can be formed for the system as

shown in Figure 7. It can be easily seen that the system can be made stable with respect to the

set E o (The system always returns to that set).

At the beginning, the state of the system is totally ambiguous, however, the observer can be

“guided” to the set E o consisting of all the subsets of the good states E as defined on the visual

system model. It can be seen that by enabling the tracking event from the state (5, 6) to the state

(1, 2), all the system can be made stable with respect to Eo- The singleton states represent the

instances in time where the observer will be able to determine without ambiguity the current state

Figure 8: Different Views of the Lord Gripper

In the next section we shall elaborate on defining the different events in the visual manipulation

system and discuss different techniques for event and state identification. W e shall also introduce a

framework for computing the uncertainty in determining the observable visual events in the system

and a method by which the uncertainty distribution in the system can be used to efficiently keep

Experiments were performed to observe the robot hand. The Lord experimental gripper is used as

the manipulating hand. Different views of the gripper are shown in Figure 8. Tracking is performed

for some features on the gripper in real time. The visual tracking system works in real time and a

Some visual states for a grasping task using the Lord gripper, as seen by the observer camera, is

shown in figure 9. The sequence is defined by our model, and the visual states correspond to the

The full system is implemented and tested for some simple visual action sequences. One such

example is shown in figure 10. The automaton encodes an observer which tracks the hand by

keeping a fixed geometric relationship between the observer’s camera and the hand as so long as

the hand does not approach the observer’s camera rapidly. In that case, the observer tends to move

sideways, that is, dodge and start viewing and tracking from sideways. It can be thought of as an

action to avoid collision, due to the fact that the intersection of the workspaces of both robots is not

empty. State 1 represents the visual situation where the hand is in a centered viewing position with

respect to the observer and viewed from a frontal position. State 2 represents the hand in a non­

centered position and tending to escape the visual view, but not approaching the observer rapidly.

State 3 represents a “dangerous” situation as the hand has approached the observer rapidly. State

4 represents the hand being viewed from sideways, and the hand is centered within the imaging

After having defined the states, the events causing state transitions can be easily described. Event

ci represents no hand movements, event e-i represents all hand movements in which the hand does

not approach the camera rapidly. Event e3 represents a large movement towards the observer.

Events 64 and e5 are controllable tracking events, where 64 always compensates for e2 in order to

keep a fixed 3-D relationship and €5 is the “dodging” action where the observer moves to start

The events can thus be defined precisely as ranges on the recovered world motion parameters. For

example, e.3 can be defined as any motion Vz > dz. Event e\ is defined as any motion such that :

Figure 9: A Grasping Task : As seen by the observer’s camera

Figure 10: A M odel fo r a Simple Visual Sequence

15

-(x < Vx < (x A -ty < V y < t y A — < Vz < fz

It should be noted that defining ej in this manner helps a lot in suppressing noise. Having defined

the events, the task reduces to computing the relevant areas under the distribution curves for the

various 3-D motion parameters and computing the probabilities for the ranges of e1: e2 and e.3

at states 1 and 4. State transitions is asserted and reported when the probability value exceeds

a preset threshold. States 1 and 4 are considered to be the set of stable states, by enabling the

tracking events e4 and e5 the system can be made stable with respect to that set.

The low level visual feature acquisition is performed on the MaxVideo pipelined video processor at

frame rate. The state machine resides on a Sun SparcStation 1 . The Lord gripper is mounted on

a P U M A 560 arm and the observer’s camera is mounted on a second P U M A 560.

3 .3 Identifying M o tio n Events

W e use the image motion to estimate the hand movement. This task can be accomplished by either

feature tracking or by computing the full optic flow. The image flow detection technique we use

is based on the sum-of-squared-differenc.es optic flow. The sensor acquisition procedure (grabbing

images) and uncertainty in image processing mechanisms for determining features are factors that

should be taken into consideration when we compute the uncertainty in the optic flow.

One can model an arbitrary 3-D motion in terms of stationary-scene/moving-viewer as shown in

Figure 11. The optical flow at the image plane can be related to the 3-D world as indicated by the

following pair of equations for each point (x, y) in the image plane [20] :

V-n =
Vz Vx_

Z
+ xiyQx - (l + z2) + y ttz]

Vy = ~ ~kj + {l + y2) ^ x ~ xy^ Y ~ x^ z

where vx and vy are the image velocity at image location (x, y), (Vx, Vy, Vz) and (S ^ , Q y ,£Iz) are

the translational and rotational velocity vectors of the observer, and Z is the unknown distance

from the camera to the object. In this system of equations, the only knowns are the 2-D vectors

vx and vy, if we use the formulation with uncertainty then basically the 2-D vectors are random

variables with a known probability distribution. A number of techniques can be used to linearize

the system of equations and to solve for the motion and structure parameters as random variables

[4,5,31],

3 .4 M o d e lin g a n d Recovering 3-D Uncertainties

The uncertainty in the recovered image flow values results from sensor uncertainties and noise and

from the image processing techniques used to extract and track features. We use a static camera

calibration technique to model the uncertainty in 3-D to 2-D feature locations. The strategy used

to find the 2-D uncertainty in the features 2-D representation is to utilize the recovered camera

parameters and the 3-D world coordinates (xw , yw , zw) of a known set of points and compute the

corresponding pixel coordinates, for points distributed throughout the image plane a number of

times, find the actual feature pixel coordinates and construct 2-D histograms for the displacements

16

from the recovered coordinates for the experiments performed. The number of the experiments

giving a certain displacement error would be the z axis of this histogram, while the x and y axis are

the displacement error. The three dimensional histogram functions are then normalized such that

the volume under the histogram is equal to 1 unit volume and the resulting normalized function is

used as the distribution of pixel displacement error.

The spatial uncertainty in the image processing technique can be modeled by using synthesized

images and corrupting them, then applying the feature extraction mechanism to both images and

computing the resulting spatial histogram for the error in finding features. The probability density

function for the error in finding the flow vectors can thus be computed as a spatial convolution of the

sensor and strategy uncertainties. We then eliminate the unrealistic motion estimates by using the

physical (geometric and mechanical) limitations of the manipulating hand. Assuming that feature

points lie on a planar surface on the hand, then we can develop bounds on the coefficients of the

motion equations, which are second degree functions in x and y in three dimensions, vx = f-\(x,y)
and vy = f2 (x, y).

The 2-D uncertainties are then used to recover the 3-D uncertainties in the motion and struc­

ture parameters. The system is linearized by either dividing the parameter space into three sub­

spaces for the translational, rotational and structure parameters and solving iteratively or using

other linearization techniques and/or assumptions to solve a linear system of random variables

[4,5,6,31,32,34], As an example, the recovered 3-D translational velocity cumulative density func­

tions for an actual world motion, V\ = 0 c m , Vy = 0 c m and Vz = 13 cm, is shown in figure 12.

It should be noted that the recovered distributions represents a fairly accurate estimation of the

actual 3-D motion.

3 .5 Utilizing the Discrete E vent O bserver

State transitions are asserted within the D E D S observer model according to the probability value

of the occurrence of an event. Events are thus defined as ranges for the different parameters. The

problem then reduces to computing the corresponding areas under the refined distribution curves.

An obvious way of using those probability values is to establish some threshold values and assert

transitions according to those thresholds. It might be the case that none of the obtained probability

values exceeds the set threshold value and/or all values are very low. In that case, there is a good

chance that we are at either the wrong automata state. The remedy to such problems can be

F igure 11: 3-D Form ulation for S tationary Scene/M oving V iew er

CDF(Vi)tio-

0.95­
0.90­
0.85—
0.80—
0.75­
0.70-
0.o5—
0.60­
0.55—
0.50—

-2.00 0.00 2.00 4.00 0.00 8.00 100.00 120.00 140.00 loO.OO

implemented through time proximity, that is, wait for a while (which is to be preset) till a strong

probability value is registered and/or backtrack in the automaton model for the observer till a high

enough probability value is asserted, a fail state is reached or the initial ambiguity is asserted. The

backtracking strategy can be implemented using a stack-like structure associated with each state

that has already been traversed, which includes a sorted list of the computed event probabilities

Experiments were performed to observe the robot hand. The low level visual feature acquisition

is performed on the Datacube MaxVideo pipelined video processor at frame rate. The observer

and manipulating robots are both P U M A 560’s and the Lord experimental gripper is used as the

The experiment was shot with three video camera. The right hand side of the images show the

actual observer and manipulation workspace and the different configurations as the experiment

proceed. The upper left corner shows the observer view, which is the set of images grabbed by the

camera for processing. The lower left corner shows the observer state, that is, what the observer

“thinks” . A graphical representation of the different states and their change is used. Fail states

are represented by an empty box. Figures 13 and 14 illustrate a manipulation experiment. In this

sequence the hand tries to insert a peg in a hole. The observer approaches and focuses on the peg

and hole when the peg gets nearer to the hole. State changes occur when the hole appears and

W e described a system for observing a manipulation process. The proposed approach can be

generalized for other hybrid systems involving different kinds of quantization requirements for

dynamic systems, for sets of discrete, continuous and symbolic parameters. The use of discrete

event dynamic systems with uncertainty modeling for the event description enables the observer

to recognize tasks robustly. The proposed system also utilizes the a-priori knowledge about the

task domain in order to achieve efficiency and practicality. The high level formulation allows for

recognizing and reporting on the visual system state as a symbolic description of the observed tasks.

Thus, we have proposed a new approach to solving the problem of observing a moving agent.

Our approach uses the formulation of discrete event dynamic systems as a high-level model for

the framework of evolution of the visual relationship over time. The proposed formulation can be

18

extended to accommodate for more manipulation processes. Increasing the number of states and

expanding the events set would allow for a variety of manipulating actions.

4 Sensing for Inspection of M a c h i n e Parts

This work addresses the application of discrete event dynamic systems (D ED S) for autonomous

sensing and inspection as part of the reverse engineering process. A dynamic recursive context for

D E D S is presented and its usage for managing a complex hybrid system which has continuous,

discrete and symbolic aspects is illustrated. W e suggest that the dynamic, recursive context is aptly

suited to controlling and observing the active inspection of machined parts using such a hybrid

system.

Reverse engineering is the process of constructing an accurate representation from sensed data. It

can be represented by a closed loop system that consists of four main modules:

• Sensing

• C A D Modeling

• Manufacturing

• Inspection

This closed loop system is the framework we used to develop an integrated CAD/CAM /sensing

system for inspection and reverse engineering. The process starts by constructing an initial C A D

model using 2-d and 3-d vision, then the inspection module uses this model to drive a coordinate

measuring machine (C M M). The results are used to increase the accuracy of the model. Additional

sensing iterations could be made until the desired accuracy is obtained. Figure 15 shows this closed

loop system.

Most research in reverse engineering ([24, 21, 12, 13, 14, 9, 10]) concentrates on the sensing and fit­

ting techniques required. Hsieh[16] describes a system which does sculptured surface reconstruction

with a C M M . The focus of the work is on path planning and surface fitting. If errors occur while

gathering data, the system aborts and must be restarted. Van Thiel [35] describes an interactive

C M M inspection system. The user is included as part of the control loop, and can abort inspections

and call for explorations of particular features. Our work describes an approach that automatically

gathers the sense data, processes it, and makes decisions based upon it for reverse engineering.

W e use a recursive dynamic strategy for exploring machine parts. A discrete event dynamic system

(D ED S) framework is designed for modeling and structuring the sensing and control problems. The

dynamic recursive context for finite state machines (D R F SM) is a D E D S representation tailored to

the recursive nature of the mechanical parts under consideration.

D R F S M is particularly useful for controlling the inspection module, and this has been an important

aspect of our research.

4 .1 M o d e lin g a n d Constructing an Observer

A D E D S framework is used to model the tasks that the autonomous observer system executes. This

model is used as a high level structuring technique to preserve and make use of the information

we know about the way in which a mechanical part should be explored. The state and event

description is associated with different visual cues; for example, appearance of objects, specific 3-D

21

Figure 15: Closed loop system for reverse engineering

movements and structures, interaction between the touching probe and part, and occlusions. A

D E D S observer serves as an intelligent sensing module that utilizes existing information about the

tasks and the environment to make informed tracking and correction movements and autonomous

decisions regarding the state of the system.

To be able to determine the current state of the system we need to observe the sequence of events

occurring in the system and make decisions regarding the state of the automaton. State ambiguities

are allowed to occur, however, they are required to be resolvable after a bounded interval of events.

In a strongly output stabilizable system, the state of the system is known at bounded intervals and

allowable events can be controlled (enabled or disabled) in a way that ensures return in a bounded

interval to one of a desired and known set of states.

One of the objectives is to make the system strongly output stabilizable and/or construct an

observer to satisfy specific task-oriented visual requirements. Many 2-D visual cues for estimating

3-D world behavior can be used. Examples include: image motion, shadows, color and boundary

information. The uncertainty in the sensor acquisition procedure and in the image processing

mechanisms are taken into consideration to compute the world uncertainty.

4 .2 E xp e rim en ts

In conducting our experiments, we use a B / W C C D camera mounted on a Puma 560 robot arm,

that observe and guide the interaction between the C M M probe and the machined part (see Figure

16.) In order for the state machine to provide control, it must be aware of state changes in the

system. As inspection takes place, the camera supplies images that are interpreted by a set of

2D and 3D vision processing algorithms and used to drive the D R F S M . These algorithms are

described in greater detail in other publications [30, 25, 27, 29, 26, 28], but include thresholding,

edge detection, region growing, stereo vision, etc. The robot arm is used to position the camera in

the workplace and move in the case of occlusion problems.

The object of these experiments was to test the operation of the visual system with the state

22

\ image 2D Layer contour information

3D Layer

Pumj Commands

image 2 1/2D Layer

contour depths

Depth
from shading Alpha! Modeller

(x,y.z) point information

Control Signals o — o - o ^ o

Figure 16: Inspection system overview

machine. Two facets of this were the generation of an initial model from stereo vision and the

generation of events that describe a probe’s relationship to features in that model.

This stereo process used the Puma arm to gather pairs of images. The resulting model was used

to determine feature relationships used in the D E D S controller. The models shown are from this

initial visual inspection.

The event generation method, consisting of 2-d image processing routines, was used to detect the

relationship of a simulated (hand-held) C M M probe to the features in the initial model. These

events were processed by the controller, which output text messages guiding the experimenter to

move the probe or indicate that a touch had occurred.

The automaton used in the environment is shown in Figure /reffig:gijoe. This machine has the

following states:

• A : The initial state, waiting for the probe to appear.

• B : The probe appears, and waiting for it to be close. Here, “close” is a measure of the

distance between the probe and the current feature, since it depends on the level of the

recursive structure. For example, the distance at the first level, which represents the outer

contours or features, is larger than that of the lower levels.

• C : Probe is close, but not on feature.

• D : The probe appears to be on feature in the image, and waiting for physical touch indicated

from the C M M machine.

• E : Physical touch has happened (and the C M M measurements for the feature parameters are

recorded and saved for updating the C A D model.) If the current feature represents a closed

23

Figure 17: Inspection Environment Window

region, the machine goes one level deeper to get the inner features by a recursive call to the

initial state after changing the variable transition parameters. If the current feature was an

open region, then the machine finds any other features in the same level.

• F : This state is to solve any vision problem happens during the experiment. For example, if

the probe is occluding one of the features, then the camera position can be changed to solve

this problem.

• E R R O R : There is a time limit for each part of this experiment. If for any reason, one of the

modules doesn’t finish in time, the machine will go to this state, which will report the error

and terminate the experiment.

4.2.1 Experimental results, Autom ated Bracket Inspection

A metal bracket was used in the experiment to test the inspection automaton. The piece was placed

on the inspection table within view of the camera (see Figure 18).

The machine was brought on line and execution begun in State A, the start state. After initiating

the inspection process, the D R F S M transitioned through states until the probe reached the bracket

boundary. The state machine then called for the closed region to be recursively inspected until

finally, the hole was explored and the machine exited cleanly. The sequence is shown in Figure 21.

The original part and the resulting reverse-engineered part are shown in Figures 19 (wireframes)

and 20 (rendered images). Notice that the two side holes and a portion of the bracket were not

sensed correctly, as a simple strategy was used to sense from only one direction. In the next

experiment, a more complicated model is sensed with a more sophisticated sensing and modeling

strategy.

24

Figure 20: Original and reproduction

4 .2 .2 Experimental Results, Cover Plate

A second experiment was run in a similar fashion, using a part similar to the fuel pump cover from

a Chevrolet engine. This piece offers interesting features and has a complex recursive structure

which allowed us to test the recursive nature of the state machine.

The sensing strategy used here was more robust than in the previous experiment. Detected feature

contours were sensed with stereo vision and used to build up a feature-based cv_l model. This

model was then used to semi-automatically machine a reproduction of the part. The original and

reverse-engineered wireframe models are shown in Figures 22. A photograph of the original and

reproduction is shown in 23. For more detail on the sensing strategy, please see [30].

The inspection sequence corresponding to this experiment is shown in Figure 24. Shown there, the

D R F S M transitions correctly through the inspection of the outside profile (depth of recursion=0),

a hole (1), a profile pocket (1), a hole (2), and another hole (1).

5 Conclusions

A software environment system was developed for simulating, analyzing, synthesizing, monitoring,

and controlling complex discrete event and hybrid systems. W e have also presented two problems

related to robotics and automation for which discrete event and hybrid systems formulation play a

significant role in the solution.

References

[1] J. Aloimonos and A . Bandyopadhyay, “Active Vision” . In Proceedings of the ls< International

State A: NoProbe State B: ProbeFar State C: ProbeClose State D: ProbeOnFeature

State D: ProbeOnFeature State E: TouchedFeature

Figure 21: Bracket Sequence

Figure 22: O riginal and V ision-Reverse E ng ’d M odels

Figure 23: Original and Vision-Reverse Eng’d Parts

Conference on Computer Vision, 1987.

[2] P. Anandan, “A Unified Perspective 011 Computational Techniques for the Measurement of

Visual Motion” . In Proceedings of the ls< International Conference on Computer Vision, 1987.

[3

[4

[6

[7

[8

[9

[10

[11

[12

[13

[14

[15

[16

R. Bajcsy, “Active Perception” , Proceedings of the I E E E , Vol. 76, No. 8, August 1988.

R. Bajcsy and T. M . Sobh, A Framework for Observing a Manipulation Process. Technical

Report MS-CIS-90-34 and G R A S P Lab. T R 216, University of Pennsylvania, June 1990.

R. Bajcsy and T. M . Sobh, Observing a Moving Agent. Technical Report MS-CIS-91-01 and

G R A S P Lab. T R 247, Computer Science Dept., School of Engineering and Applied Science,

University of Pennsylvania, January 1991.

J. L. Barron, A. D . Jepson and J. K. Tsotsos, “The Feasibility of Motion and Structure from

Noisy Time-Varying Image Velocity Information” , International Journal of Computer Vision,
December 1990.

P. J. Burt, et al., “Object Tracking with a Moving Camera” , I E E E Workshop on Visual
Motion, March 1989.

F. Chaumette and P. Rives, “Vision-Based-Control for Robotic Tasks” , In Proceedings of the
I E E E International Workshop on Intelligent Motion Control, Vol. 2, pp. 395-400, August 1990.

Chen, Y ., and Medioni, G . Object modelling by registration of multiple range images.

International Journal of Image and Vision Computing 10, 3 (Apr. 1992), 145-155.

Chen, Y ., and Medioni, G . Integrating multiple range images using triangulation. In Image
Understanding Workshop (April 1993), Defense Advanced Research Projects Agency, Software

and Intelligent Systems Office, pp. 951-958.

J. Herve, P. Cucka and R. Sharma, “Qualitative Visual Control of a Robot Manipulator” . In

Proceedings of the D A R P A Image Understanding Workshop, September 1990.

Hoppe, H ., DeR ose , T ., Ducham p, T ., M c D o n a ld , J., and Stuetzle , W . Surface

reconstruction from unorganized points. In Computer Graphics, S I G G R A P H ’92 (July 1992),

vol. 26.

Hoppe, H ., DeRose, T ., Ducham p, T ., M c D o n a ld , J., and Stuetzle , W . Mesh

optimization. In Computer Graphics, S I G G R A P H ’93 (Aug. 1993), vol. 27.

Hoppe, H ., DeR ose , T ., Ducham p, T ., M c D o n a ld , J., and Stuetzle , W . Piece­

wise smooth surface reconstruction. In Computer Graphics, S I G G R A P H ’94 (1994). (to be

published).

B. K. P. Horn and B. G . Schunck, “Determining Optical Flow” , Artificial Intelligence, vol. 17,

1981, pp. 185-203.

H s ie h , Y . C. Reconstruction of sculptured surfaces using coordinate measuring machines.

Master’s thesis, Mechanical Engineering Department, University of Utah, June 1993.

30

[17] Y . Kuniyoshi, M . Inaba, and H. Inoue, “Teaching by showing : Generating robot programs by

visual observation of human performance” , 20(/l IS 1 Ft, 1989.

[18] Y . Kuniyoshi, M . Inaba, and H. Inoue, “Design and implementation of a system that generates

assembly programs from visual recognition of human action sequences” , 1ROS, 1990.

[19] Y . Li and W . M . Wonham, “Controllability and Observability in the Statc-Fcedback Control

of Discrete-Event Systems” , Proc. 21th Conf. on Decision and Control, 1988.

[20] H. C. Longuet-Higgins and K. Prazdny, The interpretation of a moving Retinal Image, Proc.

Royal Society of London B, 208, 385-397.

[21] Motavalli, S., and BlDANDA, B. A part image reconstruction system for reverse engineering

of design modifications. J. Manufacturing Systems 10, 5 (1991), 383-395.

[22] C. M . Ozveren, Analysis and Control of Discrete Event Dynamic Systems : A State Space
Approach, Ph.D. Thesis, Massachusetts Institute of Technology, August 1989.

[23] P. J. Ramadge and W . M . Wonham, “Modular Feedback Logic for Discrete Event Systems” ,

S I A M Journal of Control and Optimization, September 1987.

[24] Sarkar , B ., and M enq , C. Smooth-surface approximation and reverse engineering. C o m ­
puter Aided Design 23, 9 (November 1991), 623-628.

[25] Sobh, T ., Jaynes, C ., Dekhil, M ., and Henderson, T . Intelligent Systems: Safety,
Reliability. Springer-Verlag, Berlin, 1993, ch. Automated Inspection and Reverse Engineering,

pp. 95-122.

[26] Sobh, T . M ., Dekhil, M ., Jaynes, C ., and Henderson, T . A perception framework

for inspection and reverse engineering. In I E E E Conference on Computer Vision and Pattern
Recognition (C'VPR ’93) (June 1993). New York City.

[27] Sobh, T . M ., Dekhil, M ., and O w e n , J. C. Discrete event control for inspection and

reverse engineering. In I E E E International Conference on Robotics and Automation (May

1994). San Diego.

[28] Sobh, T . M ., Jaynes, C ., and Henderson, T . A discrete event framework for intelli­

gent inspection. In I E E E International Conference on Robotics and Automation (May 1993).

Atlanta. .

[29] Sobh, T . M ., O w e n , J. C ., Dekhil, M ., Jaynes, C ., and Henderson, T . Industrial

inspection and reverse engineering. In I E E E 2nd CAD-Based Vision Workshop (February

1994). Pittsburgh.

[30] So b h , T . M ., O w e n , J. C ., Ja y n e s , C ., D e k h i l , M ., a n d H e n d e r s o n , T . C . Active in­

spection and reverse engineering. Tech. Rep. lJUCS-93-007, Department of Computer Science,

University of Utah, March 1993.

[31] T . M . Sobh and K. Wohn, “Recovery of 3-D Motion and Structure by Temporal Fusion” . In

Proceedings of the 2nd S P I E Conference on Sensor Fusion, November 1989.

31

[32] M . Subbarao and A. M . Waxman, O n The Uniqueness of Image Flow Solutions for Planar
Surfaces in Motion, CAR-TR-113, Center for Automation Research, University of Maryland,

April 1985.

[33] S. Ullman, “Analysis of Visual Motion by Biological and Computer Systems” , I E E E Computer,
August 1981.

[34] S. Ullman, Maximizing Rigidity: The incremental recovery of 3-D structure from rigid and
rubbery motion, AI Memo 721, M IT AI lab. 1983.

[35] V a n T h ie l , M . Feature based automated part inspection. Master’s thesis, University of Utah,

1993.

32

