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A b stra c t

In this paper we present an overview for the development of a graphical environment for simulat­

ing, analyzing, synthesizing, monitoring, and controlling complex discrete event and hybrid systems 

within the robotics, automation, and intelligent system domain. W e start by presenting an overview 

of discrete event and hybrid systems, and then discuss the proposed framework. W e also present two 

applications within the robotics and automation domain for such complex systems. The first is for 

formulating an observer for manipulating agents, and the second is for designing sensing strategies 

for the inspection of machine parts.
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Abstract

In this paper we present an overview for the development of a graphical environment for simulating, 

analyzing, synthesizing, monitoring, and controlling complex discrete event and hybrid systems 

within the robotics, automation, and intelligent system domain. W e start by presenting an overview 

of discrete event and hybrid systems, and then discuss the proposed framework. W e also present 

two applications within the robotics and automation domain for such complex systems. The first 

is for formulating an observer for manipulating agents, and the second is for designing sensing 

strategies for the inspection of machine parts.

1 Introduction

Hybrid systems, in which digital and analogue devices and sensors interact over time, is attracting 

the attention of researchers. Representation of states and the physical system condition includes 

continuous and discrete numerics, in addition to symbols and logical parameters. Most of the cur­

rent robotics, automation, and intelligent systems problems, as well as problems in other domains, 

fall within the description of hybrid systems. There are many issues that need to be resolved, 

among them, definitions for observability, stability and stabilizability, controllability in general, 

uncertainty of state transitions and identification of the system.

The underlying mathematical representation of complex computer-controlled systems is still insuf­

ficient to create a set of models which accurately captures the dynamics of the systems over the 

entire range of system operation. We remain in a situation where we must tradeoff the accuracy 

of our models with the manageability of the models. Closed-form solutions of mathematical mod­

els are almost exclusively limited to linear system models. Computer simulation of nonlinear and 

discrete-event models provide a means for off-line design of control systems. Guarantees of system 

performance are limited to those regions where the robustness conditions apply. These conditions 

may not apply during startup and shutdown or during periods of anomalous operation.

Recently, attempts have been made to model low and high-level system changes in automated and 

semi-automatic systems as discrete event dynamic systems (DE DS). Several attempts to improve 

the. modeling capabilities are focused on mapping the continuous world into a discrete one. However, 

repeated results are available which indicate that large interactive systems evolve into states where 

minor events can lead to a catastrophe. Discrete event and hybrid system formulations have 

been used in many domains to model and control system state changes within a process. Some 

of the domains include: Manufacturing, Robotics, Autonomous Agent Modeling, Control Theory,

*This work was supported in part by NSF grant CDA 9024721, and a University of Utah Research Committee 
grant. All opinions, findings, conclusions or recommendations expressed in this document are those of the authors 
and do not necessarily reflect the views of the sponsoring agencies.
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Assembly and Planning, Concurrency Control, Distributed Systems, Hierarchical Control, Highway 

Traffic Control, Autonomous Observation Under Uncertainty, Operating Systems, Communication 

Protocols, Real-Time Systems, Scheduling, and Simulation.

A  number of tools and modeling techniques are being used to model and control discrete event 

systems in the above domains. Some of the modeling strategies include: Timed, untimed and 

stochastic Petri Nets and State Automata, Markovian, Stochastic, and Perturbation models, State 

Machines, Hierarchical State Machines, Hybrid Systems Modeling, Probabilistic Modeling (Uncer­

tainty Recovery and Representation), Queuing Theory, and Recursive Functions.

W e next review the development of a graphical environment for simulating, analyzing, synthesizing, 

monitoring, and controlling complex discrete event and hybrid systems. Then we proceed to discuss 

two applications within robotics and automation.

2 T h e  P r o p o s e d  E n v i r o n m e n t

W e have built a software environment to aid in the design, analysis and simulation of Discrete 

Event and Hybrid Systems. The environment allows the user to build a system using either Finite 

State Machines or Petri-Nets. The environment runs under X/Motif and supports a graphical D E S  

(Discrete Event System) hybrid controller, simulator, and analysis framework. The framework al­

lows for the control, simulation and monitoring of dynamic systems that exhibits a combination of 

symbolic, continuous, discrete, and chaotic behaviors, and includes stochastic timing descriptions 

(for events, states, and computation time), probabilistic transitions, controllability and observabil­

ity definitions, temporal, timed, state space, petri-nets, and recursive representations, analysis, and 

synthesis algorithms. The environment allows not only the graphical construction and mathemati­

cal analysis of various timing paths and control structures, but also produces C  code to be used as 

a controller for the system under consideration.

Using the environment is fairly simple. For finite state machines the designer uses the mouse to place 

states (represented by ovals) and connect them with events (represented by arrows). Transitions 

and states can be added, moved and deleted easily. Figure 1 is an example of a simple stochastically 

timed FSM , containing 4 states and 5 events.

The probabilities on the events (that is, which path to navigate in the automaton) is designated 

using the mark field in the status dialog box. The different timings (on event and state times) 

and distribution function type, mean and variance can be assigned through the status dialog box 

too. The allowable distributions are currently restricted to Gaussian and exponential functions, 

but can be easily extended to arbitrary discrete or continuous distributions. A  window shows the 

distribution function at a state or event, and also allows the user to do queries. For example: 

queries on whether a path time probability is greater or less than a give time, or combined timing 

distributions to reach a goal state through various paths, etc. The dialog box allows the user to 

perform queries of various kinds. The currently selected state/event is drawn with a dashed line, 

and the information in the status window pertains to it. Optimizing paths based on stochastic 

timing can also be performed, in that case, windows will pop out with the event path, and the 

status window will have the combined distribution function. Figure 2 presents an automaton 

model in the environment. The environment also produces C  code for controlling the system under 

consideration.

In our PN  model we have extended the definition of stochastic timed Petri Nets, to have additional 

timings. Our model has three times associated with it, a place time, a delay time, and an event
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Figure 4: A snap shot of the Petri-net environment

The environment for Petri-Nets is similar. Places are represented graphically by circles, transitions 

by ellipses, and arcs by arrows. As mentioned above, there are three locations where one can place 

timing information, on the events - the event time, which is the time the actual event takes, place 

time - when a token is moved, through a transition firing, there is a place time, which hides the 

token until it has expired, the final time is a delay time, this comes into effect when a transition 

fires, it is the time for the event to reach the transition, the event time will not start until all of its 

input tokens delay time has expired. Figure 4 depicts a snap shot of the Petri-Net environment in 

action.

The system generates C  code for the user hybrid system, so one can simulate and control an actual 

system using the code. The C  code is currently generated for FSMs (soon code will be generated 

for P N ’s too). A  Petri Net will be converted to a F SM  before code is generated, all of the timing 

is then placed on the events. The user has to select the initial state, and provide the function for 

simulating/generating the events, the code will keep track of the elapsed simulated time, and will 

return when it reaches a state with no transitions.

The environment allows conversion back and forth between the F SM  and PN  models. Conversion 

to a Petri net is straight forward, but one looses the event probabilities. The only thing that’s 

needed is to create a transition for every event. Conversion from a Petri-net to a F SM  is only 

possible if the PN  is ^--bounded, which means no place can ever have more than k tokens. The 

system generates a state for every possible marking of that net. The states are represented as the
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marking, the events are just the transitions. Three 3 times are pushed into the events, The system 

convolves the maximum of the input delays, with the event, and the maximum of the place times. 

The maximum function is a standard convolution, except that the maximum is used instead of 

multiplication.

The algorithm for generating all of the markings starts with some initial marking, then goes through 

all of the possible transitions, if it can fire, the firing is simulated, and the new marking is inserted 

in the set of states, if it is already represented, the transition is kept; otherwise the transition is 

kept and recursion is done with the new marking. This process is repeated till no transitions can 

be fired.

Our system serves as much-needed graphical simulator, analyzer, synthesizer, monitor, and con­

troller for complex hybrid systems models using either Petri nets or FSMs high-level frameworks.

3 Discrete E v ent Observation U n d e r  Uncertainty

W e present a new framework and representation for the general problem of observation. The system 

being studied can be considered as a “hybrid” one, due to the fact that we need to report on distinct 
and discrete visual states that occur in the continuous, asynchronous and three-dimensional world, 

from two-dimensional observations that are sampled periodically. In other word, the system being 

observed and reported on consists of a number of continuous, discrete and symbolic parameters 

that vary over time in a manner that might not be “smooth” enough for the observer, due to visual 

obscurities and other perceptual uncertainties.

The problem of observing a moving agent was addressed in the literature extensively. It was 

discussed in the work addressing tracking of targets and, determination of the optic flow [2,7,15,33], 

recovering 3-D parameters of different kinds of surfaces [6,20,31,32], and also in the context of other 

problems [1,3,8,11]. However, the need to recognize, understand and report on different visual steps 

within a dynamic task was not sufficiently addressed. In particular, there is a need for high- 

level symbolic interpretations of the actions of an agent that attaches meaning to the 3-D world 

events, as opposed to simple recovery of 3-D parameters and the consequent tracking movements 

to compensate their variation over time.

In this work we establish a framework for the general problem of observation, recognition and 

understanding of dynamic visual systems, which may be applied to different kinds of visual tasks. 

W e  concentrate on the problem of observing a manipulation process in order to illustrate the 

ideas and motive behind our framework. W e use a discrete event dynamic system as a high- 

level structuring technique to model the visual manipulation system. Our formulation uses the 

knowledge about the system and the different actions in order to solve the observer problem in 

an efficient, stable and practical way. The model incorporates different hand/object relationships 

and the possible errors in the manipulation actions. It also uses different tracking mechanisms 

so that the observer can keep track of the workspace of the manipulating robot. A  framework 

is developed for the hand/object interaction over time and a stabilizing observer is constructed. 

Low-level modules are developed for recognizing the “events” that causes state transitions within 

the dynamic manipulation system. The process uses a coarse quantization of the manipulation 

actions in order to attain an active, adaptive and goal-directed sensing mechanism.
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The work examines closely the possibilities for errors, mistakes and uncertainties in the visual 

manipulation system, observer construction process and event identification mechanisms, leading 

to a D E D S  formulation with uncertainties, in which state transitions and event identification is 

asserted according to a computed set of 3-D uncertainty models.

W e motivate and describe a D E D S  automaton model for visual observation in the next section and 

then proceed to formulate our framework for the manipulation process and the observer construc­

tion. Then we develop efficient low-level event-identification mechanisms for determining different 

manipulation movements in the system and for moving the observer. Next, the uncertainty levels 

are discussed. Some results from testing the system are enclosed.

3 .1  H y b r id  a n d  Discrete E vent  D y n a m ic  System s for R o b o tic  Observation

Hybrid systems, in which digital and analogue devices and sensors interact over time, is attracting 

the attention of researchers. Representation of states and the physical system condition includes 

continuous and discrete numerics, in addition to symbols and logical parameters. Most of the cur­

rent vision and robotics problems, as well as problems in other domains, fall within the description 

of hybrid systems. There as many issues that need to be resolved, among them, definitions for 

observability, stability and stabilizability, controllability in general, uncertainty of state transitions 

and identification of the system. The general observation problem falls within the hybrid system 

domain, as there is a need to report, observe and control distinct and discrete system states. There 

is also a need for recognizing continuous 2-D and 3-D evolution of parameters. Also, there should 

be a symbolic description of the current state of the system, especially in the manipulation domain.

W e  do not intend to give a solution for the problem of defining, monitoring or controlling such hybrid 

systems in general. What we intend to present in this work is a framework that works for the class 

of hybrid systems encountered within the robotic observation paradigm. The representation we 

advocate allows for the symbolic and numeric, continuous and discrete aspects of the observation 

task. W e conjecture that the framework could be explored further as a possible basis for providing 

solutions for general hybrid systems representation and analysis problems.

W e suggest the use of a representation of discrete event dynamic systems, which is augmented by 

the use of a concrete definition for the events that causes state transitions, within the observation 

domain. W e also use some uncertainty modeling to achieve robustness and smoothness in asserting 

state and continuous event variations over time.

Dynamic systems are sometimes modeled by finite state automata with partially observable events 

together with a mechanism for enabling and disabling a subset of state transitions [19,22,23], the 

reader is referred to those references for more information about this class of D E D S  representation. 

W e propose that such a D E D S  skeleton is a suitable high-level framework for many vision and 

robotics tasks, in particular, we use the D E D S  model as a high-level structuring technique for a 

system to observe a robot hand manipulating an object.

3.1.1 Discrete event dynamic systems for active visual sensing

An example of a high-level D E D S  controller for part inspection can be seen in Figure 5. This 

finite state machine has some observable events that can be used to control the sequencing of the 

process. The machine remains in state A  until a part is loaded. When the part is loaded, the 

machine transitions to state B where it remains until the part is inspected. If another part is
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available for inspection, the machine transitions to state A  to load it. Otherwise, state C, the 

ending state, is reached. If an interruption occurs, such as a misloaded part or inspection error, 

the machine goes to state D, the error state.

Our approach uses D E D S  to drive a semi-autonomous visual sensing module that is capable of 

making decisions about the visual state of the manipulation process taking place. This module 

provides both symbolic and parametric descriptions which can be used to observe the process 

intelligently and actively.

c \

<loading part>

<inspect>

/  <next part>

\ <interrupt>

<inspecting> ( ^ Y g Y

j k >

<done> \

<interrupt>

Figure 5: A  Simple FSM

A  D E D S  framework is used to model the tasks that the autonomous observer system executes. This 

model is used as a high level structuring technique to preserve and make use of the information we 

know about the way in which a manipulation process should be performed. The state and event 

description is associated with different visual cues; for example, appearance of objects, specific 

3-D movements and structures, interaction between the robot and objects, and occlusions. A 

D E D S  observer serves as an intelligent sensing module that utilizes existing information about the 

tasks and the environment to make informed tracking and correction movements and autonomous 

decisions regarding the state of the system.

To be able to determine the current state of the system we need to observe the sequence of events 

occurring in the system and make decisions regarding the state of the automaton. State ambiguities 

are allowed to occur, however, they are required to be resolvable after a bounded interval of events. 

In a strongly output stabilizable system, the state of the system is known at bounded intervals and 

allowable events can be controlled (enabled or disabled) in a way that ensures return in a bounded 

interval to one of a desired and known set of states (visual states in our case).

One of the objectives is to make the system strongly output stabilizable and/or construct an 

observer to satisfy specific task-oriented visual requirements. Many 2-D visual cues for estimating 

3-D world behavior can be used. Examples include: image motion, shadows, color and boundary 

information. The uncertainty in the sensor acquisition procedure and in the image processing 

mechanisms should be taken into consideration to compute the world uncertainty.
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The observer framework can be utilized for recognizing error states and sequences. This recognition 

task will be used to report on visually incorrect sequences. In particular, if there is a pre-determined 

observer model of a particular manipulation task under observation, then it would be useful to de­

termine if something goes wrong with the exploration actions. The goal of this reporting procedure 

is to alert the operator or autonomously supply feedback to the manipulating robot so that it can 

correct its actions.

3 .1 .2  D E D S  for Modeling Observers

D E D S  can be considered as very suitable tools for modeling observers. In particular, in the manipu­

lation observer domain, there is a need to recognize and report on distinct and discrete visual states, 

which might represent manipulation tasks and/or sub-tasks. The observer should have the ability 

to state a symbolic description of the current manipulation agent action. The coarse definition of 

D E D S  states provide a means for such symbolic state descriptions.

The definition for observers and the observer construction process for discrete event systems are 

very coherent with the requirements for an autonomous robotic observer. The purpose of D E D S  

observers is to be able to reconstruct the system state, which is exactly the requirements for a visual 

observer, which needs to recognize, report and possibly act, depending on the visual manipulation 

state. The notions of controllable actions is easily mapped to some tracking and repositioning 

procedures that the robotic observer will have to undertake in order to “see” the scene from the 

“best” viewing position as the agent under observation moves over time. The actions which the 

observer robot might need to perform, depends on the sequence of “observable” events and the 

reconstructed state path.

Event description in a visual observer is possibly a combination of different 2-D and 3-D visual data. 

The visual primitives used in an observer domain could be motion primitives, matching measures, 

object identification processes, structure and shape parameters and/or a number of other visual 

cues. The problem with the D E D S  skeleton is that it does not allow for smooth state changes under 

uncertainty in recovering the events. W e describe in the next sections techniques that make the 

transition from a D E D S  skeleton into a working hybrid observer for a moving manipulation agent. 

Stability and stabilizability issues are resolved in the visual observer domain by supplying suitable 

control sequences to the observer robot at intermittent points in time in order to “guide” it into 

the “desirable” set of visual states.

3 .2  State M o d e l in g  an d  Observer  Construction

Manipulation actions can be modeled efficiently within a discrete event dynamic system frame­

work. It should be noted that we do not intend to discretize the workspace of the manipulating 

robot hand or the movement of the hand, we are merely using the D E D S  model as a high level 

structuring technique to preserve and make use of the information we know about the way in which 

each manipulation task should be performed, in addition to the knowledge about the physical lim­

itations of both the observer and manipulating robots. The high-level state definition permits the 

observer recognize and report on symbolic, descriptions of the task and the physical relationships 

under observation. W e avoid the excessive use of decision structures and exhaustive searches when 

observing the 3-D world motion and structure.

A  bare-bone approach to solving the observation problem would have been to try and visually 

reconstruct the full 3-D motion parameters of the robot hand, which would have more than six 

degrees of freedom, depending on the number of fingers and/or claws and how they move. The
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motion and shape or structure of the different objects should also be recovered in 3-D, which is 

complicated especially if some of them are non-rigid bodies. That process should be done in real 

time while the task is being performed. A  simple way of tracking might be to try and keep a fixed 

geometric relationship between the observer camera and the hand over time. However, the above 

formulation is inefficient, unnecessary and for all practical purposes infeasible to compute in real 

time. In addition, that formulation does not provide any kind of interpretation for the 7nea7ii7ig of 

the scene evolution, nor does it allow for any symbolic recognition for the task under observation. 

The limitation of the observer reachability and the extensive computations required to perform 

the visual processing are motives behind formulating the problem as a hierarchy of ta.sk-orie.nted 

observation modules that exploits the higher-level knowledge about the existing system, in order 

to achieve a feasible mechanism of keeping the visual process under supervision.

3.2.1 State Space M odeling

W e do a coarse quantization of the visual manipulation actions which allows modeling both contin­

uous and discrete aspects of the manipulation dynamics. State transitions within the manipulation 

domain are asserted according to probabilistic models that determine at different instances of time 

whether the visual scene under inspection has changed its state within the discrete event dynamic 

system state space. Mapping the desired visual states to a D E D S  skeleton is a straight forward pro­

cedure. W e attach a D E D S  automaton state to each meaningful visual state within a manipulation 

action. The quantization threshold depends on the application requirement. In other words, the 

state space can be expanded or contracted depending on the level of accuracy required in reporting 

and observing. A  surgical operation step, performed by a robotic end effector, will obviously re­

quire an observer that reports (and possibly control the effector within a closed-loop visual system) 

with extreme precision. The observer for a robotic manipulator whose task is to pile up heaps of 

waste would, most likely, report in a crude fashion, thus needing a small number of states. The 

quantization threshold depends heavily on the nature of the task and the application requirements. 

The D E D S  formulation is flexible, in the sense that it allows different precisions and/or state space 

models depending on the requirements.

The task of building D E D S  automaton skeletons for observer agents can be performed either m a n u ­
ally or automatically. In the manual formation case, the designer would have to draw the automaton 

model that: best suits the task(s) under observation and depending on the application requirements 

and implement the code for the state machine. Automatic construction of the state machine could 

be done by having a learning stage [17,18] in which a mapping module would form the automa­

ton. This is performed before the actual observation process is invoked. The idea is to supply the 

module with sets of possible sequences in the form of strings of a certain language that the D E D S  

automaton should minimally accept. The language could be either supplied by an operator, in 

which case, the resulting automaton performance depends 011 the relative skill of the operator, or 

through showing the module a sequence of visual actions and labeling those actions appropriately. 

The language strings should also be accompanied by a set of transitional conditions as event de­

scriptions. The module would then produce the minimal D E D S  automaton, complete with event 

and state descriptions that accepts the language.

W e next discuss building the manipulation model for some simple tasks, then we proceed to develop 

the observer for these tasks. Formulating the models for the state transitions, the inter-state 

continuous dynamics and recovering uncertainty will be left for sections 4 and 5 which deal with 

the different uncertainty levels and event identification mechanisms.
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The, ultimate goal of the observation mechanism is to be able to know at all (or most) of the 

time what is the current manipulation process and what is the visual relationship between the 

hand and the object. The fact that the observer will have to move in order to keep track of the 

manipulation process, makes one think of the stabilizability principle for general D E D S  as a model 

for the tracking technique that has to be performed by the observer’s camera.

In real-world applications, many manipulation tasks are performed by robots, including, but not 

limited to, lifting, pushing, pulling, grasping, squeezing, screwing and unscrewing of machine parts. 

Modeling all the possible tasks and also the possible order in which they are to be performed 

is possible to do within a D E D S  state model. The different hand/object visual relationships for 

different tasks can be modeled as the set of states X . Movements of the hand and object, either as

2-D or 3-D motion vectors, and the positions of the hand within the image frame of the observer’s 

camera can be thought of as the events set T that causes state transitions within the manipulation 

process. Assuming, for the time being, that we have no direct control over the manipulation process 

itself, we can define the set of admissible control inputs U  as the possible tracking actions that can 

be performed by the hand holding the camera, which actually can alter the visual configuration of 

the manipulation process (with respect to the observer’s camera). Further, we can define a set of 

“good” states, where the visual configuration of the manipulation process enables the camera to 

keep track and to know the movements in the system. Thus, it can be seen that the problem of 

observing the robot reduces to the problem of forming an output stabilizing observer (an observer 

that can always return to a set of “good” visual states) for the system under consideration.

It should be noted that a D E D S  representation for a manipulation task is by no means unique, in 

fact, the degree of efficiency depends on the designer who builds the model for the task, testing the 

optimality of a visual manipulation models is an issue that remains to be addressed. Automating 

the process of building a model was discussed in the previous section. As the observer identifies 

the current state of a manipulation task in a non ambiguous manner, it can then start using a 

practical and efficient way to determine the next state within a predefined set, and consequently 

perform necessary tracking actions to stabilize the observation process with respect to the set of 

good states. That is, the current state of the system tells the observer what to look for in the next 

step.

•  A  Grasping Task

W e present a simple model for a grasping task. The model is that of a gripper approaching an 

object and grasping it. The task domain was chosen for simplifying the idea of building a model 

for a manipulation task. It is obvious that more complicated models for grasping or other tasks 

can be built. The example shown here is for illustration purposes.

As shown in Figure. 6, the model represents a view of the hand at state 1, with no object in sight, at 

state 2, the object starts to appear, at state 3, the object is in the claws of the gripper and at state

4, the claws of the gripper close on the object. The view as presented in the figure is a frontal view 

with respect to the camera image plane, however, the hand can assume any 3-D orientation as so 

long as the claws of the gripper are within sight of the observer, for example, in the case of grasping 

an object resting on a tilted planar surface. This demonstrates the continuous dynamics aspects 

of the system. In other words, different orientations for the approaching hand are allowable and 

observable. State changes occur only when the object appear in sight or when the hand encloses

3.2.2 Building the Model
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Figure 6: A  Model for A Grasping Task

it. The frontal upright view is used to facilitate drawing the automaton only. It should be noted 

that these states can be considered as the set of good states E, since these states are the expected 

different visual configurations of a hand and object within a grasping task.

States 5 and 6 represent instability in the system as they describe the situation where the hand 

is not centered with respect to the camera imaging plane, in other words, the hand and/or object 

are not in a good visual position with respect to the observer as they tend to escape the camera 

view. These states are considered as “bad” states as the system will go into a non-visual state 

unless we correct the viewing position. The set X  —  {1, 2, 3, 4,5, 6} is the finite set of states, the 

set E  —  {1,2, 3,4} is the set of “good” states. Some of the events are defined as motion vectors 

or motion vector probability distributions, as will be described later, that causes state transitions 

and as the appearance of the object into the viewed scene. The transition from state 1 to state 2 is 

caused by the appearance of the object. The transition from state 2 to state 3 is caused by the event 

that the hand has enclosed the object, while the transition from state 3 to state 4 is caused by the 

inward movement of the gripper claws. The transition from the set {1, 2} to the set {5, 6} is caused 

by movement of the hand as it escapes the camera view or by the increase in depth between the 

camera and the viewed scene, that is, the hand moving far away from the camera. The self loops 

are caused by either the stationarity of the scene with respect to the viewer or by the continuous 

movement of the hand as it changes orientation but without tending to escape a good viewing 

position of the observer. In the next section we discus different techniques to identify the events. 

The controllable events denoted by V  are the tracking actions required by the hand holding 

the camera to compensate for the observed motion. Tracking techniques will later be addressed in 

detail. All the events in this automaton are observable and thus the system can be represented by 

the triple G  =  (A’, E, T), where X  is the finite set of states, E  is the finite set of possible events and 

T  is the set of admissible tracking actions or controllable events.

It should be mentioned that this model of a grasping task could be extended to allow for error 

detection and recovery. Also search states could be added in order to “look” for the hand if it is no 

where in sight. The purpose of constructing the system is to develop an observer for the automaton 

which will enable the determination of the current state of the system at intermittent points in time
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Figure 7: An Observer for the Grasping System

and further more, enable us to use the sequence of events and control to “guide” the observer into 

the set of good states E  and thus stabilize the observation process. Disabling the tracking events 

will obviously make the system unstable with respect to the set E  =  {1,2, 3,4} (can’t get back to 

it), however, it should be noted that the subset {3,4} is already stable with respect to E  regardless 

of the tracking actions, that is, once the system is in state 3 or 4, it will remain in E. The whole 

system is stabilizable with respect to E , enabling the tracking events will cause all the paths from 

any state to go through E  in a finite number of transitions and then will visit E  infinitely often.

3.2 .3  Developing the Observer

In order to know the current state of the manipulation process we need to observe the sequence 

of events occurring in the system and make decisions regarding the state of the automaton, state 

ambiguities are allowed to occur, however, they are required to be resolvable after a bounded 
interval of events. An observer, have to be constructed according to the visual system for which 

we developed a D E D S  model. The goal will be to make the system a stabilizable one and/or 

construct an observer to satisfy specific task-oriented visual requirements that the user may specify 

depending on the nature of the process. It should be noticed that events can be asserted with a 

specific probability as will be described in the sections to come and thus state transitions can be 

made according to pre-specified thresholds that compliments each state definition. In the case of 

developing ambiguities in determining current and future states, the history of evolution of past 

event probabilities can be used to navigate backwards in the observer automaton till a strong match 

is perceived, a fail state is reached or the initial ambiguity is asserted.

As an example, for the model of the grasping task, an observer can be formed for the system as 

shown in Figure 7. It can be easily seen that the system can be made stable with respect to the 

set E o  (The system always returns to that set).

At the beginning, the state of the system is totally ambiguous, however, the observer can be 

“guided” to the set E o  consisting of all the subsets of the good states E  as defined on the visual 

system model. It can be seen that by enabling the tracking event from the state (5, 6) to the state 

(1, 2), all the system can be made stable with respect to Eo- The singleton states represent the 

instances in time where the observer will be able to determine without ambiguity the current state



Figure 8: Different Views of the Lord Gripper

In the next section we shall elaborate on defining the different events in the visual manipulation 

system and discuss different techniques for event and state identification. W e  shall also introduce a 

framework for computing the uncertainty in determining the observable visual events in the system 

and a method by which the uncertainty distribution in the system can be used to efficiently keep

Experiments were performed to observe the robot hand. The Lord experimental gripper is used as 

the manipulating hand. Different views of the gripper are shown in Figure 8. Tracking is performed 

for some features on the gripper in real time. The visual tracking system works in real time and a

Some visual states for a grasping task using the Lord gripper, as seen by the observer camera, is 

shown in figure 9. The sequence is defined by our model, and the visual states correspond to the

The full system is implemented and tested for some simple visual action sequences. One such 

example is shown in figure 10. The automaton encodes an observer which tracks the hand by 

keeping a fixed geometric relationship between the observer’s camera and the hand as so long as 

the hand does not approach the observer’s camera rapidly. In that case, the observer tends to move 

sideways, that is, dodge and start viewing and tracking from sideways. It can be thought of as an 

action to avoid collision, due to the fact that the intersection of the workspaces of both robots is not 

empty. State 1 represents the visual situation where the hand is in a centered viewing position with 

respect to the observer and viewed from a frontal position. State 2 represents the hand in a non­

centered position and tending to escape the visual view, but not approaching the observer rapidly. 

State 3 represents a “dangerous” situation as the hand has approached the observer rapidly. State 

4 represents the hand being viewed from sideways, and the hand is centered within the imaging

After having defined the states, the events causing state transitions can be easily described. Event 

ci represents no hand movements, event e-i represents all hand movements in which the hand does 

not approach the camera rapidly. Event e3 represents a large movement towards the observer. 

Events 64 and e5 are controllable tracking events, where 64 always compensates for e2 in order to 

keep a fixed 3-D relationship and €5 is the “dodging” action where the observer moves to start

The events can thus be defined precisely as ranges on the recovered world motion parameters. For 

example, e.3 can be defined as any motion Vz > dz. Event e\ is defined as any motion such that :



Figure 9: A  Grasping Task : As seen by the observer’s camera

Figure 10: A  M odel fo r  a Simple Visual Sequence
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It should be noted that defining ej in this manner helps a lot in suppressing noise. Having defined 

the events, the task reduces to computing the relevant areas under the distribution curves for the 

various 3-D motion parameters and computing the probabilities for the ranges of e1: e2 and e.3 

at states 1 and 4. State transitions is asserted and reported when the probability value exceeds 

a preset threshold. States 1 and 4 are considered to be the set of stable states, by enabling the 

tracking events e4 and e5 the system can be made stable with respect to that set.

The low level visual feature acquisition is performed on the MaxVideo pipelined video processor at 

frame rate. The state machine resides on a Sun SparcStation 1 . The Lord gripper is mounted on 

a P U M A  560 arm and the observer’s camera is mounted on a second P U M A  560.

3 .3  Identifying M o tio n  Events

W e  use the image motion to estimate the hand movement. This task can be accomplished by either 

feature tracking or by computing the full optic flow. The image flow detection technique we use 

is based on the sum-of-squared-differenc.es optic flow. The sensor acquisition procedure (grabbing 

images) and uncertainty in image processing mechanisms for determining features are factors that 

should be taken into consideration when we compute the uncertainty in the optic flow.

One can model an arbitrary 3-D motion in terms of stationary-scene/moving-viewer as shown in 

Figure 11. The optical flow at the image plane can be related to the 3-D world as indicated by the 

following pair of equations for each point (x, y ) in the image plane [20] :

V-n =
Vz Vx_

Z
+ xiyQx  -  (l + z2) + y ttz ]

Vy =  ~ ~kj + {l + y2) ^ x ~ xy^ Y ~ x^ z

where vx and vy are the image velocity at image location (x, y), (Vx, Vy, Vz) and ( S ^ , Q y ,£Iz ) are 

the translational and rotational velocity vectors of the observer, and Z  is the unknown distance 

from the camera to the object. In this system of equations, the only knowns are the 2-D vectors 

vx and vy, if we use the formulation with uncertainty then basically the 2-D vectors are random 

variables with a known probability distribution. A  number of techniques can be used to linearize 

the system of equations and to solve for the motion and structure parameters as random variables 

[4,5,31],

3 .4  M o d e lin g  a n d  Recovering  3-D Uncertainties

The uncertainty in the recovered image flow values results from sensor uncertainties and noise and 

from the image processing techniques used to extract and track features. We use a static camera 

calibration technique to model the uncertainty in 3-D to 2-D feature locations. The strategy used 

to find the 2-D uncertainty in the features 2-D representation is to utilize the recovered camera 

parameters and the 3-D world coordinates (xw , yw , zw ) of a known set of points and compute the 

corresponding pixel coordinates, for points distributed throughout the image plane a number of 

times, find the actual feature pixel coordinates and construct 2-D histograms for the displacements

16



from the recovered coordinates for the experiments performed. The number of the experiments 

giving a certain displacement error would be the z axis of this histogram, while the x and y axis are 

the displacement error. The three dimensional histogram functions are then normalized such that 

the volume under the histogram is equal to 1 unit volume and the resulting normalized function is 

used as the distribution of pixel displacement error.

The spatial uncertainty in the image processing technique can be modeled by using synthesized 

images and corrupting them, then applying the feature extraction mechanism to both images and 

computing the resulting spatial histogram for the error in finding features. The probability density 

function for the error in finding the flow vectors can thus be computed as a spatial convolution of the 

sensor and strategy uncertainties. We then eliminate the unrealistic motion estimates by using the 

physical (geometric and mechanical) limitations of the manipulating hand. Assuming that feature 

points lie on a planar surface on the hand, then we can develop bounds on the coefficients of the 

motion equations, which are second degree functions in x and y in three dimensions, vx =  f-\(x,y) 
and vy =  f2 (x, y).

The 2-D uncertainties are then used to recover the 3-D uncertainties in the motion and struc­

ture parameters. The system is linearized by either dividing the parameter space into three sub­

spaces for the translational, rotational and structure parameters and solving iteratively or using 

other linearization techniques and/or assumptions to solve a linear system of random variables 

[4,5,6,31,32,34], As an example, the recovered 3-D translational velocity cumulative density func­

tions for an actual world motion, V\  =  0 c m , Vy =  0 c m  and Vz  =  13 cm, is shown in figure 12. 

It should be noted that the recovered distributions represents a fairly accurate estimation of the 

actual 3-D motion.

3 .5  Utilizing the Discrete E vent  O bserver

State transitions are asserted within the D E D S  observer model according to the probability value 

of the occurrence of an event. Events are thus defined as ranges for the different parameters. The 

problem then reduces to computing the corresponding areas under the refined distribution curves. 

An obvious way of using those probability values is to establish some threshold values and assert 

transitions according to those thresholds. It might be the case that none of the obtained probability 

values exceeds the set threshold value and/or all values are very low. In that case, there is a good 

chance that we are at either the wrong automata state. The remedy to such problems can be

F igure 11: 3-D Form ulation for S tationary Scene/M oving V iew er
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implemented through time proximity, that is, wait for a while (which is to be preset) till a strong 

probability value is registered and/or backtrack in the automaton model for the observer till a high 

enough probability value is asserted, a fail state is reached or the initial ambiguity is asserted. The 

backtracking strategy can be implemented using a stack-like structure associated with each state 

that has already been traversed, which includes a sorted list of the computed event probabilities

Experiments were performed to observe the robot hand. The low level visual feature acquisition 

is performed on the Datacube MaxVideo pipelined video processor at frame rate. The observer 

and manipulating robots are both P U M A  560’s and the Lord experimental gripper is used as the

The experiment was shot with three video camera. The right hand side of the images show the 

actual observer and manipulation workspace and the different configurations as the experiment 

proceed. The upper left corner shows the observer view, which is the set of images grabbed by the 

camera for processing. The lower left corner shows the observer state, that is, what the observer 

“thinks” . A graphical representation of the different states and their change is used. Fail states 

are represented by an empty box. Figures 13 and 14 illustrate a manipulation experiment. In this 

sequence the hand tries to insert a peg in a hole. The observer approaches and focuses on the peg 

and hole when the peg gets nearer to the hole. State changes occur when the hole appears and

W e described a system for observing a manipulation process. The proposed approach can be 

generalized for other hybrid systems involving different kinds of quantization requirements for 

dynamic systems, for sets of discrete, continuous and symbolic parameters. The use of discrete 

event dynamic systems with uncertainty modeling for the event description enables the observer 

to recognize tasks robustly. The proposed system also utilizes the a-priori knowledge about the 

task domain in order to achieve efficiency and practicality. The high level formulation allows for 

recognizing and reporting on the visual system state as a symbolic description of the observed tasks.

Thus, we have proposed a new approach to solving the problem of observing a moving agent. 

Our approach uses the formulation of discrete event dynamic systems as a high-level model for 

the framework of evolution of the visual relationship over time. The proposed formulation can be
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extended to accommodate for more manipulation processes. Increasing the number of states and 

expanding the events set would allow for a variety of manipulating actions.

4 Sensing for Inspection of M a c h i n e  Parts

This work addresses the application of discrete event dynamic systems (D ED S ) for autonomous 

sensing and inspection as part of the reverse engineering process. A dynamic recursive context for 

D E D S  is presented and its usage for managing a complex hybrid system which has continuous, 

discrete and symbolic aspects is illustrated. W e suggest that the dynamic, recursive context is aptly 

suited to controlling and observing the active inspection of machined parts using such a hybrid 

system.

Reverse engineering is the process of constructing an accurate representation from sensed data. It 

can be represented by a closed loop system that consists of four main modules:

•  Sensing

•  C A D  Modeling

•  Manufacturing

•  Inspection

This closed loop system is the framework we used to develop an integrated CAD/CAM /sensing 

system for inspection and reverse engineering. The process starts by constructing an initial C A D  

model using 2-d and 3-d vision, then the inspection module uses this model to drive a coordinate 

measuring machine (C M M ). The results are used to increase the accuracy of the model. Additional 

sensing iterations could be made until the desired accuracy is obtained. Figure 15 shows this closed 

loop system.

Most research in reverse engineering ([24, 21, 12, 13, 14, 9, 10]) concentrates on the sensing and fit­

ting techniques required. Hsieh[16] describes a system which does sculptured surface reconstruction 

with a C M M . The focus of the work is on path planning and surface fitting. If errors occur while 

gathering data, the system aborts and must be restarted. Van Thiel [35] describes an interactive 

C M M  inspection system. The user is included as part of the control loop, and can abort inspections 

and call for explorations of particular features. Our work describes an approach that automatically 

gathers the sense data, processes it, and makes decisions based upon it for reverse engineering.

W e use a recursive dynamic strategy for exploring machine parts. A  discrete event dynamic system 

(D ED S ) framework is designed for modeling and structuring the sensing and control problems. The 

dynamic recursive context for finite state machines (D R F SM ) is a D E D S  representation tailored to 

the recursive nature of the mechanical parts under consideration.

D R F S M  is particularly useful for controlling the inspection module, and this has been an important 

aspect of our research.

4 .1  M o d e lin g  a n d  Constructing an  Observer

A D E D S  framework is used to model the tasks that the autonomous observer system executes. This 

model is used as a high level structuring technique to preserve and make use of the information 

we know about the way in which a mechanical part should be explored. The state and event 

description is associated with different visual cues; for example, appearance of objects, specific 3-D
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Figure 15: Closed loop system for reverse engineering

movements and structures, interaction between the touching probe and part, and occlusions. A 

D E D S  observer serves as an intelligent sensing module that utilizes existing information about the 

tasks and the environment to make informed tracking and correction movements and autonomous 

decisions regarding the state of the system.

To be able to determine the current state of the system we need to observe the sequence of events 

occurring in the system and make decisions regarding the state of the automaton. State ambiguities 

are allowed to occur, however, they are required to be resolvable after a bounded interval of events. 

In a strongly output stabilizable system, the state of the system is known at bounded intervals and 

allowable events can be controlled (enabled or disabled) in a way that ensures return in a bounded 

interval to one of a desired and known set of states.

One of the objectives is to make the system strongly output stabilizable and/or construct an 

observer to satisfy specific task-oriented visual requirements. Many 2-D visual cues for estimating

3-D world behavior can be used. Examples include: image motion, shadows, color and boundary 

information. The uncertainty in the sensor acquisition procedure and in the image processing 

mechanisms are taken into consideration to compute the world uncertainty.

4 .2  E xp e rim en ts

In conducting our experiments, we use a B / W  C C D  camera mounted on a Puma 560 robot arm, 

that observe and guide the interaction between the C M M  probe and the machined part (see Figure 

16.) In order for the state machine to provide control, it must be aware of state changes in the 

system. As inspection takes place, the camera supplies images that are interpreted by a set of 

2D  and 3D  vision processing algorithms and used to drive the D R F S M . These algorithms are 

described in greater detail in other publications [30, 25, 27, 29, 26, 28], but include thresholding, 

edge detection, region growing, stereo vision, etc. The robot arm is used to position the camera in 

the workplace and move in the case of occlusion problems.

The object of these experiments was to test the operation of the visual system with the state
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Figure 16: Inspection system overview

machine. Two facets of this were the generation of an initial model from stereo vision and the 

generation of events that describe a probe’s relationship to features in that model.

This stereo process used the Puma arm to gather pairs of images. The resulting model was used 

to determine feature relationships used in the D E D S  controller. The models shown are from this 

initial visual inspection.

The event generation method, consisting of 2-d image processing routines, was used to detect the 

relationship of a simulated (hand-held) C M M  probe to the features in the initial model. These 

events were processed by the controller, which output text messages guiding the experimenter to 

move the probe or indicate that a touch had occurred.

The automaton used in the environment is shown in Figure /reffig:gijoe. This machine has the 

following states:

•  A :  The initial state, waiting for the probe to appear.

•  B : The probe appears, and waiting for it to be close. Here, “close” is a measure of the 

distance between the probe and the current feature, since it depends on the level of the 

recursive structure. For example, the distance at the first level, which represents the outer 

contours or features, is larger than that of the lower levels.

•  C : Probe is close, but not on feature.

•  D :  The probe appears to be on feature in the image, and waiting for physical touch indicated 

from the C M M  machine.

•  E : Physical touch has happened (and the C M M  measurements for the feature parameters are 

recorded and saved for updating the C A D  model.) If the current feature represents a closed
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Figure 17: Inspection Environment Window

region, the machine goes one level deeper to get the inner features by a recursive call to the 

initial state after changing the variable transition parameters. If the current feature was an 

open region, then the machine finds any other features in the same level.

•  F : This state is to solve any vision problem happens during the experiment. For example, if 

the probe is occluding one of the features, then the camera position can be changed to solve 

this problem.

•  E R R O R :  There is a time limit for each part of this experiment. If for any reason, one of the 

modules doesn’t finish in time, the machine will go to this state, which will report the error 

and terminate the experiment.

4.2.1 Experimental results, Autom ated Bracket Inspection

A  metal bracket was used in the experiment to test the inspection automaton. The piece was placed 

on the inspection table within view of the camera (see Figure 18).

The machine was brought on line and execution begun in State A, the start state. After initiating 

the inspection process, the D R F S M  transitioned through states until the probe reached the bracket 

boundary. The state machine then called for the closed region to be recursively inspected until 

finally, the hole was explored and the machine exited cleanly. The sequence is shown in Figure 21. 

The original part and the resulting reverse-engineered part are shown in Figures 19 (wireframes) 

and 20 (rendered images). Notice that the two side holes and a portion of the bracket were not 

sensed correctly, as a simple strategy was used to sense from only one direction. In the next 

experiment, a more complicated model is sensed with a more sophisticated sensing and modeling 

strategy.
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Figure 20: Original and reproduction

4 .2 .2  Experimental Results, Cover Plate

A second experiment was run in a similar fashion, using a part similar to the fuel pump cover from 

a Chevrolet engine. This piece offers interesting features and has a complex recursive structure 

which allowed us to test the recursive nature of the state machine.

The sensing strategy used here was more robust than in the previous experiment. Detected feature 

contours were sensed with stereo vision and used to build up a feature-based cv_l model. This 

model was then used to semi-automatically machine a reproduction of the part. The original and 

reverse-engineered wireframe models are shown in Figures 22. A photograph of the original and 

reproduction is shown in 23. For more detail on the sensing strategy, please see [30].

The inspection sequence corresponding to this experiment is shown in Figure 24. Shown there, the 

D R F S M  transitions correctly through the inspection of the outside profile (depth of recursion=0), 

a hole (1), a profile pocket (1), a hole (2), and another hole (1).

5 Conclusions

A  software environment system was developed for simulating, analyzing, synthesizing, monitoring, 

and controlling complex discrete event and hybrid systems. W e have also presented two problems 

related to robotics and automation for which discrete event and hybrid systems formulation play a 

significant role in the solution.
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