23,499 research outputs found

    Application of JXTA-overlay platform for secure robot control

    Get PDF
    In this paper, we present the evaluation and experimental results of secured robot control in a P2P system. The control system is based on JXTA-Overlay platform. We used secure primitives and functions of JXTA-Overlay for the secure control of the robot motors. We investigated the time of robot control for some scenarios with different number of peers connected in JXTA-Overlay network. All experiments are realised in a LAN environment. The experimental results show that with the join of other peers in the network, the average time of robot control is increased, but the difference between the secure and unsecure robot control average time is nearly the samePeer ReviewedPostprint (published version

    Model-driven engineering approach to design and implementation of robot control system

    Full text link
    In this paper we apply a model-driven engineering approach to designing domain-specific solutions for robot control system development. We present a case study of the complete process, including identification of the domain meta-model, graphical notation definition and source code generation for subsumption architecture -- a well-known example of robot control architecture. Our goal is to show that both the definition of the robot-control architecture and its supporting tools fits well into the typical workflow of model-driven engineering development.Comment: Presented at DSLRob 2011 (arXiv:cs/1212.3308

    Robot control with biological cells

    No full text
    At present there exists a large gap in size, performance, adaptability and robustness between natural and artificial information processors for performing coherent perception-action tasks under real-time constraints. Even the simplest organisms have an enviable capability of coping with an unknown dynamic environment. Robots, in contrast, are still clumsy if confronted with such complexity. This paper presents a bio-hybrid architecture developed for exploring an alternate approach to the control of autonomous robots. Circuits prepared from amoeboid plasmodia of the slime mold Physarum polycephalum are interfaced with an omnidirectional hexapod robot. Sensory signals from the macro-physical environment of the robot are transduced to cellular scale and processed using the unique micro-physical features of intracellular information processing. Conversely, the response form the cellular computation is amplified to yield a macroscopic output action in the environment mediated through the robot’s actuators

    Requirements for implementing real-time control functional modules on a hierarchical parallel pipelined system

    Get PDF
    Analysis of a robot control system leads to a broad range of processing requirements. One fundamental requirement of a robot control system is the necessity of a microcomputer system in order to provide sufficient processing capability.The use of multiple processors in a parallel architecture is beneficial for a number of reasons, including better cost performance, modular growth, increased reliability through replication, and flexibility for testing alternate control strategies via different partitioning. A survey of the progression from low level control synchronizing primitives to higher level communication tools is presented. The system communication and control mechanisms of existing robot control systems are compared to the hierarchical control model. The impact of this design methodology on the current robot control systems is explored

    Narrative based Postdictive Reasoning for Cognitive Robotics

    Full text link
    Making sense of incomplete and conflicting narrative knowledge in the presence of abnormalities, unobservable processes, and other real world considerations is a challenge and crucial requirement for cognitive robotics systems. An added challenge, even when suitably specialised action languages and reasoning systems exist, is practical integration and application within large-scale robot control frameworks. In the backdrop of an autonomous wheelchair robot control task, we report on application-driven work to realise postdiction triggered abnormality detection and re-planning for real-time robot control: (a) Narrative-based knowledge about the environment is obtained via a larger smart environment framework; and (b) abnormalities are postdicted from stable-models of an answer-set program corresponding to the robot's epistemic model. The overall reasoning is performed in the context of an approximate epistemic action theory based planner implemented via a translation to answer-set programming.Comment: Commonsense Reasoning Symposium, Ayia Napa, Cyprus, 201

    Robot training using system identification

    Get PDF
    This paper focuses on developing a formal, theory-based design methodology to generate transparent robot control programs using mathematical functions. The research finds its theoretical roots in robot training and system identification techniques such as Armax (Auto-Regressive Moving Average models with eXogenous inputs) and Narmax (Non-linear Armax). These techniques produce linear and non-linear polynomial functions that model the relationship between a robot’s sensor perception and motor response. The main benefits of the proposed design methodology, compared to the traditional robot programming techniques are: (i) It is a fast and efficient way of generating robot control code, (ii) The generated robot control programs are transparent mathematical functions that can be used to form hypotheses and theoretical analyses of robot behaviour, and (iii) It requires very little explicit knowledge of robot programming where end-users/programmers who do not have any specialised robot programming skills can nevertheless generate task-achieving sensor-motor couplings. The nature of this research is concerned with obtaining sensor-motor couplings, be it through human demonstration via the robot, direct human demonstration, or other means. The viability of our methodology has been demonstrated by teaching various mobile robots different sensor-motor tasks such as wall following, corridor passing, door traversal and route learning