94 research outputs found

    Origin of the Galactic Disk 6.7 kev Line Emission

    Get PDF
    The goal of this program was to determine if the extended FeXXV 6.7 kev line emission might possibly be produced and confined by the hot wind-shocked bubbles to accompany UC HII regions. The main result of this study are: (1) FeXXV is detected in the W3 complex, but at a level that could only explain a small fraction of the galactic disk emission if all UC HII regions emit at about the same intensity as the W3 complex; (2) Two X-ray sources are detected in W3. W3-X 1 coincides with the radio image of this region, but W3-X2 has no radio, optical, or infrared counterpart; (3) There is no evidence for variability of W3-X1 during the period of observations (approx, 40,000 sec); (4) The X-ray spectrum of W3-X1 has no emission shortward of 1 kev, it peaks at approx. 2 kev and show significant emission out to approx. 6 kev. No individual lines are resolved. There is currently no generally accepted theory for extended hard X-ray emission in HII regions. Perhaps the most significant discovery of this program has been the detection of extended hard X-rays and the realization that some entirely new processes must be invoked to understand this; and (5)A minimum (chi)(sup 2) fit of the spectrum implies a H absorbing column of N(sub H) approx, equals to 2.1 x 10(exp 22)/ cm, a temperature of the emitting plasma of 7 x 10(exp 7) K, and a luminosity of approx. equal to 10(33)erg/s

    Infrared emission from ultracompact H II regions

    Get PDF
    Models of circumstellar dust shells around ultracompact (UC) H II regions were constructed that accurately fit the observed IR flux distributions. The models assume spherically symmetric dust shells illuminated by stars whose bolometric luminosity is inferred from the integrated FIR flux densities. Assuming ionization by a single zero age main sequence (ZAMS) star, the relations of Panagia were used to infer the stellar radius and effective temperature for a given luminosity. The grain mixture in the dust shell consists of bare graphite and silicate grains with the optical properties of Draine and Lee and the size distribution of Mathis et al. The computer code of Wolfire et al was used to solve the radiative transfer equations through a spherical dust shell. The model provides monochromatic luminosities, dust temperatures, and opacities through the shell. Aside from the stellar and dust properties, the only other input parameters to the model are the distance to the shell, the form of its density distribution, and its outer radius. Predictions of the model are compared with observations of a typical UC H II region and the run of dust temperature with radius and the optical depth with frequency are discussed

    Infrared point source variability between the Spitzer and MSX surveys of the Galactic mid-plane

    Full text link
    We present a list of 552 sources with suspected variability, based on a comparison of mid-infrared photometry from the GLIMPSE I and MSX surveys, which were carried out nearly a decade apart. We were careful to address issues such as the difference in resolution and sensitivity between the two surveys, as well as the differences in the spectral responses of the instruments. We selected only sources where the IRAC 8.0 and MSX 8.28 micron fluxes differ by more than a factor of two, in order to minimize contamination from sources where the difference in fluxes at 8 micron is due to a strong 10 micron silicate feature. We present a subset of 40 sources for which additional evidence suggests variability, using 2MASS and MIPSGAL data. Based on a comparison with the variability flags in the IRAS and MSX Point-Source Catalogs we estimate that at least a quarter of the 552 sources, and at least half of the 40 sources are truly variable. In addition, we tentatively confirm the variability of one source using multi-epoch IRAS LRS spectra. We suggest that most of the sources in our list are likely to be Asymptotic Giant Branch stars.Comment: 47 pages, 12 Figures, 3 Tables, accepted for publication in A

    A Massive Protostar Forming by Ordered Collapse of a Dense, Massive Core

    Full text link
    We present 30 and 40 micron imaging of the massive protostar G35.20-0.74 with SOFIA-FORCAST. The high surface density of the natal core around the protostar leads to high extinction, even at these relatively long wavelengths, causing the observed flux to be dominated by that emerging from the near-facing outflow cavity. However, emission from the far-facing cavity is still clearly detected. We combine these results with fluxes from the near-infrared to mm to construct a spectral energy distribution (SED). For isotropic emission the bolometric luminosity would be 3.3x10^4 Lsun. We perform radiative transfer modeling of a protostar forming by ordered, symmetric collapse from a massive core bounded by a clump with high mass surface density, Sigma_cl. To fit the SED requires protostellar masses ~20-34 Msun depending on the outflow cavity opening angle (35 - 50 degrees), and Sigma_cl ~ 0.4-1 g cm-2. After accounting for the foreground extinction and the flashlight effect, the true bolometric luminosity is ~ (0.7-2.2)x10^5 Lsun. One of these models also has excellent agreement with the observed intensity profiles along the outflow axis at 10, 18, 31 and 37 microns. Overall our results support a model of massive star formation involving the relatively ordered, symmetric collapse of a massive, dense core and the launching bipolar outflows that clear low density cavities. Thus a unified model may apply for the formation of both low and high mass stars.Comment: 6 pages, 4 figures, 1 table, accepted to Ap

    First Detection of an H2CO 6 cm Maser Flare: A Burst in IRAS 18566+0408

    Get PDF
    We report the discovery of a short-duration (less than 3 months) outburst of the H2CO 6 cm maser in IRAS 18566+0408 (G37.55+0.20). During the flare, the peak flux density of the maser increased by a factor of 4; after less than a month, it decayed to the preflare value. This is the first detection of a short, burstlike variability of an H2CO 6 cm maser. The maser shows an asymmetric line profile that is consistent with the superposition of two Gaussian components. We did not detect a change in the velocity or the line width of the Gaussian components during the flare. If the two Gaussian components trace two separate maser regions, then very likely an event outside the maser gas triggered simultaneous flares at two different locations

    Free-Free Spectral Energy Distributions of Hierarchically Clumped HII Regions

    Full text link
    In an effort to understand unusual power-law spectral slopes observed in some hypercompact HII regions, we consider the radio continuum energy distribution from an ensemble of spherical clumps. An analytic expression for the free-free emission from a single spherical clump is derived. The radio continuum slope (with F_\nu \nu^\alpha) is governed by the population of clump optical depths N(tau), such that (a) at frequencies where all clumps are thick, a continuum slope of +2 is found, (b) at frequencies where all clumps are optically thin, a flattened slope of -0.11 is found, and (c) at intermediate frequencies, a power-law segment of significant bandwidth with slopes between these two limiting values can result. For the ensemble distribution, we adopt a power-law distribution N(tau) tau^{-\gamma}, and find that significant power-law segments in the SED with slopes from +2 to -0.11 result only for a relatively restricted range of γ\gamma values of 1 to 2. Further, a greater range of clump optical depths for this distribution leads to a wider bandwidth over which the intermediate power-law segment exists. The model is applied to the source W49N-B2 with an observed slope of \alphab +0.9, but that may be turning over to become optically thin around 2 mm. An adequate fit is found in which most clumps are optically thin and there is little shadowing of rearward clumps by foreground clumps (i.e., the geometrical covering factor C<<1). The primary insight gained from our study is that in the Rayleigh-Jeans limit for the Planck function that applies for the radio band, it is the distribution in optical depth of the clump population that is solely responsible for setting the continuum shape, with variations in the size and temperature of clumps serving to modulate the level of free-free emission.Comment: Astrophysical Journal, in pres

    Spitzer Space Telescope observations of the Carina Nebula: The steady march of feedback-driven star formation

    Full text link
    We report the first results of imaging the Carina Nebula with Spitzer/IRAC, providing a catalog of point sources and YSOs based on SED fits. We discuss several aspects of the extended emission, including dust pillars that result when a clumpy molecular cloud is shredded by massive star feedback. There are few "extended green objects" (EGOs) normally taken as signposts of outflow activity, and none of the HH jets detected optically are seen as EGOs. A population of "extended red objects" tends to be found around OB stars, some with clear bow-shocks. These are dusty shocks where stellar winds collide with flows off nearby clouds. Finally, the relative distributions of O stars and subclusters of YSOs as compared to dust pillars shows that while some YSOs are located within pillars, many more stars and YSOs reside just outside pillar heads. We suggest that pillars are transient phenomena, part of a continuous outwardly propagating wave of star formation driven by massive star feedback. As pillars are destroyed, they leave newly formed stars in their wake, which are then subsumed into the young OB association. Altogether, the current generation of YSOs shows no strong deviation from a normal IMF. The number of YSOs suggests a roughly constant star-formation rate over the past 3Myr, implying that star formation in pillars constitutes an important mechanism to construct unbound OB associations. Accelerated pillars may give birth to O-type stars that, after several Myr, could appear to have formed in isolation.Comment: 25 pages, 15 figures, MNRAS accepte
    • …