108 research outputs found

    A Cable-Driven Parallel Robot with an Embedded Tilt-Roll Wrist

    Get PDF
    International audienceThis paper addresses the optimum design, configuration and workspace analysis of a Cable-Driven Parallel Robot (CDPR) with an embedded tilt-roll wrist. The manipulator consists in a tilt-roll wrist mounted on the moving platform of a suspended CDPR. The embedded wrist provides large amplitudes of tilt and roll rotations and a large translational workspace obtained by the CDPR. This manipulator is suitable for tasks requiring large rotation and translation workspaces like tomography scanning, camera-orienting devices and visual surveillance. The moving-platform is an eight-degree-of-freedom articulated mechanism with large translational and rotational workspaces and it is suspended from a fixed frame by six cables. The manipulator employs two bi-actuated cables, i.e., cable loops to transmit the power from motors fixed on the ground to the tilt-roll wrist. Therefore, the manipulator achieves better dynamic performances due to a lower inertia of its moving-platform

    Desain Suspended Cable Driven Parallel Robot dengan Orientasi Tetap Berdasarkan Interference-free Workspace

    Get PDF
    Proses evakuasi korban bencana alam sangatlah sulit, mengingat keterbatasan kemampuan para tim penyelamat dan alat bantu yang masih mempunyai cakupan daerah kerja yang relatif sempit. Cable driven parallel robot (CDPR) merupakan sebuah robot yang dapat membantu proses evakuasi dan memiliki jangkauan yang luas serta kecepatan mobilitas yang tinggi. Penelitian kali ini bertujuan untuk mendapatkan geometric model, static model, dan kinematic model dari Cable Driven Parallel berdasarkan parameter desain yang telah ditentukan. Selain itu, tujuan dari penelitian ini adalah mendapatkan dimensi (panjang, lebar, tinggi) platform dan sususan kabel dari base ke platform agar mencapai interference-free workspace terbesar. Robot ini membutuhkan analisa yang akurat agar memenuhi tujuannya. Analisa tersebut antara lain adalah wrench feasible workspace (WFW), twist feasible workspace (TFW), cable to cable interference, dan cable to platform interference. Wrench feasible workspace merupakan sebuah proses pengujian statik CDPR. Twist feasible workspace bertujuan untuk menguji robot dari segi kinematiknya. Cable-cable interference dan cable-platform interference secara berurutan bertujuan untuk menghindari suatu tabrakan antar kabel dengan kabel dan kabel dengan platform CDPR. Penelitian dibagi menjadi tiga studi kasus. Perbedaan setiap studi kasus berada pada wrench external (gaya dan momen) yang berkerja pada mobile platform. Desain optimum telah didapatkan dari setiap studi kasus berdasarkan overall workspace terbesar. Pada studi kasus 1 didapatkan dua desain dengan workspace terbesar, yaitu mencapai 64,8% volume jangkauan robot. Pada studi kasus 2 menghasilkan tujuh desain dengan workspace terbesar, yaitu mencapai 19,6% dari volume jangkauan robot. Pada studi kasus 3 didapatkan empat desain dengan workspace terbesar, yaitu mencapai 10,6% dari volume jangkauan robot. ========================================================================================================== The evacuation process of natural disaster would be a difficult job, seeing that there are limits to the abilities of rescue teams as human beings and tools that exist right now still have a narrow workspace. Cable driven parallel robot (CDPR) is a robot which are designed to help evacuations. It has a large workspace and high mobility. This research was conducted in order to obtain the geometric model, static model, dan kinematic model of Cable Driven Parallel Robot based on pre-determined design parameters. In addition, the purpose of this research is also to get dimensions (length, width, and height) of the mobile platform and cable arrangements of the robot from base to mobile platform in order to achieve the largest interference-free workspace. The designing of this robot requires accurate analyses to achieve its objectives. The analyses include wrench feasible workspace (WFW), twist feasible workspace (TFW), cable to cable interference, and cable to platform interference. Wrench feasible workspace is a CDPR static testing. Twist feasible workspace aim to test kinematics of the robot. Cable to cable interference and cable to platform interference aim to avoid collision beetwen cables and between CDPR’s platform and cables, respectively. This study will be divided into three case studies. The Difference between each case study is the external wrench (forces and moments) that are applied on the mobile platform. The optimum design has been generated from each case study based on the largest overall workspace. In the first case study, two designs with the largest workspace are generated, which reached 64,8% of the robot’s range. In the second case study, seven designs with the largest workspace reaching 19,6% of the robot’s range are produced. In the third case study, four designs with the largest workspace are generated, which reached 10,6% of the robot’s range

    Disturbance Robustness Measures and Wrench-Feasible Workspace Generation Techniques for Cable-Driven Robots

    Get PDF
    Cable robots are a type of robotic manipulator that has recently attracted interest for large workspace manipulation tasks. Cable robots are relatively simple in form, with multiple cables attached to a mobile platform or end-effector. The end-effector is manipulated by motors that can extend or retract the cables. Cable robots have many desirable characteristics, including low inertial properties, high payload-to-weight ratios, potentially vast workspaces, transportability, ease of disassembly/reassembly, reconfigurability and economical construction and maintenance. However, relatively few analytical tools are available for analyzing and designing these manipulators. This thesis focuses on expanding the existing theoretical framework for the design and analysis of cable robots in two areas: disturbance robustness and workspace generation. Underconstrained cable robots cannot resist arbitrary external disturbances acting on the end-effector. Thus a disturbance robustness measure for general underconstrained single-body and multi-body cable robots is presented. This measure captures the robustness of the manipulator to both static and impulsive disturbances. Additionally, a wrench-based method of analyzing cable robots has been developed and is used to formulate a method of generating the Wrench-Feasible Workspace of cable robots. This workspace consists of the set of all poses of the manipulator where a specified set of wrenches (force/moment combinations) can be exerted. For many applications the Wrench-Feasible Workspace constitutes the set of all usable poses. The concepts of robustness and workspace generation are then combined to introduce a new workspace: the Specified Robustness Workspace. This workspace consists of the set of all poses of the manipulator that meet or exceed a specified robustness value.Ph.D.Committee Chair: Dr. Imme Ebert-Uphoff; Committee Member: Dr. Harvey Lipkin; Committee Member: Dr. Jarek Rossignac; Committee Member: Dr. Magnus Egerstedt; Committee Member: Dr. William Singhos

    Prototype of a tensegrity manipulator to mimic bird necks

    Get PDF
    International audienceThis paper deals with the building of a 2D tensegrity mechanism. The considered mechanism is derived from the Snelson's X-shape mechanism and is used as an elementary part of the bird neck modelling. Indeed, an n-dof manipulator can be obtained by stacking in series n X-shape mechanisms. This paper explains the design and building process of a 1-dof prototype, both on hardware and software aspects, and will be used further to have experimental results on the dynamic modelling, control laws and ac-tuation strategy.Une structure de tenségrité est un assemblage d'éléments en compression (barres) et d'éléments en traction (câbles, ressorts) maintenus ensemble en équilibre [1],[2]. La tenségrité est connue en architecture et en art depuis plus d'un siècle [3] et est adaptée à la modélisation des organismes vivants [4]. Les mé-canismes de tenségrité ont été étudiés plus récemment pour leurs propriétés prometteuses en robotique telles que la faible inertie, la souplesse naturelle et la capacité de déploiement [5]. Un mécanisme de tenségrité est obtenu lorsqu'un ou plusieurs éléments sont actionnés. Ces travaux s'inscrivent dans le cadre du projet AVINECK, auquel participent des biologistes et des roboticiens dans le but principal de modéliser et de concevoir des cous d'oiseaux. En conséquence, une classe de manipulateurs de tenségrité planaire composée d'un assemblage en série de plusieurs mécanismes en X de Snelson [6], c'est-à-dire des mécanismes à quatre barres croisées avec des ressorts sur leurs côtés latéraux, a été choisie comme candidat approprié pour un modèle préliminaire plan d'un cou d'oiseau. Le prototype consiste en un mecanisme en X de Snelson. Les barres sont assemblées selon différents plans pour éviter les collisions internes. Le manipulateur est entraîné par des câbles parallèles aux res-sorts et traversant les axes grâce à des perçages. Chaque câble est attaché à un tambour. Le manipulateur est actionné par deux câbles, ce qui en fait un mécanisme antagoniste, dont on peut contrôler la raideur. Les pièces structurelles (barres, supports, tambours) sont imprimées en 3D en ABS. Chaque liaison pivot entre les barres et les axes est construite avec deux roulements qui assurent un centrage long, et toutes les pièces sont arrêtées axialement avec des colliers d'arbre. Nous avons décidé d'avoir une lon-gueur de barre transversale de 100 mm et une longueur de barre supérieure de 50 mm. Ces dimensions sont adaptées à plusieurs jeux de ressorts disponibles, c'est-à-dire que les ressorts considérés sont tou-jours en tension et ne sont pas trop étendus pour toutes les positions accessibles du manipulateur. Une fois la longueur et la raideur du ressort définies, le modèle statique est calculé afin d'obtenir la force d'entrée maximale pour les câbles. Cette force doit être suffisante pour actionner le mécanisme dans un grand espace de travail et pour résister aux chargements externes. La force appliquée par les câbles est directement liée au rayon du tambour et au couple du moteur. Le rayon du tambour influe également sur la vitesse de translation du câble. Un compromis est fait pour avoir des efforts et vitesses de câbles suffisants. Deux variateurs interagissent avec un microprocesseur sur lequel est programmé la loi de commande. Chaque moteur est équipé d'un codeur pour connaître la position réelle du mécanisme. Le bon compor-tement du mécanisme est assuré par une commande dynamique

    Planning wrench-feasible motions for cable-driven hexapods

    Get PDF
    Motion paths of cable-driven hexapods must carefully be planned to ensure that the lengths and tensions of all cables remain within acceptable limits, for a given wrench applied to the platform. The cables cannot go slack-to keep the control of the robot-nor excessively tightto prevent cable breakage-even in the presence of bounded perturbations of the wrench. This paper proposes a path-planning method that accommodates such constraints simultaneously. Given two configurations of the robot, the method attempts to connect them through a path that, at any point, allows the cables to counteract any wrench lying in a predefined uncertainty region. The configuration space, or C-space for short, is placed in correspondence with a smooth manifold, which facilitates the definition of a continuation strategy to search this space systematically from one configuration, until the second configuration is found, or path nonexistence is proved by exhaustion of the search. The force Jacobian is full rank everywhere on the C-space, which implies that the computed paths will naturally avoid crossing the forward singularity locus of the robot. The adjustment of tension limits, moreover, allows to maintain a meaningful clearance relative to such locus. The approach is applicable to compute paths subject to geometric constraints on the platform pose or to synthesize free-flying motions in the full 6-D C-space. Experiments illustrate the performance of the method in a real prototype.Postprint (author's final draft

    A Novel Approach for Simplification of Industrial Robot Dynamic Model Using Interval Method

    Get PDF
    This paper proposes a new approach to simplify the dynamic model of industrial robot by means of interval method. Due to strong nonlinearities, some components of robot dynamic model such as the inertia matrix and the vector of centrifugal, Coriolis and gravitational torques, are very complicated for real-time control of industrial robots. Thus, a simplification algorithm is presented in this study in order to reduce the computation time and memory occupation. More importantly, this simplification is suitable for arbitrary trajectories in whole robot workspace. Furthermore, the method devotes to finding negligible inertia parameters, which is useful for robot model identification. A simulation has been carried out on a test trajectory using a 6-DOF industrial robot model, and the results have shown good performance and effectiveness of this method.ANR COROUSS

    A Deployable Cable-Driven Parallel Robot With Large Rotational Capabilities for Laser-Scanning Applications

    Get PDF
    This paper presents a novel Cable-Driven Parallel Robot dedicated to laser-scanning operations. The proposed device can inspect low-accessibility environments, thanks to a self-deployable end-effector, which can be inserted in a closed container through very small access areas, such as hatches, pipes, etc. The reconfigurable end-effector is suspended and actuated by extendable cables, and is equipped with an optical mirror, which is used to deflect a laser beam produced by a frame-fixed laser distance sensor. Thanks to its large orientation capabilities, the machine can record the position of points belonging to a large portion of the surface to be scanned, primarily by tilting and panning the end-effector. The robot is equipped with a frame-orientation calibration device, which can align the machine frame to earth gravity before operation. The robot capabilities are validated by a prototype, which experimentally reconstruct benchmark surfaces

    Shared control of an aerial cooperative transportation system with a cable-suspended payload

    Get PDF
    This paper presents a novel bilateral shared framework for a cooperative aerial transportation and manipulation system composed by a team of micro aerial vehicles with a cable-suspended payload. The human operator is in charge of steering the payload and he/she can also change online the desired shape of the formation of robots. At the same time, an obstacle avoidance algorithm is in charge of avoiding collisions with the static environment. The signals from the user and from the obstacle avoidance are blended together in the trajectory generation module, by means of a tracking controller and a filter called dynamic input boundary (DIB). The DIB filters out the directions of motions that would bring the system too close to singularities, according to a suitable metric. The loop with the user is finally closed with a force feedback that is informative of the mismatch between the operator’s commands and the trajectory of the payload. This feedback intuitively increases the user’s awareness of obstacles or configurations of the system that are close to singularities. The proposed framework is validated by means of realistic hardware-in-the-loop simulations with a person operating the system via a force-feedback haptic interface
    corecore