81,392 research outputs found

    Ultra Wide Band Signal Generator

    Get PDF
    Disclosed is an ultra wide band signal generator. The ultra wide band signal generator generates a signal of a required frequency using a harmonic signal having a frequency range of a ultra wide band (UWB). The ultra wide band signal generator includes an active inductor for generating harmonic signals having power strengths substantially equal to each other within a non-linear operation range, the tunable active inductor capable of tuning a value thereof, an oscillator for amplifying and outputting the harmonic signals generated from the active inductor by frequency-transiting the harmonic signals into high frequency bands, and a filter for selectively outputting one of the harmonic signals output from the oscillator.Samsung Electronics Co., LtdGeorgia Tech Research Corporatio

    Periodicity in wide-band time series

    Get PDF
    Summary: To test the hypotheses that (i) electroencephalograms (EEGs) are largely made up of oscillations at many frequencies and (ii) that the peaks in the power spectra represent oscillations, we applied a new method, called the Period Specific Average (PSA) to a wide sample of EEGs. Both hypotheses can be rejected

    Suzaku wide-band observations of SN 1006

    Full text link
    We report on the wide band spectra of SN 1006 as observed by Suzaku. Thermal and nonthermal emission are successfully resolved thanks to the excellent spectral response of Suzaku's X-ray CCD XIS. The nonthermal emission cannot be reproduced by a simple power-law model but needs a roll-off at 5.7×1016\times 10^{16} Hz = 0.23 keV. The roll-off frequency is significantly higher in the northeastern rim than in the southwestern rim. We also have placed the most stringent upper limit of the flux above 10 keV using the Hard X-ray Detector.Comment: 16 pages, 8 figures, PASJ, in pres

    Wide-band doubler and sine wave quadrature generator

    Get PDF
    Phase-locked loop with photoresistive control, which provides both sine and cosine outputs for subcarrier demodulation, serves as a telemetry demodulator signal conditioner with a second harmonic signal for synchronization with the locally generated code

    Sensitivity of wide band detectors to quintessential gravitons

    Get PDF
    There are no reasons why the energy spectra of the relic gravitons, amplified by the pumping action of the background geometry, should not increase at high frequencies. A typical example of this behavior are quintessential inflationary models where the slopes of the energy spectra can be either blue or mildly violet. In comparing the predictions of scenarios leading to blue and violet graviton spectra we face the problem of correctly deriving the sensitivities of the interferometric detectors. Indeed, the expression of the signal-to-noise ratio not only depends upon the noise power spectra of the detectors but also upon the spectral form of the signal and, therefore, one can reasonably expect that models with different spectral behaviors will produce different signal-to-noise ratios. By assuming monotonic (blue) spectra of relic gravitons we will give general expressions for the signal-to-noise ratio in this class of models. As an example we studied the case of quintessential gravitons. The minimum achievable sensitivity to h02ΩGWh^2_{0} \Omega_{GW} of different pairs of detectors is computed, and compared with the theoretical expectations.Comment: 10 pages in Revtex style, 3 figure

    Electronic Materials with Wide Band Gap: Recent Developments

    Get PDF
    The development of semiconductor electronics is shortly reviewed, beginning with the development of germanium devices (band gap Eg=0.66E_g=0.66 eV) after world war II. Quickly a tendency to alternative materials with wider band gap became apparent, starting with silicon (Eg=1.12E_g=1.12 eV). This improved the signal/noise ratio for classical electronic applications. Both semiconductors have tetrahedral coordination, and by isoelectronic alternative replacement of Ge or Si with carbon or several anions and cations other semiconductors with wider EgE_g are obtained, that are transparent for visible light and belong to the group of wide band gap semiconductors. Nowadays some nitrides, especially GaN and AlN, are the most important materials for optical emission in the ultraviolet and blue spectral region. Oxide crystals, such as ZnO and β\beta-Ga2_2O3_3, offer similarly good electronic properties but suffer still from significant difficulties in obtaining stable and technically sufficient pp-type conductivity.Comment: 25 pages, 8 figures, 4 table

    Generating All Two-MOS-Transistor Amplifiers Leads to New Wide-Band LNAs

    Get PDF
    This paper presents a methodology that systematically generates all 2-MOS-transistor wide-band amplifiers, assuming that MOSFET is exploited as a voltage-controlled current source. This leads to new circuits. Their gain and noise factor have been compared to well-known wide-band amplifiers. One of the new circuits appears to have a relatively low noise factor, which is also gain independent. Based on this new circuit, a 50-900 MHz variable-gain wide-band LNA has been designed in 0.35-µm CMOS. Measurements show a noise figure between 4.3 and 4.9 dB for gains from 6 to 11 dB. These values are more than 2 dB lower than the noise figure of the wide-band common-gate LNA for the same input matching, power consumption, and voltage gain. IIP2 and IIP3 are better than 23.5 and 14.5 dBm, respectively, while the LNA drains only 1.5 mA at 3.3 V

    High-resolution wide-band Fast Fourier Transform spectrometers

    Full text link
    We describe the performance of our latest generations of sensitive wide-band high-resolution digital Fast Fourier Transform Spectrometer (FFTS). Their design, optimized for a wide range of radio astronomical applications, is presented. Developed for operation with the GREAT far infrared heterodyne spectrometer on-board SOFIA, the eXtended bandwidth FFTS (XFFTS) offers a high instantaneous bandwidth of 2.5 GHz with 88.5 kHz spectral resolution and has been in routine operation during SOFIA's Basic Science since July 2011. We discuss the advanced field programmable gate array (FPGA) signal processing pipeline, with an optimized multi-tap polyphase filter bank algorithm that provides a nearly loss-less time-to-frequency data conversion with significantly reduced frequency scallop and fast sidelobe fall-off. Our digital spectrometers have been proven to be extremely reliable and robust, even under the harsh environmental conditions of an airborne observatory, with Allan-variance stability times of several 1000 seconds. An enhancement of the present 2.5 GHz XFFTS will duplicate the number of spectral channels (64k), offering spectroscopy with even better resolution during Cycle 1 observations.Comment: Accepted for publication in A&A (SOFIA/GREAT special issue
    corecore