7,243 research outputs found

    Evidence for an ancient whole genome duplication in the cycad lineage

    Get PDF
    Contrary to the many whole genome duplication events recorded for angiosperms (flowering plants), whole genome duplications in gymnosperms (non-flowering seed plants) seem to be much rarer. Although ancient whole genome duplications have been reported for most gymnosperm lineages as well, some are still contested and need to be confirmed. For instance, data for ginkgo, but particularly cycads have remained inconclusive so far, likely due to the quality of the data available and flaws in the analysis. We extracted and sequenced RNA from both the cycad Encephalartos natalensis and Ginkgo biloba. This was followed by transcriptome assembly, after which these data were used to build paralog age distributions. Based on these distributions, we identified remnants of an ancient whole genome duplication in both cycads and ginkgo. The most parsimonious explanation would be that this whole genome duplication event was shared between both species and had occurred prior to their divergence, about 300 million years ago

    The effect of genome duplication on the reproductive ecology of plants

    Get PDF
    Whole genome duplication, or polyploidy, is the largest genomic alteration observed in nature. Polyploidy occurs in many different taxa, but is a widely tolerated and recurrent evolutionary phenomenon in plants. Although the importance of polyploidy in plants has been touted for approximately 100 years, we have yet to fully understand the ecological consequences of whole genome duplication on plant reproductive biology. Here I investigated how whole genome duplication impacts plant reproductive ecology. Specifically, I studied the effects of whole genome duplication on flowering phenotypes and the contributions of whole genome duplication to three premating barriers. I used a combination of genomic modifications of plants to induce polyploidy in experimental populations, manipulative field experiments to test ecological hypotheses, and literature surveys to examine evolutionary trends. In the first chapter, I used meta-analytical approaches based on published studies to explore the effect of whole genome duplication on several aspects of floral morphology, phenology, and reproductive output in plants. The results suggested that across a wide variety of plant species, morphological traits increase in size (e.g., flower diameter increases), reproductive output decreases, and there were no general trends in the effect of whole genome duplication on flowering phenology. I also observed that variation in reproductive output increases after whole genome duplication, whereas variation does not increase or decrease in phenology or morphology traits. In the second chapter, I build on existing knowledge of the mechanisms involved in premating reproductive isolation of polyploid lineages by investigating the factors that are important in driving assortative mating in the generations immediately following whole genome duplication. I accomplished this by using synthetic polyploids which provide the opportunity to study polyploidy in the generations immediately following formation when reproductive isolation will be critical to establishment. Trifolium pratense, or red clover, was used in an experimental study of diploids and newly formed polyploids to determine if the phenotypic differences caused by whole genome duplication facilitated premating isolation. The premating barriers examined included flowering phenology, self-fertilization rates, flower visitor community, and flower visitor behavior. I found that whole genome duplication increases flower size, but there were no cascading effects that facilitated premating isolation of newly formed polyploids. Together, my results suggest that polyploidy puts plants at a reproductive disadvantage and that if newly formed polyploids are found in sympatry with their diploid progenitors, rapid adaptation is likely necessary to establish and avoid extinction

    Does hybridization between divergent progenitors drive whole-genome duplication?

    Get PDF
    This is the peer reviewed version of the following article: BUGGS, R. J. A., SOLTIS, P. S. and SOLTIS, D. E. (2009), Does hybridization between divergent progenitors drive whole-genome duplication?. Molecular Ecology, 18: 3334–3339, which has been published in final form at http://dx.doi.org/10.1111/j.1365-294X.2009.04285.x This article may be used for non-commercial purposes in accordance With Wiley Terms and Conditions for self-archiving

    Escape from Preferential Retention Following Repeated Whole Genome Duplications in Plants

    Get PDF
    The well supported gene dosage hypothesis predicts that genes encoding proteins engaged in dose–sensitive interactions cannot be reduced back to single copies once all interacting partners are simultaneously duplicated in a whole genome duplication. The genomes of extant flowering plants are the result of many sequential rounds of whole genome duplication, yet the fraction of genomes devoted to encoding complex molecular machines does not increase as fast as expected through multiple rounds of whole genome duplications. Using parallel interspecies genomic comparisons in the grasses and crucifers, we demonstrate that genes retained as duplicates following a whole genome duplication have only a 50% chance of being retained as duplicates in a second whole genome duplication. Genes which fractionated to a single copy following a second whole genome duplication tend to be the member of a gene pair with less complex promoters, lower levels of expression, and to be under lower levels of purifying selection. We suggest the copy with lower levels of expression and less purifying selection contributes less to effective gene-product dosage and therefore is under less dosage constraint in future whole genome duplications, providing an explanation for why flowering plant genomes are not overrun with subunits of large dose–sensitive protein complexes

    Metabolic Adaptation after Whole Genome Duplication

    Get PDF
    Whole genome duplications (WGDs) have been hypothesized to be responsible for major transitions in evolution. However, the effects of WGD and subsequent gene loss on cellular behavior and metabolism are still poorly understood. Here we develop a genome scale evolutionary model to study the dynamics of gene loss and metabolic adaptation after WGD. Using the metabolic network of Saccharomyces cerevisiae as an example, we primarily study the outcome of WGD on yeast as it currently is. However, similar results were obtained using a recontructed hypothetical metabolic network of the pre-WGD ancestor.We show that the retention of genes in duplicate in the model, corresponds nicely with those retained in duplicate after the ancestral WGD in S. cerevisiae. Also, we observe that transporter and glycolytic genes have a higher probability to be retained in duplicate after WGD and subsequent gene loss, both in the model as in S. cerevisiae, which leads to an increase in glycolytic flux after WGD. Furthermore, the model shows that WGD leads to better adaptation than small-scale duplications, in environments for which duplication of a whole pathway instead of single reactions is needed to increase fitness. This is indeed the case for adaptation to high glucose levels. Thus, our model confirms the hypothesis that WGD has been important in the adaptation of yeast to the new, glucose-rich environment that arose after the appearance of angiosperms. Moreover, the model shows that WGD is almost always detrimental on the short term in environments to which the lineage is preadapted, but can have immediate fitness benefits in “new” environments. This explains why WGD, while pivotal in the evolution of many lineages and an apparent “easy” genetic operator, occurs relatively rarely

    Tetraodon genome confirms Takifugu findings : most fish are ancient polyploids

    Get PDF
    An evolutionary hypothesis suggested by studies of the genome of the tiger pufferfish Takifugu rubripes has now been confirmed by comparison with the genome of a close relative, the spotted green pufferfish Tetraodon nigroviridis. Ray-finned fish underwent a whole-genome duplication some 350 million years ago that might explain their evolutionary success

    Multiple origins, one evolutionary trajectory: gradual evolution characterizes distinct lineages of allotetraploid "Brachypodium"

    Get PDF
    The “genomic shock” hypothesis posits that unusual challenges to genome integrity such as whole genome duplication may induce chaotic genome restructuring. Decades of research on polyploid genomes have revealed that this is often, but not always the case. While some polyploids show major chromosomal rearrangements and derepression of transposable elements in the immediate aftermath of whole genome duplication, others do not. Nonetheless, all polyploids show gradual diploidization over evolutionary time. To evaluate these hypotheses, we produced a chromosome-scale reference genome for the natural allotetraploid grass Brachypodium hybridum, accession “Bhyb26.” We compared 2 independently derived accessions of B. hybridum and their deeply diverged diploid progenitor species Brachypodium stacei and Brachypodium distachyon. The 2 B. hybridum lineages provide a natural timecourse in genome evolution because one formed 1.4 million years ago, and the other formed 140 thousand years ago. The genome of the older lineage reveals signs of gradual post-whole genome duplication genome evolution including minor gene loss and genome rearrangement that are missing from the younger lineage. In neither B. hybridum lineage do we find signs of homeologous recombination or pronounced transposable element activation, though we find evidence supporting steady post-whole genome duplication transposable element activity in the older lineage. Gene loss in the older lineage was slightly biased toward 1 subgenome, but genome dominance was not observed at the transcriptomic level. We propose that relaxed selection, rather than an abrupt genomic shock, drives evolutionary novelty in B. hybridum, and that the progenitor species’ similarity in transposable element load may account for the subtlety of the observed genome dominance

    Novelty and Convergence in Adaptation to Whole Genome Duplication

    Get PDF
    Whole genome duplication (WGD) can promote adaptation but is disruptive to conserved processes, especially meiosis. Studies in Arabidopsis arenosa revealed a coordinated evolutionary response to WGD involving interacting proteins controlling meiotic crossovers, which are minimized in an autotetraploid (within-species polyploid) to avoid missegregation. Here, we test whether this surprising flexibility of a conserved essential process, meiosis, is recapitulated in an independent WGD system, Cardamine amara, 17 My diverged from A. arenosa. We assess meiotic stability and perform population-based scans for positive selection, contrasting the genomic response to WGD in C. amara with that of A. arenosa. We found in C. amara the strongest selection signals at genes with predicted functions thought important to adaptation to WGD: meiosis, chromosome remodeling, cell cycle, and ion transport. However, genomic responses to WGD in the two species differ: minimal ortholog-level convergence emerged, with none of the meiosis genes found in A. arenosa exhibiting strong signal in C. amara. This is consistent with our observations of lower meiotic stability and occasional clonal spreading in diploid C. amara, suggesting that nascent C. amara autotetraploid lineages were preadapted by their diploid lifestyle to survive while enduring reduced meiotic fidelity. However, in contrast to a lack of ortholog convergence, we see process-level and network convergence in DNA management, chromosome organization, stress signaling, and ion homeostasis processes. This gives the first insight into the salient adaptations required to meet the challenges of a WGD state and shows that autopolyploids can utilize multiple evolutionary trajectories to adapt to WGD
    corecore