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Abstract

Contrary to the many whole genome duplication events recorded for angiosperms (flowering

plants), whole genome duplications in gymnosperms (non-flowering seed plants) seem to

be much rarer. Although ancient whole genome duplications have been reported for most

gymnosperm lineages as well, some are still contested and need to be confirmed. For

instance, data for ginkgo, but particularly cycads have remained inconclusive so far, likely

due to the quality of the data available and flaws in the analysis. We extracted and se-

quenced RNA from both the cycad Encephalartos natalensis and Ginkgo biloba. This was

followed by transcriptome assembly, after which these data were used to build paralog age

distributions. Based on these distributions, we identified remnants of an ancient whole

genome duplication in both cycads and ginkgo. The most parsimonious explanation would

be that this whole genome duplication event was shared between both species and had

occurred prior to their divergence, about 300 million years ago.

Introduction

Whole genome duplications (WGDs) have been prevalent during the evolutionary history of

flowering plants, and have even been linked to their origin as well as their fast rise to ecological

dominance [1–3]. Furthermore, although the duplication of entire genomes is mostly regarded

as an evolutionary dead-end [4–7], it has been proposed that, in times of rapid environmental

change, WGDs can confer an important evolutionary advantage [8–11]. This is, for instance,

suggested by the fact that many angiosperm lineages show evidence for independent WGD

events around the Cretaceous-Paleogene (K-Pg) extinction ~66 million years ago (Mya) [11,

12].

Contrary to the many WGD events recorded for angiosperms, the history of the non-flow-

ering gymnosperms paints a very different picture. Although far fewer gymnosperm species

exist today compared to the angiosperms, and as such many lineages containing evidence for

WGD events could have been lost, polyploidy events, ancient or more recent, in these seed
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plants seem rare. Thus far, Welwitschia mirabilis is the only gymnosperm showing evidence

for a relatively recent WGD event [13, 14], possibly also overlapping the K-Pg boundary. In

any case, this event occurred more recently than the divergence of Welwitschia from its closest

relative, Gnetum (135–110 Mya) [15–17], the genome of which shows no sign of a WGD [13].

Furthermore, Ephedra, the third Gnetales genus, also lacks evidence of WGD events [13],

excluding very recent duplication events that resulted in the widespread polyploidy seen in

extant species of this genus [18–20]. Li et al. [13] also provided evidence for independent

ancient WGDs in the conifer lineage that may have coincided with the more ancient Permian-

Triassic boundary, ~250 Mya. Similarly, as with the angiosperms, these conifer-specific WGDs

might have contributed to the survival and success of the conifer lineage during periods of

drastic environmental change [13]. The same study found evidence for an ancient WGD in the

Ginkgo lineage, attributing it to the ancient WGD event proposedly shared by all seed plants

[1]. Clear remnants of WGDs in cycads were not uncovered, likely due to the dearth of avail-

able public EST data [21], resulting in insufficient resolution to call an ancient WGD event in

this lineage.

The cycads were widespread during the Jurassic–Cretaceous, reaching their greatest diver-

sity ~200–65 Mya [22–24]. Today, however, only a mere 348 extant species in ten genera

remain [25]. The dramatic decrease in diversity was likely due to challenges such as at least

three mass extinction events, as well as the arrival of, and major competition from, the angio-

sperms. Although the lineage itself dates back ~270 million years, most extant cycad species

originated much more recently, most likely within the past 65 million years [22, 26, 27]. There-

fore, the popular referral to cycads as living fossils is not entirely accurate, as the lineage itself

is ancient but most species originated relatively recently. Their continued survival is somewhat

paradoxical, as they have particularly slow growth and cannot compete with the fast growing,

rather short-lived angiosperms. Here, we confirm that cycads have undergone an ancient

WGD and show that this event was likely shared with Ginkgo biloba, preceding the divergence

of these lineages.

Results and discussion

We sequenced transcriptome data from two tissues (see Materials and Methods) of representa-

tives of both Encephalartos natalensis (a native cycad species from the Kwazulu-Natal province

of South Africa) and Ginkgo biloba, and assembled high quality low-redundancy transcrip-

tomes [28]. The E. natalensis and G. biloba assemblies contained 22,204 and 23,845 transcripts

with average sequence lengths of 1,097 and 1,259 bases and average GC contents of 44.23 and

42.52%, respectively. Based on age distributions of paralogs inferred from synonymous substi-

tutions per synonymous site, or so-called KS distributions [29], a distinct peak with a median

KS of ~0.8 was identified for E. natalensis (Fig 1), a clear signature of an ancient WGD event.

G. biloba showed a similar KS distribution, and also contained a peak at a KS of ~0.8 (Fig 1).

This distribution is consistent with data reporting the presence of a WGD event in the evolu-

tionary history of ginkgo [13]. Since the KS peaks for both E. natalensis and G. biloba were at

similar KS values (Fig 1), this could suggest either a similar timeframe for both WGDs or a

shared WGD event in the ancestor of the two lineages.

We built a KS age distribution of one-to-one orthologs between E. natalensis and G. biloba
to investigate whether the duplication peaks identified in both indicated a shared WGD.

Assuming similar substitution rates in the two lineages [30], the time of speciation seems to be

slightly younger than the polyploidy events in both G. biloba and E. natalensis (Fig 1). Cycad

and ginkgo are thought to have diverged from one another, and from the other gymnosperms,

~330–270 Mya [16, 17, 27, 31, 32]. Although several studies suggest that cycads diverged
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earliest during gymnosperm evolution, with the ginkgo lineage following not long thereafter

[16, 26, 31–33], others show cycads and ginkgo as having diverged from a common ancestor

[17, 34–37] (Fig 2). In either case, the more parsimonious explanation would be to assume that

the duplication peaks observed in both lineages represent a shared event, rather than indepen-

dent ancient duplications that have occurred early in the evolution of both lineages. However,

the correct phylogenetic placement of this WGD event is uncertain. The WGD might repre-

sent the ancient seed-plant-specific WGD assumed to have occurred ~340 Mya [1], but could

also be gymnosperm-specific or nested within the gymnosperms (Fig 2) [38].

Due to the slow substitution rates of most of the gymnosperm taxa [13, 31, 39], these

ancient WGD events in the lineages of cycad and ginkgo (Fig 1), and conifers [13] are still dis-

cernible as distinct peaks in their KS distributions (Fig 1, Suppl. Fig S3 in [13]). Slow substitu-

tion rates result in gradual genomic change, conserving the remnants of ancient events in the

genomes of these species. Because these lineages separated from one another hundreds of mil-

lions of years ago, absolute dating of these WGD events is challenging, but they likely indicate

a shared event in a common ancestor (Fig 2).

It should be noted that recently a draft genome for G. biloba was presented, in which the

authors claimed to have found evidence for two WGD events based on the detection of two

different peaks in a KS distribution of paralogs [40]. However, we think their KS distributions

Fig 1. KS age distributions for Ginkgo biloba and Encephalartos natalensis transcriptomes. The red graph represents the age distribution of duplicates

(in the transcriptome) of G. biloba, while the blue graph represents the age distribution of duplicates of E. natalensis. The graph in grey denotes the KS

distribution for one-to-one orthologs of G. biloba and E. natalensis.

https://doi.org/10.1371/journal.pone.0184454.g001
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should be interpreted with caution, since the youngest peak, corresponding to a WGD esti-

mated between 147 and 74 Mya [40], is likely artificial and the result of thresholds used to con-

sider genes as duplicates rather than as identical. Furthermore, the inferred WGD dates as

obtained by Guan et al. [40] should be considered unrealistic. For instance, the authors assume

the older genome duplication to be between 735–515 Mya, which would predate the origin of

land plants. As we have shown in the current study, the WGD in ginkgo is probably only

slightly older (0.2 KS) than the divergence between cycads and ginkgo (Fig 1).

If the WGD detected here did not occur in the ancestor of the cycads and ginkgo, but earlier

in the gymnosperm evolution (green or blue squares in Fig 2), we would expect to see rem-

nants of this event in the Gnetales. Yet the complete absence of an ancient peak in the Gnetales

remains difficult to explain. One reason why such evidence is lacking might be the faster rate

of evolution in Gnetales, compared to other gymnosperms [39, 41, 42], resulting in any traces

of ancient polyploidies to be lost. On the other hand, the placement of the Gnetales within the

gymnosperms remains elusive. While different molecular markers have placed them within

the conifer lineage (the ‘Gnepine’ and ‘Gnecup’ hypotheses), sister to the conifers (the ‘Gneti-

fer’ hypothesis), or sister to all other gymnosperms (the ‘Gnetales-sister’ hypothesis) [30, 34,

36, 43–45], certain morphological traits even place them closer to the angiosperms, or as a

basal seed plant [46, 47]. Therefore, if the WGD event detected here indeed represents an

ancient gymnosperm or seed-plant WGD (see [38]), the lack of evidence for WGDs in the

Gnetales, except the more recent one in Welwitschia, and the difficulty in resolving their exact

phylogenetic placement, could suggest an evolutionary history that is different from the other

gymnosperms. In conclusion, despite the fact that early seed plant evolution remains problem-

atic with respect to both phylogenetic relationships and relative and absolute dating of WGD

events, we here provide conclusive evidence that cycads have also undergone an ancient

WGD.

Materials and methods

Materials from Encephalartos natalensis and Ginkgo biloba were obtained from plants grown at

the Manie van der Schijff Botanical Garden at the University of Pretoria, South Africa. Leaflets

Fig 2. Possible locations for the whole genome duplication uncovered for Encephalartos natalensis

and Ginkgo biloba. Cycad and ginkgo share a common ancestor and are sister to the ancestor of Gnetales

and conifers [17, 30, 34, 35, 37, 39]: the inferred polyploidy event could have occurred in the common

ancestor of the cycad and gingko lineages (red square), the gymnosperm ancestor (green square), or in the

seed plant ancestor (blue square). Note that the position of Gnetales remains uncertain (see text for details).

https://doi.org/10.1371/journal.pone.0184454.g002
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and rachis samples were collected separately from E. natalensis, while mature leaf and stem tis-

sue were sampled from three male G. biloba trees. RNA was extracted using a standard CTAB

RNA extraction method [48], followed by a clean-up step using the Qiagen RNeasy Plus Mini

Kit. RNA was sent for sequencing at Novogene, China, generating 150-bp libraries.

RNA-seq libraries from these tissues were used to construct de novo transcriptome assem-

blies for E. natalensis (66,583,315 paired end reads; 20 Gbp) and G. biloba (98,762,732 paired

end reads; 29.6 Gbp). The de novo assemblies were constructed with Velvet v1.2.10 [49] fol-

lowed by Oases v0.2.08 [50] with a k-mer size of 101, retaining only contigs larger than 200

bases. The redundancy of the assemblies was removed with the Evidential gene pipeline and

only the primary transcript of each loci was used in further analyses [51].

TransDecoder v.3.0.0 was used to predict coding regions in the transcriptomes of E. nata-
lensis and G. biloba [52], after which the 19,991 and 23,845 longest coding and peptide

sequence transcripts were selected for the species, respectively. KS age distributions for E. nata-
lensis and G. biloba were constructed as described previously [29]. Briefly, to construct the

paranome an all-against-all BLASTP search was performed of all the longest transcripts with

an E-value cutoff of 1 × 10−10, followed by gene family construction and prediction using the

mclblastline pipeline (v10-201, http://micans.org/mcl) [53]. Each gene family was aligned

using MUSCLE (v3.8.31). To obtain KS estimates for all pairwise comparisons in gene families,

maximum likelihood estimation was performed using the CODEML program of the PAML

package (v4.4c) [54, 55]. Gene families were then subdivided into subfamilies for which KS

estimates between members did not exceed a value of 5. To correct for the redundancy of KS

values (a gene family of n members produces n(n–1)/2 pairwise KS estimates for n–1 retained

duplication events), a phylogenetic tree was constructed for each subfamily using PhyML [56]

under default settings. For each duplication node in the resulting phylogenetic tree, all m KS

estimates between the two child clades were added to the KS distribution with a weight of 1/m
(where m is the number of KS estimates for a duplication event), so that the weights of all KS

estimates for a single duplication event sum up to one. One-to-one orthologous pairs between

E. natalensis and G. biloba were created by performing a reciprocal best hit BLASTP analysis of

the longest translated transcripts from one species against the other. Valid orthologous pairs

were then identified as having at least 30% identity over 150 amino acids.

Accession numbers

Raw reads of both transcriptomes are available at the National Center for Biotechnology Infor-

mation (https://www.ncbi.nlm.nih.gov/) under the submission number SUB2337915.
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