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Whole genome duplications (WGDs) have been hypothesized to be responsible for major transitions in evolution. How-
ever, the effects of WGD and subsequent gene loss on cellular behavior and metabolism are still poorly understood. Here
we develop a genome scale evolutionary model to study the dynamics of gene loss and metabolic adaptation after WGD.
Using the metabolic network of Saccharomyces cerevisiae as an example, we primarily study the outcome of WGD on
yeast as it currently is. However, similar results were obtained using a recontructed hypothetical metabolic network of the
pre-WGD ancestor. We show that the retention of genes in duplicate in the model, corresponds nicely with those retained
in duplicate after the ancestral WGD in S. cerevisiae. Also, we observe that transporter and glycolytic genes have a higher
probability to be retained in duplicate after WGD and subsequent gene loss, both in the model as in S. cerevisiae, which
leads to an increase in glycolytic flux after WGD. Furthermore, the model shows that WGD leads to better adaptation
than small-scale duplications, in environments for which duplication of a whole pathway instead of single reactions is
needed to increase fitness. This is indeed the case for adaptation to high glucose levels. Thus, our model confirms the
hypothesis that WGD has been important in the adaptation of yeast to the new, glucose-rich environment that arose after
the appearance of angiosperms. Moreover, the model shows that WGD is almost always detrimental on the short term in
environments to which the lineage is preadapted, but can have immediate fitness benefits in “new” environments. This
explains why WGD, while pivotal in the evolution of many lineages and an apparent “easy” genetic operator, occurs
relatively rarely.

Introduction

The occurrence of whole genome duplications
(WGDs) was already proposed by Ohno (1970). Nowa-
days, there is conclusive evidence for WGDs in several
lineages, such as yeast (Wolfe and Shields 1997; Kellis
et al. 2004), plants (Arabidopsis Genome Initiative 2000;
Bowers et al. 2003), and teleost fishes (Amores et al.
1998; Taylor et al. 2001; Semon and Wolfe 2007). It has
been speculated that these WGDs caused major transitions
in evolution (Huerta-Cepas et al. 2007), but as yet it is un-
known what the precise effects of a WGD are on cellular
behavior.

In this paper, we study the effects of WGD on cellu-
lar metabolism using an evolutionary systems biology ap-
proach, combining genome-scale, quantitative metabolic
modeling with individual-based evolutionary simulations.
Besides that this gives us more insight into the evolu-
tion of metabolic networks after WGD, it shows that de-
tailed, quantitative modeling can be easily combined with
evolutionary simulations, yielding new insights and pre-
dictive power. To our knowledge, there have been very
few attempts to combine evolutionary simulations with
detailed, quantitative modeling (exceptions are Gatenby
and Vincent 2003, Pal et al. 2006, and Van Hoek and
Hogeweg 2006, 2007). Such an evolutionary systems bi-
ology approach allows us to go beyond a posteriori plau-
sible explanations of observed evolutionary outcomes, by
exploring which evolutionary outcomes are likely, or even
necessary.

One would expect that cellular behavior, and specifi-
cally its metabolism, will change after WGD. After WGD,
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it is common that most duplicate genes are lost and only
a minority of the genes is retained in duplicate (e.g., ap-
proximately 500 gene pairs in Saccharomyces cerevisiae).
In this way, if we assume a gene dosage effect, the relative
abundance of gene products will alter and therefore cellular
metabolism can change extensively. Because in the yeast
lineage a WGD occurred and metabolism of S. cerevisiae
is very well studied, we use S. cerevisiae as a model system
to study the possible effects of WGD and subsequent gene
loss on cellular metabolism.

We use a fully compartmentalized, genome-scale
metabolic model (Duarte et al. 2004a), which is publicly
available. Because such a model is not available for the pre-
WGD ancestor of yeast, we study the effect that a WGD
would have if it would occur now in S. cerevisiae. In this
way, we hope to get a better understanding of how WGD
can change a metabolic network.

The fluxes through such a metabolic network can
be calculated using flux balance analysis (FBA). FBA is
a constraint-based modeling approach which, instead of
modeling the dynamics of a metabolic network, focuses
on determining the steady-state fluxes. Using stoichiomet-
ric (and possibly other) constraints, FBA tries to find a flux
distribution that optimizes for a certain objective function,
for example, the growth rate of the cell. Optimizing for the
growth rate of a cell has successfully been used to repro-
duce the growth rates for gene deletion studies (Edwards
and Palsson 2000; Famili et al. 2003) and by-product se-
cretion of cells (Famili et al. 2003; Duarte et al. 2004b).

Here we develop an individual-based, evolutionary
model to describe metabolic network evolution after WGD
and subsequent gene loss. The fitness of a metabolic net-
work is determined using FBA. This model assumes that
cell size is correlated with genome size and that the maxi-
mal flux through the reactions depends on gene dosage. In
this way, the flux constraints of the network, and therewith
cellular metabolism and fitness, change during evolution.

Indeed, it has been observed that haploid yeast cells
are smaller than diploid cells, which are again smaller
than tetraploid cells (Hennaut et al. 1970; Galitski et al.
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1999). Furthermore, even between organisms, a correlation
between cell size and genome size is observed (Cavalier-
Smith 1978). Therefore, we assume that after a WGD, the
cell size increases and gradually decreases when genes are
lost. This changes the surface area to volume ratio, which
is an important factor determining the metabolic capacities
of a cell (see, e.g., Kooijman et al. 1991).

It has been shown previously that gene retention of
many genes after WGD is for gene dosage reasons (Aury
et al. 2006) (in Paramecium tetraurelia). It must also
be noted that genetic regulation of most genes in yeast
is not affected by polyploidy. Only 17 yeast genes sig-
nificantly change their gene expression after polyploidy
(Galitski et al. 1999). Therefore, for almost all genes, it
is reasonable to assume that gene expression increases to-
gether with gene dosage.

Recently it has been proposed that the WGD that
occurred in yeast led to an increase in glycolytic flux
(Conant and Wolfe 2007). Using a kinetic model of gly-
colysis and assuming a dosage effect for duplicated genes,
it was shown that these duplicated genes could indeed en-
hance glycolytic flux. It was also shown that increased
glycolytic flux could generate a fitness advantage in a
glucose-rich environment. Using a comparative genomics
approach, it has also been established that in general yeast
species that underwent WGD are Crabtree positive, which
means that they produce ethanol in the presence of oxy-
gen, whereas most species that did not undergo WGD are
Crabtree negative (Merico et al. 2007).

These studies indicate that the WGD caused yeast to
be able to rapidly consume glucose. However, whether this
is the “expected” outcome of WGD and subsequent gene
loss in yeast is a completely different matter. WGD may
open many different evolutionary possibilities, from which
increase in glycolytic flux is only one. In contrast, here we
take a different approach. We study the effect of a WGD on
the whole metabolic network, using evolutionary model-
ing. By performing evolutionary simulations, we study the
WGD in yeast and the subsequent loss of genes. Instead of
a posteriori interpretation of the evolutionary outcome, we
study which evolutionary outcome(s) is/are to be expected.

The goal of this research is 2-fold. First, we are in-
terested in the effects of a WGD and subsequent gene loss
on cellular metabolism. Second, we want to know under
which circumstances a WGD is adaptive. An important
question then is whether a WGD opens up new possibil-
ities for evolution that are not available with small scale
duplications (SSDs). This we study by performing evolu-
tionary simulations with single gene duplications.

We find that our model can describe the essential fea-
tures of the WGD in S. cerevisiae. The WGD is followed
by massive gene loss, during which the relative abundance
of genes changes. The model satisfactorily predicts which
genes are retained in duplicate after the WGD that occurred
in the yeast lineage. Furthermore, we find that the WGD
leads to an increase in glycolytic flux, as has been proposed
previously (Conant and Wolfe 2007).

We also find that if cells are perfectly adapted to the
environment, WGD leads to a fitness decrease, whereas it
can increase fitness in new environments. Furthermore, if
duplication of a whole pathway is needed to increase fit-

ness, WGD is favored over SSDs. It appears that the abil-
ity to grow anaerobically evolved just before the WGD
(Moller et al. 2001; Gojkovic et al. 2004). Therefore, there
was a new anaerobic environment available for the yeast
lineage to adapt on. All these findings are in line with the
idea that the WGD in yeast helped to adapt to the newly
arisen environment of glucose-rich fruits.

Our results indicate that network evolution after WGD
is surprisingly consistent: Different evolutionary simula-
tions give rise to very similar metabolic networks. Fur-
thermore, these in silico evolved networks seem to have
changed in a similar way as the network of S. cerevisiae
after WGD. This is surprising, as WGD opens many dif-
ferent evolutionary paths, due to the increase in genetic
redundancy. Here we show that even in a changing environ-
ment, potentially allowing for different ways of adaptation,
consistently the same evolutionary path is chosen.

Materials and Methods

To study the evolution of yeast after a WGD, we
used a previously developed genome-scale model of yeast
metabolism (Duarte et al. 2004a). This model consists of
1061 metabolites and 1266 reactions. Therefore, the model
can be described by a 1266×1061 stoichiometric matrix.

All reactions are linked with genes of S. cerevisiae.
Some reactions have no corresponding genes, other reac-
tions have more than one corresponding gene. For sim-
plicity, it has been assumed that genes work together in
a Boolean way. For example, reaction X is performed by
GENE A OR GENE B, reaction Y is performed by (GENE
C AND GENE D) OR (GENE C AND GENE E), etc.

We now use this model as the basis for an evolution-
ary model that can describe the effect of a WGD and subse-
quent gene loss on the metabolic network. For this, we use
a flux balance approach. FBA maximizes the growth rate
of the cell, given the stoichiometric constraints and pos-
sible constraints on the flux values of each reaction. The
optimum that is found with FBA is global, though not nec-
essarily unique.

Our approach to model the WGD is to change the
constraints on the network and in this way the growth
rate, rather than changing the network itself. During evo-
lution, some genes will be kept in duplicate, some as sin-
gleton, and some will be entirely deleted. We assume that
the maximal flux value of a certain reaction is determined
by the number of genes present to catalyze that particular
reaction. Therefore, we assume dosage dependence, such
that the maximal flux through each reaction depends on
the copy number of the associated genes. When genes are
deleted during evolution, these maximal fluxes change and
in this way the constraints on the cells metabolism change
and cells can adapt to the environment.

We used the Matlab COBRA Toolbox (Becker et al.
2007) to perform FBA and all evolutionary simulations
were performed using Matlab.

A Model to Determine Changes in Flux Constraints

Below we describe the model we used to study meta-
bolic network evolution after WGD and its assumptions.
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For a more detailed description of the model, we refer to
the Supplementary Material online.

To model the evolution of S. cerevisiae after a WGD,
we need a formalism to describe the changes in flux con-
straints during evolution. Here we develop a model that
describes the changes in flux constraints of each reaction,
dependent on the copy number of all genes, the cell volume
and surface area. We assume that gene duplications only
change gene dosage, so we assume that duplicate genes re-
tain their function.

To check our assumption of dosage dependence, we
studied whether yeast genes that are retained in duplicate
after the WGD were associated with higher fluxes. Indeed,
we found that duplicated genes had significantly higher
fluxes, in particular in an anaerobic, glucose-rich environ-
ment. This confirms the results of Papp et al. (2004), who
already showed that the average in silico flux for dupli-
cated enzymes in yeast is higher than of single-copy en-
zymes. Furthermore, Kuepfer et al. (2005) showed that
gene dosage explains the retention of some duplicate genes
in yeast because they were associated with reactions with
high (experimentally measured) carbon fluxes. Finally,
genes that are retained in duplicate after WGD have on av-
erage higher expression rates (Seoighe and Wolfe 1999).
All these results indicate that selection for gene dosage is
an important reason for gene retention of duplicated genes.

We assume that, after a WGD, the cell size changes.
This appears to be a natural assumption, given the good
correlation between DNA content and cell size that is
ubiquitous in nature (Cavalier-Smith 1978; Gregory 2001;
Cavalier-Smith 2005). Furthermore, it has been observed
that polyploid yeast cells are larger than haploid yeast cells.
Hennaut et al. (1970) observed that a diploid cell is 1.87 as
large as a haploid cell. The volume ratio between tetraploid
and diploid cells was very similar (1.91). Furthermore, the
surface area increased with a factor 1.56. Using these data,
we now assume for our model that V ∼ N0.9 and A∼V 0.7,
where V is the volume of a cell; N, the number of genes;
and A, the surface area. Accordingly, after a WGD the vol-
ume increases by a factor 1.87. We also assume that cells
cannot become smaller than 1, that is, not smaller than be-
fore WGD.

We distinguish two type of reactions, exchange re-
actions and intracellular reactions. First we explain how
we model the changes in constraints of intracellular re-
actions. For intracellular reactions that are not associated
with a gene, we assume that the maximum flux (measured
in mmol/(gram dry weight hour)) remains constant. For
intracellular reactions that are associated with a gene, we
assume that the maximum flux scales with gene dosage
divided by volume.

Fmax(i) = Fmax,0(i)
γ(i)
β

(1)

where γ(i) refers to the relative change in gene dosage of
reaction i and β to the relative change in cell volume.

For exchange reactions, calculating how the maximal
fluxes change is less straightforward than for intracellular
reactions. It is often assumed that the surface area to vol-
ume ratio is a crucial factor that determines the uptake of
nutrients. Indeed, this factor can be important, but another

factor is the amount of transporter proteins that are avail-
able. It has been shown previously that in yeast both the
surface area to volume ratio and the amount of transporter
proteins can be the rate-limiting factor for the amount of
nutrient uptake (Hennaut et al. 1970). It was shown that
some uptake reactions are not (or hardly) different between
haploid and diploid yeast cells, whereas other reactions (al-
most) change by the surface area to volume ratio between
haploid and diploid cells. The authors conclude that some
uptake reactions are limited by the surface area of the cell
and others by the amount of transporter protein. In the Sup-
plementary Material (online) we derive a general formula
that describes both these situations, the saturation for sur-
face area and number of proteins. Suppose the surface area
of a cell changes with a factor α , the volume with a factor
β and gene dosage with a factor γ , we then find

Fmax(i) = Fmax,0(i)
αγ(i)

β
1+ x(i)

γ(i)x(i)+α
(2)

where x(i) is a parameter indicating whether exchange re-
action i is limited by the surface area of the cell or by the
amount of transporter protein. When x(i)= 0, the exchange
reaction is only dependent on the number of transporter
proteins; when x(i) = ∞, the exchange reaction only de-
pends on the surface area to volume ratio. This formula can
be compared with equation 1, which describes how intra-
cellular fluxes change after WGD. Indeed, the limit for x(i)
goes to 0 gives equation 1. Finally, uptake and excretion
fluxes that are not associated with genes (such as oxygen
uptake) are modeled using the limit for x(i) to infinity of
equation 2, such that these fluxes are only determined by
the surface area to volume ratio.

Unfortunately, it is not possible to know the x(i) val-
ues for all exchange reactions that are associated with
genes in yeast. We choose x(i) = 1 for all these reactions,
such that both the surface area to volume ratio and the
amount of transporter proteins are important in determin-
ing these exchange fluxes.

Initialization

In the previous section we described how the flux con-
straints change during the course of evolution. However,
we also need a way to establish the initial constraints on
the fluxes. As there is no experimental data for all reac-
tions, we approach this problem from a different point of
view. We assume that the initial maximal flux for each re-
action is determined by evolution. Genes that correspond
to reactions that need high fluxes, will have evolved high
transcription rates and vice versa. Therefore, we performed
FBA in 1000 of the environments that are given during the
evolutionary simulations with the original yeast model and
used the maximal fluxes that we found in these runs as
initial constraints.

Different Environments

Papp et al. (2004) showed that an important reason
that so many enzymes are not essential for viability in
S. cerevisiae is that some enzymes are essential in envi-
ronments different from laboratory conditions. This was
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FIG. 1.—Running average of genome size. The inset shows the
within population variation and average genome size. Note the selective
sweep, eliminating shorter genomes, increasing average genome size tem-
porarily despite the fact that only gene deletions occur.

done using a genome-scale model of yeast (Forster et al.
2003), the precursor of the model we use (Duarte et al.
2004a). They tested enzyme essentiality in 9 different en-
vironment types that might have been important for the
evolution of yeast. We now use nine types of environment,
similar to the ones used by Papp et al. (2004). These en-
vironment types were also used in the initialization pro-
cedure. We used one rich medium (environment 1, taken
from Bilu et al. 2006) and eight minimal media (2, minimal
glucose, low O2; 3, minimal glucose, anaerobic; 4, mini-
mal ethanol, low O2; 5, minimal acetate, low O2; 6, mini-
mal glucose, carbon limited; 7, minimal glucose, nitrogen
limited, anaerobic; 8, minimal glucose, phosphate limited,
anaerobic; 9, minimal glucose, sulfate limited, anaerobic).
For each metabolite in the environment we choose an input
flux from a uniform distribution between a certain min-
imum and a maximum flux. In this way, there are nine
types of environment, but every time an environment is
drawn, the concentrations are different. A precise descrip-
tion of these media is given in the Supplementary Material
(online).

Evolutionary Algorithm

We use a standard evolutionary algorithm to simulate
evolution after WGD. Again, details can be found in Sup-
plementary Material (online). In the basic simulations, we
start with 100 cells that have a duplicated genome. After
this, gene deletions are the only mutational operator. Point
mutations are not taken into account for two reasons. One
is that the effect of point mutations are not easy to predict.
Second, when point mutations would for example change
the maximal flux through reactions, all reactions would
evolve to very high maximal flux values. Only allowing
for gene deletion is a baseline assumption, with which we
circumvent this problem. After a mutation, the new con-
straints on all fluxes are recalculated. We also performed
simulations in which we start with the normal, nondupli-
cated genome and allow for gene duplication and deletion.
In these simulations the copy number of a gene cannot
exceed 2.

Results
Evolution of a metabolic network after WGD

In this section, we study the effects of WGD and
subsequent gene loss on the metabolic network of
S. cerevisiae, using the evolutionary model as described in
the Materials and Methods and the Supplementary Mate-
rial online. As explained there, we evolve a population of
100 cells in a changing environment, after WGD. Because
this is a small population size, we expect much evolution-
ary drift. Therefore, we performed 20 simulations using
different random seeds. Then we performed competition
experiments, where five individual cells of each of the 20
simulations (yielding 100 cells) were competed against
each other. The mutation rate was set to 0 in these sim-
ulations. Here we report the findings of the evolutionary
simulation yielding the population that most often won the
competition experiments. In Van Hoek and Hogeweg
(2006), we used a similar method to cope with evolutionary
drift.

In our model, a fitness increase can be gained by de-
creasing the genome size and therewith the cell size. When
the cell size decreases due to the deletion of a gene, the
maximal fluxes of all other reactions increase. This leads
to a selection pressure for a small genome apart from the
expected neutral loss of redundant genes after WGD. In-
deed massive gene loss has been observed after all WGDs
(see, e.g., Wolfe and Shields 1997; Aury et al. 2006).

In figure 1, the genome size of the population is
shown. Initially, the model consists of 743 genes (and
7 mitochondrial genes). We observe that after WGD the
genome sizes indeed decreases even under 743 and sta-
bilizes around approximately 450 genes. This is because
many genes in the model are dispensable, as has already
been studied elsewhere (Papp et al. 2004). This indicates
that gene loss in our model is sometimes neutral. However,
the faster decrease in genome size when there are more
than 750 genes is partly because there are still more
dispensable genes in the genome and partly because the
selection advantage of volume decrease. The population
variation over a small timeframe is shown in the inset of
the figure. Note that the average genome size can increase,
despite the fact that only gene deletions occur, because in-
dividuals with larger genome size can replace less fit indi-
viduals with smaller genome size.

In figure 2, we show how the fitness of cells changes
during the evolutionary simulations in each of the nine dif-
ferent environment types that are explained in the Supple-
mentary Material online, using maximal and intermediate
metabolite concentrations. Because we observed that
population heterogeneity is small, we only focus on these
individual cells. We observe that the growth rate in all envi-
ronments initially (this means at the WGD) decreases, both
for maximal and intermediate concentrations. For inter-
mediate metabolite concentrations however, this decrease
is markedly lower. Indeed, it is easier to adapt to lower
metabolite concentrations because then the internal fluxes
also tend to be smaller. The decrease in fitness is caused by
the approximately 2-fold volume increase, decreasing the
surface area to volume ratio, which again makes uptake of
nutrients more difficult. Therefore, it appears that in these
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FIG. 2.—Growth rate as a function of time in all nine environment types, with maximum (black) and intermediate (gray) metabolite concentrations.
Note that we zoomed in on the first half of the evolutionary simulation, during which the genome shrinks most.

circumstances WGDs are generally unfavorable for a cell
(we will come back to this later).

However, during evolution, the growth rate increases
in most environment types both for intermediate and maxi-
mal concentrations. In some environment types, the growth
rate becomes larger than the initial growth rate, whereas
the volume of the cells at the end of the simulations equals
the volume at t = 0. This increase in growth rate is accom-
plished by retention of certain genes in duplicate, for ex-
ample, the hexose transporters. In this way, in the long run
a WGD can be adaptive. In the the sulfate-limited environ-
ment, fitness is lost over time. This is not a general result.
In most simulations, fitness is also increased in this envi-
ronment. Because growth rates in the other eight environ-
ments are high in this simulation, the population resulting
from this simulation won the competition experiments nev-
ertheless. Note that the initial growth rate in this environ-
ment is low compared with other environments, therefore
this environment type contributes less to overall fitness.

Duplicated Genes

At the end of the simulations, the genome size of the
cells is much reduced. However, some genes are retained
in duplicate, on average approximately 50. Some genes are
retained in each of the 20 simulations we performed, others
only in a few. We determined whether the genes retained in
the model correspond to the genes retained in duplicate in
yeast after WGD in its ancestor. This comparison is com-
promised by the fact that we do not have the metabolic net-
work of the pre-WGD ancestor, only of yeast itself.

In figure 3, the fraction of genes that are retained in
duplicate after the WGD in yeast is plotted against the

number of times that these genes are retained in duplicate
in our 20 simulations, ranging from 0 to 20 times. A similar
approach of measuring the predictive power of a metabolic
model was used in Pal et al. (2006).

We observe that genes that are never retained in du-
plicate in our model are less often retained in duplicate
in S. cerevisiae, also lower than on average (the dashed
line). These results are significant. The P values are given
in table 1. The null hypothesis for calculating these P val-
ues was that every gene has an equal retention probability,

FIG. 3.—Fraction of genes that are retained in duplicate after the
WGD in S. cerevisiae, for five categories of genes (genes that are 0, 1, 2,
3–10, or 11–20 times retained in the simulations). The average retention
fraction is given by the dashed line. The gray lines give the result for the
network of S. cerevisiae, the black lines for the reconstructed network of
the pre-WGD ancestor.
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Table 1
Probabilities that Retention Rates are More Extreme than
When Calculated with the Null-Hypothesis that Every Gene
has an Equal Retention Probability Using a One-Tailed
Binomial Test

Saccharomyces cerevisiae Ancestor

Bin Total Duplicated P-Value Total Duplicated P-Value

0 524 93 0.0014 446 55 0.039
1 87 17 0.25 69 11 0.37
2 28 12 0.0058 23 5 0.13
3–10 78 43 2.8e-10 31 10 0.0049
11–20 26 8 0.13 14 9 4.1e−06

which is obviously rejected for some bins. The drop in the
retention frequency for genes that are in more than 50% of
the simulations retained in duplicate is an artifact of using
S. cerevisiae instead of a pre-WGD ancestor as explained
(and tested) below.

More than 80% of the ohnolog pairs (duplicated genes
that arose from WGD) in S. cerevisiae function in the same
reaction in an “OR”-like way. This means that reactions
that are retained in duplicate after the WGD in S. cerevisiae
are now performed by at least two genes. Therefore, if
such a reaction would again remain duplicated in our sim-
ulations each of the two ohnologs can remain duplicated,
whereas the other can be deleted. Therefore, in only 50%
of the cases (or less, if more genes code for this reaction) a
certain gene that codes for this reaction will be retained in
duplicate. This means that genes that are always retained
in duplicate, either belong to reactions for which all genes
belonging to that reaction are retained in duplicate (which
happens very seldom) or code for a reaction on their own. If
genes code for a reaction on their own, they most most of-
ten do not belong to an ohnolog pair. This explains the fact
that for larger probabilities to be retained in our model, the
probability to belong to an ohnolog pair decreases.

To check this explanation, we reconstructed a hy-
pothetical metabolic network of the pre-WGD ancestor
of S. cerevisiae, using the Yeast Gene Order Browser
(YGOB), version 2.0 (Byrne and Wolfe 2005) as follows.
We deleted all genes that are present in S. cerevisiae but not
in the ancestor (according to YGOB) from the metabolic
network. Furthermore, for every ohnolog pair, we deleted
one ohnolog (choosing the ohnolog that had the smallest
probability to be deleted in the evolutionary simulations).
As was to be expected, this metabolic network did not
function. Note that this network only did not function in
anaerobic environments. It turns out that the ancestor net-
work regains its functionality by adding only two genes
of yeast (AUS1 and URA1). We selected these genes be-
cause they were retained in all our simulations. Knock-
out experiments show that both these genes are needed
for efficient anaerobic growth, both in our model and in
yeast. AUS1 is involved in sterol transport (Wilcox et al.
2002). Because sterol biosynthesis is only possible under
aerobic conditions (Andreasen & Stier 1953), sterol trans-
porters are needed for anaerobic growth. Indeed, knockout
of AUS1 together with PDR11, another sterol transporter
that was also not present in the pre-WGD ancestor, leads to
a growth defect under anaerobic conditions (Wilcox et al.

2002). However, PDR11 is not included in the metabolic
network and therefore deletion of AUS1 alone leads to a
growth defect in the model. The second gene, URA1, is in-
volved in pyrimidine biosynthesis in anaerobic conditions
in yeast (Nagy et al. 1992). Strikingly, it has been shown
that this gene came from horizontal gene transfer of a
bacterial gene around the same time as the WGD in yeast,
enabling it to grow anaerobically. Knockout of this gene
also leads to a growth defect in anaerobic environments
(Gojkovic et al. 2004).

It has been shown however that Saccharomyces
kluyveri, a yeast species that diverged before the WGD,
is also able to grow anaerobically. Indeed, this species
also has URA1 (D15268), according to YGOB, although
it is not included in the ancestor (in YGOB). Furthermore,
S. kluyveri also has a homologue of PDR11 (F04312),
although it is not recognized as an ohnolog by YGOB be-
cause it has lost synteny. This confirms that our reconstruc-
tion of the metabolic network of the pre-WGD ancestor is
sensible. Moreover, it suggests that the pre-WGD ances-
tor did have these two genes and therefore that anaerobic
growth has evolved before the WGD (see also (Moller et al.
2001)). Therefore, it might be that the ability for anaerobic
growth has rendered the WGD selective.

When we perform the simulations with this recon-
structed network of the pre-WGD ancestor, we indeed find
a better correlation between the probability that a certain
gene is retained in duplicate in our simulations and in yeast
(fig. 3, black lines). For genes that are very often retained
in duplicate in the model, we thus find approximately a 4-
fold higher probability to be retained in duplicate in the
data than expected by chance (dashed line) and the result
is highly significant (table 1). This proves that the model
is capable of explaining the process of gene retention after
WGD well and therefore that gene dosage is an important
factor in this process. Because the outcome of these sim-
ulations are qualitatively very much comparable with the
simulations using the metabolic network of S. cerevisiae
(e.g., in terms of what kind of genes are retained in dupli-
cate, namely glycolysis and transporter genes), it follows
that the results with the metabolic network of S. cerevisiae
are not due to any circular logic. Glycolytic genes are not
retained in duplicate because S. cerevisiae itself is already
specialized on high glycolytic fluxes. From now on we
again focus on the simulations using the original metabolic
network of S. cerevisiae.

To find out what kind of reactions are retained in du-
plicate in the simulations, we looked at reactions that have
a higher reaction multiplicity at the end of the simulations
than at the beginning, in at least 4 of 20 simulations. There
are 43 of such reactions; 20 of these reactions belong to
the glycolysis/gluconeogenesis, 19 are extracellular trans-
port reactions, 2 belong to amino acid metabolism, 1 to
pyruvate metabolism, and 1 to fatty acid biosynthesis.

Our model therefore establishes that genes that func-
tion in transport reactions and glycolysis have a higher
probability to be kept in duplicate after WGD because of
metabolic optimization in the variable environments. For
example, all of the 17 glucose transporters genes that are
described in the model are retained in duplicate in the
simulations. In S. cerevisiae, 6 of 17 glucose transporter
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Table 2
Correlation between Transport Reactions and Glycolysis
Reactions and WGD

Transport Glycolysis

Yes No Percentage Yes No Percentage

WGD 67 256 21 18 305 5.6
Non-WGD 138 895 13 25 1008 2.4
Percentage 33 22 42 23
P value 0.0012 0.0045

genes described in the model form ohnolog pairs. This
appears to be a contradiction between the model and the
data. However, all 11 glucose transporters that do not be-
long to an ohnolog pair are the result of gene duplications
that occurred after the WGD (as can be seen in the YGOB
(Byrne and Wolfe, 2005)). Therefore, after WGD, all glu-
cose transporters were retained in duplicate, exactly as in
our model.

Is there evidence that glycolysis and transport reac-
tions are also generally more often retained in duplicate in
S. cerevisiae? Each gene belongs to one or more reactions
and for every reaction the pathway or function is given in
the model. Therefore, each gene belongs to at least one
pathway/function. We now counted how often genes are as-
signed to glycolysis and transport reactions, both for genes
that are known to be retained in duplicate after WGD (see
Byrne and Wolfe 2005) and genes that are not. Genes that
are assigned to different reactions were counted more than
once. The result is shown in table 2. We calculated the P
values in this table using a χ2 test.

We observe for example that 21% of the ohnologs
are functional in a transport reaction, whereas of the other
genes this is only 13%. For glycolysis genes, these per-
centages are 5.6 and 2.4, respectively. The fact that genes
belonging to glycolysis reactions are often retained in
duplicate has already been noted by Conant and Wolfe
(2007).

After the WGD in yeast, many more genes are re-
tained in duplicate and only a minority of these genes have
a function in glycolysis or transport (as can also be seen
from table 1. These other genes are kept in duplicate for
reasons our model does not explain. It could of course be
that retention of some of these genes gives a fitness ben-
efit that is, in our model, too small for these genes to be
fixed in the population, because of our small population
size. However, because we performed 20 different simula-
tions, we believe that this effect will not be large. Finally,
many ohnologs are not incorporated in the model (only 750
of over 6000 yeast genes are incorporated in the model),
partially because they are not metabolic genes.

Pathway Usage During Evolution

During evolution, we expect that pathways are ac-
tivated and inactivated because genes are deleted or
metabolic capacities change. To study how the fluxes
through reactions can change during evolution, we fol-
lowed the fluxes through reactions during the evolutionary
simulations. To avoid futile fluxes, we also minimized the
total flux through the network.

In figure 4, we have selected the behavior of reac-
tions that change significantly over time in the anaerobic
environment (env. 3), for three different random seeds of
the evolutionary simulations. Surprisingly, most reactions
change in a similar way for all random seeds. For exam-
ple, reactions 278, 1148, 1149, and 1186 (marked yellow),
which are involved in methionine metabolism, all become
active after a certain time. It appears that this pathway takes
over the function of a different pathway. Indeed, each time
reactions 763 and 112 (marked yellow), which are also in-
volved in methionine metabolism, become inactive, this
pathway becomes active.

Deletions of reactions are also very consistent. There
are several reactions that are deleted in all three simula-
tions, although they are initially active in this environment.
From the pattern of deletions, it is very clear that deletion
of one reaction can inactivate whole pathways and thereby
activate others. For example, deletion of reaction 180 or
169 in the first and the second simulation, respectively, de-
activates a whole pathway (marked orange).

Some changes in flux are easy to explain. For exam-
ple, reaction 78 (marked *) is activated after a certain time,
in all three simulations. Reaction 78 is responsible for ac-
etate transport. Therefore, because of the increase in gly-
colytic flux, cells start to also excrete acetate, instead of
only ethanol. However, most changes in the network are
not so easy to interpret.

Another interesting behavior is exhibited by reac-
tions 183, 187 and 12, 1225 and 1229 (marked **). Both
these pathways convert α-ketoglutarate into glutamate, an
important step in amino acid metabolism. Clearly, small
changes in the network lead to different optimal patterns
through these reactions, which causes the switching be-
tween these two optima.

All these examples show that the response of a
metabolic network to certain changes in uptake rates can
be very nonlinear. Indeed, it has previously been shown
that gene expression and therewith the fluxes through the
network can change drastically during short-term evolu-
tion of yeast, by only relatively small events (Ferea et al.
1999; Dunham et al. 2002). Such abrupt changes in net-
work dynamics can also be seen in figure 4. This could
also partly explain why so many yeast genes are dispens-
able: maybe they are only used under certain evolutionary
circumstances.

We observe that the fate of the metabolic network af-
ter WGD is more or less fixed. We might have expected that
in several evolutionary simulations, the outcome would be
different, because WGD might open many different pos-
sibilities. This is however not what we observe. Given a
certain environment, the outcome of network evolution af-
ter WGD appears to be fixed. Of course, this observation is
important for our method to be valid. If WGD could have
totally different outcomes for a certain environment, we
could never predict the outcome of WGD.

Under which Circumstances can a WGD be Adaptive?

The Effect of WGD on Adaptation to New Environments.
Up to now we have seen that the effects of a WGD in our



2448 van Hoek and Hogeweg

FIG. 4.—Flux through reactions in environment 3, for three different random seeds. Green indicates low flux, black intermediate flux, and red
high flux. Gray indicates that the reaction is deleted. The genes are ordered according to a clustering, grouping genes with similar expression patterns
together. The clustering is performed on data of all three simulations together on the indicated timepoints, using EPCLUST (http://ep.ebi.ac.uk/), with
a linear correlation-based distance and average linkage. The first timepoint indicates pre-WGD. The pathway/function for each reaction is indicated at
the right. At the top of the panel, we have shown the growth rate over time for the different cases. Reactions that are discussed in the text are marked.

simulations are comparable with the effect of the WGD in
S. cerevisiae. The WGD is followed by massive gene loss,
transporter genes and glycolysis genes are more often re-
tained, which leads to an increase in glycolytic flux. Fur-
thermore, we have seen that on the long term, the fitness
can increase compared with before the WGD. However, it
appears that a WGD cannot increase the growth rate instan-
taneously (fig. 2). In this section, we focus on the question
how WGD mutants can take over the population.

In the simulations discussed in the previous section,
we assumed that cells were already perfectly adapted to
the environment because we used the maximal flux through
each reaction experienced in 1000 environments as the ini-
tial constraints on the network. Therefore, because of the

decrease in surface area to volume ratio, the fitness is ini-
tially decreased after WGD.

We wondered whether a WGD could lead to a fitness
increase if cells were not previously adapted to the environ-
ment. Therefore, we performed simulations for which cells
were only adapted to eight of nine different environment
types. During the simulations, we let cells evolve mostly in
the previously unknown environment type.

The results of these nine simulations, using the max-
imal metabolite concentration as in figure 2, are shown in
figure 5 (gray lines). For every simulation, the growth rate
in the “new” environment type is shown. For most envi-
ronment types, we still observe a drop in the fitness. For
the ethanol and acetate environments however, we observe

http://ep.ebi.ac.uk/
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FIG. 5.—Evolution of growth rate in “new” environment types using maximum metabolite concentrations. Cells were fully adapted to all envi-
ronment types except the environment type for which we report the growth rate. In the simulation for environment 4, a “temperature” of 1e−05 was
used (see Materials and Methods) because the growth rate was so low in this environment. Again we zoomed in on the first half of the evolutionary
simulation. Gray, evolution using WGD and subsequent massive gene loss; Blacks, evolution using SSDs.

that the fitness increases instantly at the WGD and keeps
increasing continuously, until it reaches a certain level.

Why is it that in the ethanol and acetate environ-
ments fitness immediately increases? All other seven
environment types are glucose based. Therefore, these en-
vironment types mostly differ in the amounts of other
metabolites (e.g., oxygen, ammonia, or phosphate). This
means that adapting to one of those environments also
gives a pretty good adaptation to the others. However,
preadapting to the other eight environments does not give
good adaptation to acetate or ethanol, as growth on acetate
or ethanol is very different from growth on glucose.Indeed,
we observe that only in these environments the fitness is
much lower in figure 5 than in figure 2.

Given the parameters we use, a WGD will always de-
crease the maximal exchange fluxes because the surface
area to volume ratio becomes lower. The maximal intra-
cellular fluxes however do increase because the increase
in dosage is larger than the increase in volume, which is
somewhat less than a factor 2 after WGD. Therefore, if
the intracellular fluxes are perfectly adjusted, cells do not
benefit from the increase of these maximal fluxes and cells
only experience the negative effect of the lower surface
area to volume ratio. If these intracellular fluxes are not
perfectly adjusted, the cells can gain a benefit by the in-
crease in the maximal flux of these reactions and therefore
cells can increase their fitness. For this result, the fact that
the volume increase is less than a factor 2 is crucial. Note
that Galitski et al. (1999) measured a volume increase be-
tween tetraploid and diploid cells of more than a factor 2
(2.60), in contrast to Hennaut et al. (1970). The volume

increase between diploid and haploid yeast cells was how-
ever smaller than 2 (1.54).

Comparison between WGD and SSDs. Instead of WGD,
SSDs can also help to adapt to new environment types.
We are interested whether SSDs can lead to similar adap-
tations as WGD. It has been proposed that WGD can
lead to the duplication of entire pathways or protein com-
plexes, whereas SSDs cannot. Indeed, it has been shown
that gene duplicates that arose from the WGD in yeast
are more likely part of a protein complex than gene du-
plicates that arose from SSDs (Hakes et al. 2007). This
is even more clearly the case for ribosomal proteins
(Scannell et al. 2006). It has also been proposed that SSDs
cannot increase glycolytic flux as well as WGD (Conant
and Wolfe 2007). To test these ideas, we performed simu-
lations with which we start with the original metabolic net-
work of S. cerevisiae and let cells adapt using single gene
duplications and deletions. The results are also shown in
figure 5 (black lines).

First note that the black lines do not experience the
drop in fitness at time equals 0 because we do not start
with a WGD. In the first three environment types, the
rich, aerobic, and anaerobic glucose environment, we
observe that, whereas WGD can lead to a large fitness
increase, SSDs can only lead to a minor fitness increase.
In these three environments, the glucose metabolism is
an important determinant for the fitness of the cells. In
the simulations with WGD, all glycolysis reactions are
retained in duplicate at the end of the simulations. In the
simulations with SSDs, only approximately half of the
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glycolysis reactions have been duplicated at the end of
the simulations. This leads to an increase in glycolytic
flux, but less so than after WGD. This increase in gly-
colytic flux for SSDs is possible because one reaction
after the other becomes rate limiting in the glycolysis
and in this way the pathway can be duplicated. How-
ever, it is very difficult to duplicate the whole pathway,
particularly the reaction phosphofructokinase, which is
coded by a protein complex of two proteins (PFK1 and
PFK2).

In the ethanol and acetate environment, WGD also
performs better than SSDs. In the case of acetate, SSDs
cannot increase fitness altogether, whereas WGD leads to
an instant fitness increase. In the aerobic, glucose-limited
environment, no fitness increase is observed for either
mutational mechanisms.

Finally, in the anaerobic nitrogen-, phosphate- and
sulfate-limited environments, we observe that SSDs lead to
a faster fitness increase than WGD. Only after a long time
can WGD lead to a similar fitness increase than SSDs. The
difference is that, because these three environment types
are limited by the amount of minerals, cells need only to
duplicate the right transporter genes to gain a fitness in-
crease. Indeed, all fitness increases in these environments
can be attributed to a duplication of a transporter gene.
Therefore, when cells need to duplicate only single genes,
instead of whole pathways, SSDs lead to much faster adap-
tation than WGD. In summary, WGD performs better if a
whole pathway needs to be duplicated, whereas SSDs per-
form better if only single genes need to be duplicated.

Discussion

WGDs have been extensively studied using bioinfor-
matic pattern analysis. In this way, much has been learned
about genome evolution after WGD. It has been shown
that WGD is followed by massive gene loss and fixation
of genes because of gene dosage, subfunctionalization, or
neofunctionalization. Here we extend this work using an
evolutionary systems biology approach.

We have studied the evolution of a metabolic network
after WGD. Using very simple assumptions (gene dosage
and a correlation between cell size and genome size), we
have been able to formulate a model that can describe
genome and network evolution after WGD. This model
captures the essential features of this process. It is impor-
tant to note that, although the model is quite complex, the
model has surprisingly few parameters because of the way
we modeled the preadaptation of the cells.

One of the few parameters in the model is the vol-
ume increase after WGD. We used a value of 1.87, taken
from literature (Hennaut et al. 1970). However, as men-
tioned earlier, higher values have also been measured (2.60
by Galitski et al. 1999). To test whether the results change
for different values of this factor, we performed additional
simulations for values of 1.5, 2.0, and 2.15. We found that
the results did not change in essentials. Only the immediate
effect of WGD changed. When this factor is small, WGD
can become instantly adaptive in some environments, even
if cells are perfectly adapted because the increase in dosage
of transporter proteins becomes more important than the

decrease in surface area to volume ratio (see equation 2).
If this factor becomes larger than 2.0, we never observe
an immediate increase in fitness for “new” environments
anymore because both the surface area to volume ratio and
gene dosage decrease. The end results of the evolution-
ary simulations however did not change when varying this
factor.

Our model only focuses on the metabolic conse-
quences of WGD. Other effects of polyploidy are not taken
into account in the model. For example, it has been pro-
posed that heterosis is stronger in polyploid cells. Further-
more, gene redundancy is increased, which could also be
advantageous (Comai 2005). However, it is also known
that polyploids suffer from genome instability (Storchova
and Pellman 2004; Storchova et al. 2006), which will have
a negative effect on fitness after WGD. Interestingly, it
has been shown that metabolic genes were more retained
in duplicate than other genes after the most recent WGD
in P. tetraurelia due to the higher expression levels of
metabolic genes (Gout et al. 2009).

Apart from selection for a smaller genome, neutral
loss of genes also plays an important role. Because poly-
ploidy is followed by genome instability, we expect that
after WGD, gene deletion rates are higher than gene du-
plication rates. Without any selection pressure, this would
already lead to a decrease in genome size. In the process of
genome shrinkage, many duplicate genes are lost, which
changes, in contrast to the WGD itself, the relative protein
abundances of each gene. In this way, the constraints on
the metabolic network change.

Our model satisfactorily predicts gene retention, par-
ticularly when we use a reconstructed metabolic network
of the pre-WGD ancestor. We also find that the WGD in
yeast leads to an increase in glycolytic flux because both
glycolysis and transporter genes are retained more than on
average.

This last result is in correspondence with the results
of Conant and Wolfe (2007). They showed that glycolysis
genes are retained in duplicate more often than expected by
chance. Furthermore they found, using a kinetic model for
glycolysis and assuming gene dosage, that the retention of
duplicated genes leads to an increase in glycolytic flux. In-
stead of a posteriori interpretation of the outcome of WGD
in the yeast lineage, we here study how the metabolic net-
work of yeast evolves after WGD. In this way, we found
that an increase in glycolytic flux is not only a possible
but also the expected outcome of WGD in yeast, which is
surprising considering that WGD opens a whole range of
evolutionary possibilities.

In our model, the only pathway that is entirely re-
tained in duplicate is glycolysis. Reactions coming from
pyruvate, the endpoint of glycolysis, are not retained in
duplicate. Pyruvate can be regarded as a “hub” in the
metabolic network because many different pathways have
pyruvate as a starting point. Therefore, in the model, an
increased glycolytic flux can be shuttled to different path-
ways after pyruvate, which could explain why in the model
reactions coming from pyruvate have not been duplicated.
In contrast, the glycolysis is a very linear pathway, in which
it is much more difficult to reroute fluxes. Whether this ex-
planation also holds for the ancestral WGD in S. cerevisiae
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is however unclear as several reactions coming from pyru-
vate have been duplicated.

Functional divergence through subfunctionalization
(Force et al. 1999) or neofunctionalization (Byrne and
Wolfe 2007) is a possible evolutionary outcome of gene
duplication, which we did not include. However, at least
for metabolic genes, neofunctionalization does not occur
often, as we observed that more than 80% of the ohnolog
pairs, for which both genes are present in the model,
function in the same reaction in an “OR”-like way. This
confirms that most genes retain their function (or possi-
bly subfunctionalize). Functional divergence of duplicate
genes through subfunctionalization can be partly ac-
counted for in our model. For example, the glucose trans-
porter gene HXT1 of S. cerevisiae is expressed at high
glucose concentrations, whereas HXT2 and 4 are ex-
pressed at low glucose concentrations (Ozcan and Johnston
1999). By gene duplication, it has been possible for S. cere-
visiae to specialize genes for different glucose concentra-
tions and hence different fluxes. If there were only one
glucose transporter gene, this gene would probably be
expressed under all glucose concentrations. Because this
gene would not be specialized for high glucose concen-
trations, the maximum attainable flux would be lower.
Generally, we expect that if duplicated genes undergo sub-
functionalization, both duplicates will perform their func-
tion better and we expect a higher possible flux for these
reactions.

We did not take genetic regulation into account in our
model, in contrast to, for example, Covert et al. (2001),
Herrgard et al. (2006) and Shlomi et al. (2007). If we would
incorporate genetic regulation in the model, we would also
need to incorporate the evolution of genetic regulation dur-
ing network evolution. Instead, we assume that evolution
of genetic regulation is faster than network evolution, such
that genetic regulation is optimized during evolution to
maximize the growth rate.

Previously, it has been found that ribosomal proteins
are retained in duplicate after WGD more often than ex-
pected by chance (Wolfe 2004). In our model, we find a
strong correlation between growth rate (in a certain envi-
ronment) and the total flux through the network. There-
fore, if the growth rate would increase after WGD, which
we expect if WGD is fixed in the population, the total
flux through the network should also increase. To be able
to reach this higher total flux, it might be necessary to
have more ribosomes, which could explain, again assum-
ing dosage dependence of ribosomal genes, the retention
of ribosomal genes.

Pal et al. (2006) have adopted a similar approach
to model genome reduction in Buchnera aphidicola.
Performing sequential gene deletions in the metabolic
network of Escherichia coli, they arrived to a minimal
genome that could still function in a nutrient-rich envi-
ronment. Their algorithm is much simpler as ours because
we study genome evolution after WGD. Therefore, genes
can also be present twice in our model and we needed
a way to describe the difference in fluxes for reactions
that are present once or twice. Furthermore, we used
evolutionary simulations instead of the greedy search that
was used in Pal et al. (2006). Pal et al. (2006) indeed

showed for the first time that FBA can also be used to
study metabolic network evolution and they were able to
predict the evolutionary outcome of genome shrinkage in
B. aphidicola with more than 80% accuracy. Just as in Pal
et al. (2006), we find that metabolic network evolution is
surprisingly predictable, given the environments to which
cells are exposed, in contrast with the idea that WGD
opens up many different evolutionary opportunities.

With predictability, however, we do not mean that in
other organisms WGD would have the same outcome as in
yeast, only that in yeast WGD is not expected to lead to
other outcomes. We believe that this method could also be
used for studying the effect of WGD in other single-cell
eukaryotes (such as P. tetraurelia), but not for multicel-
lular organisms. The outcome of such simulations would
then of course depend on the imposed environment, which
in our case were mostly glucose-rich. Such a glucose-rich
environment is relevant for S. cerevisiae, but might not be
relevant for other organisms.

Concluding, we have developed a model based on
FBA, with which it is possible to study the effects of WGD
and subsequent gene loss on a metabolic network. Our
model can satisfactorily predict the evolutionary outcome
of the WGD in S. cerevisiae. There is good agreement be-
tween genes that are retained in duplicate in our model and
genes that have been retained in duplicate in S. cerevisiae.
We also found that during evolution, metabolic pathways
are activated and inactivated consistently between different
evolutionary simulations, indicating that gene dispensabil-
ity changes during evolution, which could for some part
explain why so many genes are dispensable in S. cerevisiae
(Papp et al. 2004).

Furthermore, we have shown that WGDs can be
selective in environments, for which a cell was not yet
perfectly adapted. Finally, we have shown that WGDs are
favored over SSDs if entire pathways need to be duplicated,
whereas the opposite is true if only a few genes need to be
duplicated.

These results are in nice correspondence with the
hypothesis that the WGD helped yeast to adapt to the
newly arisen environment of glucose-rich fruits (Conant
and Wolfe 2007; Merico et al. 2007) because we show that
WGD is likely to decrease fitness in known environments
but can increase fitness in new environments. Furthermore,
it appears that just before WGD, yeast evolved the abil-
ity to grow anaerobically, which also gave rise to a “new”
environment. For adaptation to such a, possibly anaerobic,
glucose-rich environment, an increased glycolytic flux is
needed, which is easy to achieve via WGD, but much more
difficult via SSDs.

Supplementary Material

Supplementary material is available at Molecular Bi-
ology and Evolution online (http://mbe.oxfordjournals.
org/).
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