6,797 research outputs found

    Analysis and modification of a single-mesh gear fatigue rig for use in diagnostic studies

    Get PDF
    A single-mesh gear fatigue rig was analyzed and modified for use in gear mesh diagnostic research. The fatigue rig allowed unwanted vibration to mask the test-gear vibration signal, making it difficult to perform diagnostic studies. Several possible sources and factors contributing to the unwanted components of the vibration signal were investigated. Sensor mounting location was found to have a major effect on the content of the vibration signal. In the presence of unwanted vibration sources, modal amplification made unwanted components strong. A sensor location was found that provided a flatter frequency response. This resulted in a more useful vibration signal. A major network was performed on the fatigue rig to reduce the influence of the most probable sources of the noise in the vibration signal. The slave gears were machined to reduce weight and increase tooth loading. The housing and the shafts were modified to reduce imbalance, looseness, and misalignment in the rotating components. These changes resulted in an improved vibration signal, with the test-gear mesh frequency now the dominant component in the signal. Also, with the unwanted sources eliminated, the sensor mounting location giving the most robust representation of the test-gear meshing energy was found to be at a point close to the test gears in the load zone of the bearings

    Increment in information and algorithmization of current spectrum tolerance control for rotary machine

    Get PDF
    This study shows that while diagnostic estimation of shaft movement asynchronous and noise components of vibration signal acts like restrictions decreasing reliability of measuring information. Proposed method and algorithm of separate tolerance control of parameters of vibration signal synchronous, asynchronous and noise components spectrums that provide increasing of measuring information reliability via decreasing of disturbing components. Generic parameters of distribution of energy spectrum for every component of vibration signal performed. Application of separate tolerance windows for generic indicators of energy spectrum of vibration signal synchronous, asynchronous and noise components enables to advance usage of informational capabilities of vibration signal. Performance of generic indicators enables algorithmization of process of detecting of changing’s in technical state of rotor, stator and energy elements of rotary machine

    Fault Diagnosis System of Rotating Machinery Vibration Signal

    Get PDF
    AbstractA high demand has been presented in the measuring and diagnosis of vibration signal of rotating machinery, which can reflect the running state information of rotating machinery equipment. This paper designs a new type of fault diagnosis system of rotating machinery vibration signal, which can measure the vibration acceleration and velocity signals accurately, and analyze the vibration severity and frequency division amplitude spectrum of vibration signal. Experiment showed that our system can diagnose typical mechanical fault

    CFAR vibration signal change test and its applications to real-time recognition of developing cracks in jet engine rotors

    Get PDF
    This paper introduces a new technique for early identification of fatigue cracks, namely the constant false alarm rate (CFAR) test. This test works on the null hypotheses that a target vibration signal is statistically similar to a reference vibration signal. In effect, this is a time-domain signal processing technique that compares two signals, and returns the likelihood whether the two signals are similar or not. The system monitors the vibration signal of the rotor as it cycles, and compares that vibration signal with, say, the original vibration signal. The difference vector reflects the change in vibration over time. As a crack develops, the vector changes in a characteristic way. Thus, it is possible, during CFAR test, to determine whether the two signals are similar or not. Therefore, by comparing a given vibration signal to a number of reference vibration signals (for several crack scenarios) it is possible to state which is the most likely condition of the rotor under analysis. The CFAR test not only successfully identifies the presence of the fatigue cracks but also gives an indication related to the advancement of the crack. This test, despite its simplicity, is an extremely powerful method that effectively classifies different vibration signals, allowing for its safe use as another condition monitoring techniqu

    Detection of bearing failure in mechanical devices using neural networks

    Get PDF
    We present a novel time-domain method for the detection of faulty bearings that has direct applicability to monitoring the health of the turbo pumps on the Space Shuttle Main Engine. A feed-forward neural network was trained to detect modelled roller bearing faults on the basis of the periodicity of impact pulse trains. The network's performance was dependent upon the number of pulses in the network's input window and the signal-to-noise ratio of the input signal. To test the model's validity, we fit the model's parameters to an actual vibration signal generated by a faulty roller element bearing and applied the network trained on this model to detect faults in actual vibration data. When this network was tested on the actual vibration data, it correctly identified the vibration signal as a fault condition 76 percent of the time

    Vibration analyzer

    Get PDF
    The invention relates to monitoring circuitry for the real time detection of vibrations of a predetermined frequency and which are greater than a predetermined magnitude. The circuitry produces an instability signal in response to such detection. The circuitry is particularly adapted for detecting instabilities in rocket thrusters, but may find application with other machines such as expensive rotating machinery, or turbines. The monitoring circuitry identifies when vibration signals are present having a predetermined frequency of a multi-frequency vibration signal which has an RMS energy level greater than a predetermined magnitude. It generates an instability signal only if such a vibration signal is identified. The circuitry includes a delay circuit which responds with an alarm signal only if the instability signal continues for a predetermined time period. When used with a rocket thruster, the alarm signal may be used to cut off the thruster if such thruster is being used in flight. If the circuitry is monitoring tests of the thruster, it generates signals to change the thruster operation, for example, from pulse mode to continuous firing to determine if the instability of the thruster is sustained once it is detected
    • …
    corecore