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Abstract

We present a novel time-domain method for

the detection of faulty bearings that has

direct applicability to monitoring the health

of the turbopumps on the Space Shuttle

Main Engine. A feed-forward neural network

was trained to detect modelled roller bearing

faults on the basis of the periodicity of

impact pulse trains. The network's

performance was dependent upon the number

of pulses in the network's input window and

the signal-to-noise ratio of the input signal.

To test the model's validity, we fit the

model's parameters to an actual vibration

signal generated by a faulty roller element

bearing and applied the network trained on
this model to detect faults in actual vibration

data. When this network was tested on the

actual vibration data, it correctly identified

the vibration signal as a fault condition 76%
of the time.

1.0 Introduction

A critical aspect of the Space Shuttle Main

Engine (SSME) as a reusable space vehicle

is the durability of its components. One

major inadequacy has been the insufficient

life of the bearings in the SSME's

turbopumps. The life expectancy of the

turbopump was designed to be 55 missions,

but actually the pumps require an overhaul

every one to three missions As a result, a

significant ground test program has been

required to provide "flight-qualified"

turbopumps. One means of reducing the cost

associated with ground testing is to provide

a preflight, non-invasive monitoring

procedure that can detect subtle bearing

failures without requiring the firing of the

SSME. This paper describes a novel bearing

failure detection technique that is suitable for

preflight inspection of SSME components.

The most common failure modes of rolling

element bearings are local defects in the

outer race, the inner race, or a rolling

element. As the bearing rotates, whenever

the defect passes through the element-to-race

contact area, a short duration impact is

generated that can be detected by
accelerometers or acoustic emission sensors

mounted near the beating. A typical

accelerometer signal generated by a faulty

bearing is shown in Figure 1. This signal is

characterized by transient events caused by

beating imperfections. These transients occur

against a background of minute transients

whose sum is approximated well by a

Gaussian distribution. The fault transients

typically exhibit a quasi-periodicity governed

by the rotational speed and the bearing

geometry 1. The interval between such

transients is typically much longer than the

duration of the transient itself. Such impact
transients have been recorded from SSME

turbopumps using acoustic emission sensors 2.
Because the structure of each fault transient

is generally random, the challenge associated

with the early detection of bearing faults is

to detect the fault transients' periodicity.
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Figure 1 A typical faulty vibration signal.

Impact transients are indicated.
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harmonics of the bearing cage at 104% of

the turbopump's rated power level. Even

under severe fault condidions, these spectral

peaks cannot be reliably detected.

More recently, time-frequency methods, such

as wavelet transforms, have been applied to

transient signals in an attempt to address the

averaging problems associated with Fourier

techniques J. Such techniques have proven

quite useful in characterizing temporally

local events. However, due to the local

nature of their basis functions the time-

frequency techniques are inappropriate for

detecting periodicity in the signal

As an alternative to spectral and time-

frequency techniques, we propose to use

time-domain analysis as a means of

detecting the inter-puLse interval associated

with bearing fault transients.

The simplest time-domain algorithm for

detection of pulse trains in the presence of

noise is averaging of points in the vibration
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pulse is itself random, being dependent on
the exact orientation and vibrations of all the

bearing components at that instant.

Consequently, the pulse spacing is not

exactly constant and no two pulses have the

same shape. As the result of the

randomness,the averagingprocessattenuates
the pulses just as it attenuates the

background noise, and does not improve

significantly the detectability of the fault.

Another practical limitation of the averaging

method is the need for accurate data

alignment during the averaging process. In

the engine cylinder pressure example, a
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one-per-revolutionsignal is sufficient for

perfect alignment of signals of any length.

In the bearing case, the frequency of the

pulses is a product of the rotational speed

and a geometric constant. Therefore, a

one-per-period signal cannot be generated,

making h impossible to align long records

accurately.

The contribution of this paper is the use of

a feed-forward neural network as an

alternative time-domain detection method for

pulse trains generated by faulty beatings.
The three main features of our method

overcome the limitations of the averaging

method. First, the fault transients are not

required to possess a specf'lc structure.

Second, there is no need for data alignment.

Finally, our algorithm can tolerate moderate

variations in pulse spacing. In summary, our

method can detect pulse trains in noise

without excessive sensitivity to the features

and repeatability of the pulses.

The next section details the signal model

used to train the neural network. Section 3.0

describes the neural network experiments

conducted on the modelled data. Section 4.0

provides the results of those experiments and

Section 5.0 presents the results of an

experiment applying the network detector to

actual vibration data generated by a faulty

roller bearing. This data was collected from

a simple test device. Finally, Section 6.0
discusses the conclusions drawn from these

results.

2.0 Vibration Signal Model

To develop the neural network-based fault

detector, we modelled the vibration signal

generated by a faulty bearing as a pulse train

embedded in Gaussian noise. The pulse

train possessed a specific periodicity. These

pulse train signals generated using various

signal-to-noise ratios (SNRs) were used to

train the neural network. Once trained, the

neural network was tested using actual

vibration data collected from a faulty ball

bearing in our laboratory.

In order to train a neural network to serve as

a generic fault detector for rolling element

bearings, a general signal model was

developed. Faulty vibration signals are

characterized by quasi-periodic impact

transients. Figure 1 shows a faulty vibration

signal with two impact transients indicated.

We were interested in a signal model that

provided only quasi-periodicity information

as a classification cue. Therefore, we used

the same Gaussian statistics to generate both

the pulses and the background noise. The

only difference between a pulse and noise

was the mean amplitude of their respective

distributions.

Two classes of vibration signal were

generated. The first class of signals

possessed pulses whose inter-pulse interval

was random (uniform distribution between

zero and twice the mean interval). The

second class was designed to represent a

vibration signal generated by a faulty

bearing. This signal possessed a pulse train

that exhibited a quasi-periodicity (a Gaussian

distribution with a variance equal to 20% of

the mean inter-pulse interval). The pulse

width to inter-pulse interval ratio was 0.22

and the position of the initial pulse was

chosen randomly (a uniform distribution

between zero and the mean inter-pulse

interval).

The signal-to-noise ratio of a model signal

was computed as follows

SNR = 101ogA( (1)
,Z

AN

where A s and AN are the means of the

Gaussian distributions used to generate the
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pulse andthenoise,respectively. The final

signal was generated by adding the Gaussian

noise to the pulse train signal.

3.0 Neural Network Training

Feed-forward neural networks with two

layers of modifiable weights were used

throughout the study. Two sets of

experiments were conducted. In the first

experiment, we trained the network on input

signals containing an average of ten pulses.

In the second experiment, the network was

trained on signals containing only three

pulses on average. The network trained on

ten pulses contained 192 input units, 20

hidden units, and 2 output units. The

network trained on three pulses contained 63

input units, 10 hidden units, and 2 output

units. The size of the input layer was

determined by the number of signal sample

points required to provide the appropriate

number of pulses to the network. The

number of hidden units was chosen to

provide a sufficient number of degrees of

freedom to solve the classification problem.

In both cases, the desired output was [1 -1]

for the good bearing and [-1 1] for the faulty

bearing.

The network was trained using the

back-propagation learning algorithm s. The

learning rate and the momentum were set at

0.01 and 0.9, respectively. These values

provided the best convergence and training
rates for the two networks.

During training, network weights were

adjusted so as to minimize the difference

between desired and actual output values.

Each pattern presented to the network was

generated at the time of presentation and,

therefore, the network never saw the same

pattern twice. Training continued until the

average improvement in performance over

weight updates fell below a f'Lxed threshold.

This is termed asymptotic performance.

4.0 Network Performance

For the ten-pulse and the three-pulse

networks, training was conducted on signals

with a given SNR. Performance figures for
each network was obtained for various SNR

values. Table 1 provides asymptotic

performance levels for the ten-pulse network

at the SNRs indicated. Although the SNR

for the last two experiments was less than

zero, the average amplitude of the pulse was

larger than the background noise as a result

of adding the pulse vector to the noise

vector to produce the f'mal signal.

,, , ,,

Ten-Pulse Neural Network

SNR [dB] Performance

[9]

20.0 87.7

14.0 86.4

6.0 81.9

0.0 80.2

-3.5 79.6

-6.0 54.6

Table 1 Detection performance for ten-

pulse network (% correct classification).

As can be seen from the performance values,

the network's ability to detect the quasi-

periodic pulse train degrades less than 10%
as the SN-R is decreased from 20.0 dB to

-3.5 dB. However, at an SNR of-6.0 dB the

performance falls to near chance. This

represents a precipitous drop in performance
below an SNR of -3.5 dB.

Table 2 presents performance values for the

three-pulse network. This network
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consistentlyperformed 10% to 15% below

the ten-pulse network. This indicates that

Three-Pulse Neural

Network

SNR [dB] Performance

[9]

20.0 75.4

14.0 76.5

6.0 74.0

0.0 69.7

-3.5 65.0

-6.0 60.0

-12.0 53.0

Table 2 Detection performance for three

pulse network (% correct classification).

the network performs better as a function of

the number of pulses within its input

window, as expected.

5.0 Vibration Data

To test the model against actual vibration

signals, we obtained vibration data from a

faulty ball bearing. The data was acquired
from an accelerometer mounted on the

bearing housing which held the outer race.

The inner race of the bearing was mounted

to a rotating shaft which was driven by an

electric motor. The bearing was

disassembled and the outer race was

damaged with a grinding tool. During data

collection, the shaft was rotated at a constant

RPM and the vibration signal was digitized

and recorded by a personal computer

equipped with an A/D converter.

The faulty vibration signal exhibited quasi-

periodic pulses similar to the model signal.

The frequency of the pulse train was

proportional to the RPM of the rotating

shaft. We estimated the signal-to-noise ratio

of the vibration signal to be 12.5 dB. We

computed this value by measuring the mean

amplitude of the signal within the inter-pulse
interval which we used as the mean of the

noise. We then measured the mean

amplitude of the pulses and subtracted the

mean amplitude of the noise to obtain the

mean amplitude of the signal. We then used

Equation 1 to compute the signal-to-noise

ratio.

A model of the vibration signal was

developed by fitting the parameters

governing the periodicity of the modelled

fault signal to the actual statistics of the

vibration signal. In this case the pulse width

to inter-pulse interval ratio was 0.054 which
was a factor of 4 times smaller than the

original model. The variance in the interval

between each pair of pulses was a 20% of

the mean inter-pulse interval. This value

was used previously to generate the

modelled signal for the simulation

experiments described above.

A three-pulse neural network was trained on

model signals as described above. This

network achieved an asymptotic performance

of 89% correct classification on the

modelled data. The network weights were

then f'Lxed and tested by presenting the
network actual vibration data obtained from

the faulty roller element bearing. The

network classified the fault signal as a fault
76% of the time.

6.0 Discussion

A feed-forward neural network was trained

to detect modelled roller bearing faults on

the basis of the quasi-periodicity of impact
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pulse trains. The network's performance

was dependent upon the number of pulses in

the network's input window and the signal-

to-noise of the input signal. To test the

model's validity, we fit the model's

parameters to an actual vibration signal

generated by a faulty ball bearing. We then

applied the network trained on this

experimental model to the detection of faults

in an actual vibration signal.

The performance of the three-pulse network

trained on the modelled signal whose

parameters were fit to actual vibration signal

statistics performed much better than the

three-pulse network trained during the

original set of experiments on signals with

the same SNR. This is accounted for by the

difference in the pulse width to inter-pulse
imerval ratio between the two cases. In the

simulation, model the ratio of the pulse

width to the interval between the pulses was

four times as large as the same ratio derived

from the actual vibration signal. Therefore,

the percentage of confusable pattems

generated using random inter-pulse intervals

was significantly larger for the simulation
model.

However, the performance of the same

network applied to the actual vibration signal

was much closer to the performance of the

network trained on the simulation model.

This suggests that perhaps the actual

variance in the inter-pulse interval exhibited

by the actual vibration data should have
been measured and used as a model

parameter in the experimental model. In any

case, the differential in classification

performance on the modelled and the actual

signal data suggests that a more accurate

signal model is required.

It should be pointed out that the performance

figures presented in this study were obtained

by requiring the neural network to make a

decision based on a very small portion of the

signal. In the case of the actual vibration

signal, the network's decision was based on

a signal segment only 3.75 ms in length.

We could improve the performance of a
neural network-based fault detector

significantly by using a time-delay neural
network which would allow us to scale the

amount of information available to the

network a couple orders of magnitude.

The current model completely ignores any

characteristic structure of the impact pulses.
This was done to ensure that the network

detector would be applicable for a variety of

bearing faults and systems being monitored
under various environmental conditions.

However, if the application were restricted

sufficiently to allow the use of characteristic

impact pulse features, a second neural
network could be used to extract such

features allowing the detection of faults at

much lower SNRs. The capability of neural
networks to detect transients in noise was

demonstrated in a previous paper 6. This

work showed that a neural network trained

to detect a transient with specific structural

characteristics consistently out-performed a

matched filter designed for the same

purpose.

In future work, we plan to apply this

technique to the monitoring of bearing

failure for the Space Shuttle Main Engine

turbopumps. This application would allow

us to monitor the system under controlled

conditions ensuring that the RPM of the

pump was held to a fixed value. However, in

some practical applications, where the RPM

of the rotating shaft could vary widely, it

would be necessary to either restrict the

range of RPMs monitored by a neural
network fault detector or use a bank of

network detectors each tuned to detect faults

in a specific RPM range. This is due to the

fact that the network cues on periodicity
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information which must be restricted to a

finke range in order to distinguish a periodic

pulse train from random pulses.
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