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Abstract. This paper introduces a new technique for early identification of fatigue cracks, namely the constant false alarm 
rate (CFAR) test. This test works on the null hypotheses that a target vibration signal is statistically similar to a reference 
vibration signal. In effect, this is a time-domain signal processing technique that compares two signals, and returns the 
likelihood whether the two signals are similar or not. The system monitors the vibration signal of the rotor as it cycles, and 
compares that vibration signal with, say, the original vibration signal. The difference vector reflects the change in vibration 
over time. As a crack develops, the vector changes in a characteristic way. Thus, it is possible, during CFAR test, to 
determine whether the two signals are similar or not. Therefore, by comparing a given vibration signal to a number of 
reference vibration signals (for several crack scenarios) it is possible to state which is the most likely condition of the rotor 
under analysis. The CFAR test not only successfully identifies the presence of the fatigue cracks but also gives an 
indication related to the advancement of the crack. This test, despite its simplicity, is an extremely powerful method that 
effectively classifies different vibration signals, allowing for its safe use as another condition monitoring technique. 
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Introduction 
 
The machines and structural components require 
continuous monitoring for the detection of cracks and crack 
growth for ensuring an uninterrupted service. Non-
destructive testing methods like ultrasonic testing, X-ray, 
etc., are generally useful for the purpose. These methods 
are costly and time consuming for long components, e.g., 
railway tracks, long pipelines, etc. Vibration-based 
methods can offer advantages in such cases [1]. This is 
because measurement of vibration parameters like natural 
frequencies is easy. Further, this type of data can be easily 
collected from a single point of the component. This factor 
lends some advantages for components, which are not fully 
accessible. This also helps to do away with the collection 
of experimental data from a number of data points on a 
component, which is involved in a prediction based on, for 
example, mode shapes.  

Nondestructive evaluation (NDE) of structures using 
vibration for early detection of cracks has gained 
popularity over the years and, in the last decade in 
particular, substantial progress has been made in that 
direction. Almost all crack diagnosis algorithms based on 

dynamic behaviour call for a reference signature. The latter 
is measured on an identical uncracked structure or on the 
same structure at an earlier stage.  

Dynamics of cracked rotors has been a subject of great 
interest for the last three decades and detection and 
monitoring have gained increasing importance, recently. 
Failures of any high speed rotating components (jet engine 
rotors, centrifuges, high speed fans, etc.) can be very 
dangerous to surrounding equipment and personnel (see 
Fig. 1), and must always be avoided. Jet engine disks 
operate under high centrifugal and thermal stresses. These 
stresses cause microscopic damage as a result of each flight 
cycle as the engine starts from the cold state, accelerates to 
maximum speed for take-off, remains at speed for cruise, 
then spools down after landing and taxi. The cumulative 
effect of this damage over time creates a crack at a location 
where high stress and a minor defect combine to create a 
failure initiation point. As each flight operation occurs, the 
crack is enlarged by an incremental distance. If allowed to 
continue to a critical dimension, the crack would eventually 
cause the burst of the disk and lead to catastrophic failure 
(burst) of the engine. Engine burst in flight is rarely 
survivable. 
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Fig. 1. Jet engine fan section failure 
 
 
Problem Statement 

 
Suppose that we desire to compare a target vibration signal 
and a kth reference vibration signal, which have p response 
variables. Let xij(k) and yij be the ith observation of the jth 
response variable of the kth reference signal and the target 
signal, respectively. It is assumed that all observation 
vectors, xi(k)=(xi1(k), ..., xip(k))′, yi=(yi1, ..., yip)′, i=1(1)n, 
are independent of each other, where n is a number of 
paired observations. Let zi(k) = xi(k)−yi, i=1(1)n, be paired 
comparisons leading to a series of vector differences. Thus, 
in order to compare the above signals, and return the 
likelihood whether the two signals are similar or not, it can 
be obtained and used a sample of n independent 
observation vectors Z(k)=(z1(k), ..., zn(k)). Each sample 
Z(k), k∈{1, …, m}, is declared to be realization of a 
specific stochastic process with unknown parameters. It is 
assumed here that zi(k), i=1(1)n, are independent p-
multivariate normal random variables (n≥p+2) with 
common mean a(k) and covariance matrix (positive 
definite) Q(k). A goodness-of-fit testing for the 
multivariate normality is based on the following theorem. 

Theorem 1 (Characterization of the multivariate 
normality). Let zi(k), i=1(1)n, be n independent p-
multivariate random variables (n≥p+2) with common mean 
a(k) and covariance matrix (positive definite) Q(k). Let 
wr(k), r = p+2, …, n, be defined by 
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then the zi(k) (i=1, …, n) are Np(a(k),Q(k)) if and only if 
wp+2(k), …, wn(k) are independently distributed according 
to the central F-distribution with p and 1, 2, . . . , n−(p+1) 
degrees of freedom, respectively. 

Proof. The proof is similar to that of [2] and so it is 
omitted here. 

Goodness-of-fit Testing for the Multivariate 
Normality. The results of Theorem 1 can be used to obtain 
test for the hypothesis of the form H0: zi(k) follows 
Np(a(k),Q(k)) versus Ha: zi(k) does not follow 
Np(a(k),Q(k)), ∀i = 1(1)n. The general strategy is to apply 
the probability integral transforms of wk, ∀k = p+2(1)n, to 
obtain a set of i.i.d. U(0,1) random variables under H0 [2]. 
Under Ha this set of random variables will, in general, not 
be i.i.d. U(0,1). Any statistic, which measures a distance 
from uniformity in the transformed sample (say, a 
Kolmogorov-Smirnov statistic), can be used as a test 
statistic. 

Testing for Similarity of the Two Signals. In this 
paper, for testing that the two signals (target signal and 
reference signal) are similar, we propose a statistical 
approach that is based on the generalized maximum 
likelihood ratio. We have the following hypotheses: 

H0(k): Similarity is valid for the acceptable range of 
accuracy under a given experimental frame; 
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H1(k): Similarity is invalid for the acceptable range of 
accuracy under a given experimental frame.    

Thus, for fixed n, the problem is to construct a test, 
which consists of testing the null hypothesis 

H0(k): zi(k) ∼ Np(0,Q(k)),   ∀i = 1(1)n,                    (4) 

where Q(k) is a positive definite covariance matrix, versus 
the alternative 

 H1(k): zi(k) ∼ Np(a(k),Q(k)),   ∀i = 1(1)n,              (5) 

where a(k)=(a1(k), ..., ap(k))′ ≠ (0, ..., 0)′ is a mean vector. 
The parameters Q(k) and a(k) are unknown. 
 
GMLR Statistic 
 

In order to distinguish the two hypotheses (H0(k) and 
H1(k)), a generalized maximum likelihood ratio (GMLR) 
statistic is used. The GMLR principle is best described by a 
likelihood ratio defined on a sample space Z with a 
parameter set Θ, where the probability density function of 
the sample data is maximized over all unknown parameters, 
separately for each of the two hypotheses. The maximizing 
parameter values are, by definition, the maximum 
likelihood estimators of these parameters; hence the 
maximized probability functions are obtained by replacing 
the unknown parameters by their maximum likelihood 
estimators. Under H0(k), the ratio of these maxima is a 
Q(k)-free statistic. This is shown in the following. Let the 
complete parameter space for θ(k)=(a(k),Q(k)) be 
Θ={(a(k),Q(k)): a(k)∈Rp, Q(k)∈Qp }, where Qp is a set of 
positive definite covariance matrices, and let the restricted 
parameter space for θ, specified by the H0(k) hypothesis, be 
Θ0={(a(k),Q(k)): a(k)=0, Q(k)∈Qp}. Then one possible 
statistic for testing H0(k): θ(k)∈Θ0 versus H1(k): θ(k)∈Θ1, 
where Θ1=Θ−Θ0, is given by the generalized maximum 
likelihood ratio 
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Under H1(k), the joint likelihood for Z(k) is given by 
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and  â (k)=Z(k)u/u′u  
 
are the well-known maximum likelihood estimators of the 
unknown parameters Q(k) and a(k) under the hypotheses 
H0(k) and H1(k), respectively, u=(1, ..., 1)′ is the n-
dimensional column vector of units. A substitution of  (9) 
into (6) yields 
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Taking the (n/2)th root, this likelihood ratio is evidently 
equivalent to 
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Now the likelihood ratio in (11) can be considerably 
simplified by factoring out the determinant of the p × p 
matrix Z(k)Z′(k) in the denominator to obtain this ratio in 
the form 
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This equation follows from a well-known determinant 
identity. Clearly (12) is equivalent finally to the statistic 
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where )()( 1 knk QT = . It is known that ))(,)(( kk Ta  is 

a complete sufficient statistic for the parameter 
θ(k)=(a(k),Q(k)). Thus, the problem has been reduced to 
consideration of the sufficient statistic ))(,)(( kk Ta . It 

can be shown that under H0, Vn is a Q(k)-free statistic 
which has the property that its distribution does not depend 
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on the actual covariance matrix Q(k). This is given by the 
following theorem. 

Theorem 2 (PDF of the statistic Vn(k)). Under H1(k), 
the statistic Vn(k) is subject to a noncentral F-distribution 
with p and n−p degrees of freedom, the probability density 
function of which is 
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where 1F1(b;c;x) is the confluent hypergeometric function, 
q(k)=a′(k)[Q(k)]−1a(k) is a noncentrality parameter. Under 
H0(k), when q(k) = 0, (14) reduces to a standard              F-
distribution with p and n−p degrees of freedom, 
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Proof. The proof follows by applying Theorem 1 [3] 
and being straightforward is omitted here. 

CFAR Test 

The CFAR test of H0(k) versus H1(k), based on Vn(k), is 
given by 
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where h(k)>0 is a threshold of the test which is uniquely 
determined for a prescribed level of significance α(k). It 
follows from (15) that this test achieves a fixed probability 
of a false alarm. 

 
 
 
 
 
 
 
 

If Vn(k)>h(k) then the kth reference vibration signal is 
eliminated from further consideration. 

If (m −1) reference vibration signals are so eliminated, 
then the remaining reference vibration signal (say, kth) is 
the one with which the target vibration signal may be 
identified. 

If all reference vibration signals are eliminated from 
further consideration, we decide that the target vibration 
signal cannot be identified with one of the m specified 
reference vibration signals.  

If the set of reference vibration signals not yet 
eliminated has more than one element, then we declare that 
the target vibration signal may be identified with the k*th 
reference vibration signal, where 

 

)),()(( max arg* kVkhk n
Dk

−=
∈

                         (17) 

 
where D is the set of simulation models not yet eliminated 
by the above test. 
 

 
Conclusion 

 
The main idea of this paper is to find a test statistic 

whose distribution, under the null hypothesis, does not 
depend on unknown (nuisance) parameters. This allows 
one to eliminate the unknown parameters from the 
problem. 
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