140 research outputs found

    On leapfrog-Chebyshev schemes for second-order differential equations

    Get PDF
    In this thesis the efficient time integration of semilinear second-order ordinary differential equations is investigated. Based on the leapfrog (Störmer, Verlet) scheme a new class of explicit two-step schemes is constructed by utilizing Chebyshev polynomials. For deriving rigorous error bounds of these leapfrog-Chebyshev (LFC) schemes a more general class of two-step schemes is introduced. Precise conditions are stated for this general class guaranteeing stability as well as second-order convergence in time. In addition, the influence of the starting value is analyzed in detail. Furthermore, by combining the leapfrog scheme with this general class of schemes a class of multirate two-step methods is constructed. Sufficient conditions for the stability of these schemes are derived as well as error bounds showing the second-order convergence in time. For both the LFC schemes and the multirate schemes if equipped with the LFC schemes it is shown that in specific situations they outperform the leapfrog scheme. Numerical examples are provided to illustrate the theoretical results

    A Numerical Study of Methods for Moist Atmospheric Flows: Compressible Equations

    Full text link
    We investigate two common numerical techniques for integrating reversible moist processes in atmospheric flows in the context of solving the fully compressible Euler equations. The first is a one-step, coupled technique based on using appropriate invariant variables such that terms resulting from phase change are eliminated in the governing equations. In the second approach, which is a two-step scheme, separate transport equations for liquid water and vapor water are used, and no conversion between water vapor and liquid water is allowed in the first step, while in the second step a saturation adjustment procedure is performed that correctly allocates the water into its two phases based on the Clausius-Clapeyron formula. The numerical techniques we describe are first validated by comparing to a well-established benchmark problem. Particular attention is then paid to the effect of changing the time scale at which the moist variables are adjusted to the saturation requirements in two different variations of the two-step scheme. This study is motivated by the fact that when acoustic modes are integrated separately in time (neglecting phase change related phenomena), or when sound-proof equations are integrated, the time scale for imposing saturation adjustment is typically much larger than the numerical one related to the acoustics

    An extension of A-stability to alternating direction implicit methods

    Get PDF
    An alternating direction implicit (ADI) scheme was constructed by the method of approximate factorization. An A-stable linear multistep method (LMM) was used to integrate a model two-dimensional hyperbolic-parabolic partial differential equation. Sufficient conditions for the A-stability of the LMM were determined by applying the theory of positive real functions to reduce the stability analysis of the partial differential equations to a simple algebraic test. A linear test equation for partial differential equations is defined and then used to analyze the stability of approximate factorization schemes. An ADI method for the three-dimensional heat equation is also presented

    Plane wave stability of some conservative schemes for the cubic Schr\"{o}dinger equation

    Get PDF
    The plane wave stability properties of the conservative schemes of Besse and Fei et al. for the cubic Schr\"{o}dinger equation are analysed. Although the two methods possess many of the same conservation properties, we show that their stability behaviour is very different. An energy preserving generalisation of the Fei method with improved stability is presented.Comment: 12 pages, 6 figure

    Multiple-grid convergence acceleration of viscous and inviscid flow computations

    Get PDF
    A multiple-grid algorithm for use in efficiently obtaining steady solution to the Euler and Navier-Stokes equations is presented. The convergence of a simple, explicit fine-grid solution procedure is accelerated on a sequence of successively coarser grids by a coarse-grid information propagation method which rapidly eliminates transients from the computational domain. This use of multiple-gridding to increase the convergence rate results in substantially reduced work requirements for the numerical solution of a wide range of flow problems. Computational results are presented for subsonic and transonic inviscid flows and for laminar and turbulent, attached and separated, subsonic viscous flows. Work reduction factors as large as eight, in comparison to the basic fine-grid algorithm, were obtained. Possibilities for further performance improvement are discussed

    Broadcast Caching Networks with Two Receivers and Multiple Correlated Sources

    Full text link
    The correlation among the content distributed across a cache-aided broadcast network can be exploited to reduce the delivery load on the shared wireless link. This paper considers a two-user three-file network with correlated content, and studies its fundamental limits for the worst-case demand. A class of achievable schemes based on a two-step source coding approach is proposed. Library files are first compressed using Gray-Wyner source coding, and then cached and delivered using a combination of correlation-unaware cache-aided coded multicast schemes. The second step is interesting in its own right and considers a multiple-request caching problem, whose solution requires coding in the placement phase. A lower bound on the optimal peak rate-memory trade-off is derived, which is used to evaluate the performance of the proposed scheme. It is shown that for symmetric sources the two-step strategy achieves the lower bound for large cache capacities, and it is within half of the joint entropy of two of the sources conditioned on the third source for all other cache sizes.Comment: in Proceedings of Asilomar Conference on Signals, Systems and Computers, Pacific Grove, California, November 201
    corecore