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Abstract

With the advent of high performance parallel computing, audio rate room auralization using finite dif-

ference time domain methods is becoming possible in a reasonable computation time. Yet, there are still

deficiencies in the methods which are used for this purpose, particularly with regard to minimizing numeri-

cal dispersion over the full range of audible frequencies.

This paper is concerned with construction techniques for families of methods for the test case of the 2D

wave equation. Such methods are explicit, can be of very high accuracy, and operate over a small local

stencil. Such schemes can be attractive in a parallel computation environment. As such methods will depend,

invariably, on a set of free parameters, including the Courant number, a major concern is optimization. The

remainder of this paper approaches the problem of setting up such an optimization problem in terms of

various constraints and a suitable cost function. Some of the constraints follow from consistency, stability,

isotropy and accuracy of the resulting scheme, and others from perceptual considerations peculiar to audio.

Simulation results will be presented.

∗sbilbao@staffmail.ed.ac.uk
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INTRODUCTION

Room acoustics simulation, for purposes of room auralization, or artificial reverberation, can

be carried out in a variety of ways. Many techniques currently in use are based on ray tracing

[1] or image source methods [2]—while efficient algorithms are available in these cases, allowing for

rendering in a reasonable amount of time, these methods do possess certain weaknesses—ray tracing

methods are a good approximation at high frequencies, and image source methods can become very

complex, computationally, when the domain of interest is no longer of a geometrically simple form.

Finite difference time domain (FDTD) methods [3, 4], while computationally much more costly,

allow a complete rendering of the entire acoustic field within an enclosure—in theory! In prac-

tice, however, FDTD methods can introduce audible artifacts of their own, and particularly spuri-

ous numerical dispersion, leading to wave propagation at speeds which are frequency and direction

dependent. One remedy to this problem is to operate at an oversampled rate—but, for all FDTD

simulations, the memory requirements/operation count scale as a power of the sample rate, and thus

there is a premium on algorithms which operate at an audio rate (such as 44.1 kHz, 48 kHz, etc.).

Another approach is design more complex schemes, for which updates depend on not just near-

est neighbour points, either targeting numerical anisotropy or dispersion as a whole. While such

schemes require more arithmetic operations, the memory requirement is not significantly altered—

such algorithms are well suited to implementation in parallel hardware [5]. The design problem,

however, becomes significantly more complex, as one is faced with a parameterized FDTD method,

where the number of parameters may be quite large. There are two difficulties here: determining

sufficient conditions for numerical stability for such methods, and finding a means of optimizing

such schemes to target the minimization of numerical dispersion (while bearing in mind various

constaints peculiar to audio which play an important role in setting up the resulting optimization

problem).

In this article, for simplicity, the system of interest is the wave equation in 2D. The modified

equation method [6, 7] is applied to schemes dependent on a number of free parameters, in order to

arrive at families of schemes of a specified order of isotropy and accuracy. Such specifications can

then be used in order to set up an optimization problem, the solution of which can be approached

in a variety of ways. Simulation results are presented, comparing modified equation approaches to

accuracy with global minimization of phase velocity error over wavenumber space.

APPROXIMATIONS TO THE LAPLACIAN OVER A REGULAR GRID

Consider the Laplacian operator in 2D, defined, in Cartesian coordinates, as

∇
2
=

∂2

∂x2
+

∂2

∂y2
(1)

In this section, approximations to the Laplacian over a regular grid, of spacing h are considered.

Over such a grid, a grid function uξx,ξy
, depending on two grid indeces ξx and ξy is intended as an

approximation to some underlying function u(x, y), at locations x = ξxh and y= ξyh.

Over such a grid, a symmetric approximation δ̂l,m to the Laplacian operator ∇2, including grid

points distant from the operating point by (l,m) or (m, l) units may be written as

δ̂l,m =
2

h2
(

l2 +m2
)

(

µl,xµm,y +µm,xµl,y −2
)

=∇
2
+O(h2) (2)



where µb,x and µb,y are averaging operators, defined, for integer b ≥ 0, in terms of operation over a

grid function uξx,ξy
as

µb,xuξx,ξy
=

1

2

(

uξx+b,ξy
+uξx−b,ξy

)

µb,yuξx,ξy
=

1

2

(

uξx,ξy+b +uxix,ξy−b

)

(3)

The above operators are characterized by integers l,m, where, without loss of generality one

may choose l ≥ m ≥ 0, and where at least one of l, m is nonzero. (Note that the simple five point

Laplacian operator corresponds to a choice of l = 1, m = 0.) Notice also that each such operator

selects a distinct family of points surrounding the point of operation, or stencil, allowing a simple

computational cost to be associated with each such operator independently of others which may be

applied simultaneously (one multiplication, and either four additions (when l = m) or eight (when

l �= m). See Figure 1, showing the stencils of certain members of this family.

l =1, m=0 l =1, m=1 l =2, m=0 l =2, m=1 l =2, m=2

FIGURE 1: Stencils of approximations δ̂l,m to the Laplacian, for various values of l, m, operating at points marked with

a ×.

Spatial Frequency Domain

When applied to a wave-like solution,

uξx,ξy
= e jh(βxξx+βyξy) (4)

for wavenumber β= [βx,βy], the operators δl,m behave as multiplicative factors δl,m:

δl,m =
2

h2
(

l2 +m2
)

(

cl,xcm,y + cm,xcl,y −2
)

(5)

where, for integer b ≥ 0

cb,x = cos(bβxh) cb,y = cos(bβyh) (6)

Series Expansions

Given that one may expand cb,x as

cb,x =

∞
∑

p=0

(−1)p

(2p)!
h2pβ

2p
x (7)

and similarly for cb,y, one may expand the expression for δl,m as

δl,m =
2

(l2 +m2)h2

(

∞
∑

p=0

∞
∑

q=0

(−1)p+qh2(p+q)

(2p)!(2q)!

(

l2pm2q
+ l2qm2p

)

β
2p
x β

2q
y −2

)

(8)

Defining M as

M = p+ q (9)



this expression may be written as

δl,m =−|β|2 +
2

l2 +m2

(

∞
∑

M=2

(−1)M h2M−2
M
∑

q=0

l2(M−q)m2q + l2qm2(M−q)

(2q)!(2(M− q))!
β

2(M−q)
x β

2q
y

)

(10)

or, more compactly, as

δl,m =−|β|2+2

(

∞
∑

M=2

(−1)M h2M−2

(2M)!

M
∑

q=0

gl,m,M,qβ
2(M−q)
x β

2q
y

)

gl,m,M,q =
(2M)!

(

l2(M−q)m2q + l2qm2(M−q)
)

(l2 +m2)(2q)!(2(M− q))!

(11)

Parameterized Approximations

Consider now a set Q = {(l1,m1), (l2,m2), . . . , (lNQ
,mNQ

)} of NQ approximations to the Laplacian.

The approximation

δ̂Q =
∑

(l,m)∈Q

αl,mδ̂l,m (12)

is also an approximation to the Laplacian provided that the constants αl,m satisfy the constraint

∑

(l,m)∈Q

αl,m = 1 Consistency (13)

For simplicity, the ensemble of such parameters may be written as the vector α.

The parameterized operator above transforms to

δQ =−|β|2 +2

(

∞
∑

M=2

(−1)M h2M−2

(2M)!

∑

(l,m)∈Q

αl,m

M
∑

q=0

gl,m,M,qβ
2(M−q)
x β

2q
y

)

(14)

Isotropy

The bth power of the operator ∇2 transforms to

(−1)b
|β|2b

= (−1)b
(

β2
x +β2

y

)b
= (−1)b

b
∑

q=0

b!

q!(b− q)!
β

2(b−q)
x β

2q
y (15)

Suppose that we would like the operator δQ to be isotropic to 2Mith order, where Mi ≥ 2. This

then implies the following linear constraints on αl,m:

∑

(l,m)∈Q

αl,m gl,m,M,q = rM

M!

q!(M− q)!
, M = 2, . . . , Mi q = 0, . . . , M (16)

for some constants rM , M = 2, . . . , Mi. By symmetry, and using rM =
∑

(l,m)∈Q αl,m gl,m,M,0, these can

be reduced to the following:

∑

(l,m)∈Q

αl,m

(

gl,m,M,q −
M!gl,m,M,0

q!(M− q)!

)

= 0, M = 2, . . . , Mi q = 1, . . . ,floor

(

M

2

)

Isotropy

(17)

The transformed operator δQ may then be written as

δQ =−|β|2 +2

(

Mi
∑

M=2

(−1)M h2M−2

(2M)!
rM |β|2M

)

+O(h2Mi ) (18)



TIME DEPENDENT FINITE DIFFERENCE SCHEMES FOR THE WAVE EQUATION

As a simple test case to be discussed in this article, consider the 2D wave equation:

∂2u

∂t2
=∇

2u ∇
2
=

∂2

∂x2
+

∂2

∂y2
(19)

where here, u = u(x, y, t) is a neutral variable, which could signify a pressure distribution, or a veloc-

ity potential [8] in an enclosure, at time t, and at coordinates x and y. For simplicity here, the wave

speed has been chosen as 1 (or the system nondimensionalized).

Two Step Parameterized Schemes

Suppose now that the solution u(x, y, t) is to be approximated by a finite difference scheme, oper-

ating with a time step k (where Fs = 1/k is the sample rate). un
ξx,ξy

represents an approximation to

u(x, y, t) at x = ξxh, y= ξyh, t = nk.

Consider the following two step parameterized scheme:

δttu = δQu (20)

for grid function un
ξx,ξy

, where

δttu
n
ξx,ξy

=
1

k2

(

un+1
ξx,ξy

−2un
ξx,ξy

+un−1
ξx,ξy

)

(21)

Here, δQ is some parameterized approximation to the Laplacian operator. Two step schemes are of

interest for various reasons in acoustics applications: compared with multistep schemes (such as,

e.g., Runge Kutta, Adams Moulton, etc.), such schemes do not introduce spurious parasitic solutions,

as the order of the approximation matches that of the model system (here, two). Another benefit,

especially important if such schemes are to be used in large room acoustics problem is that of the

memory requirement, a critical concern on current parallel hardware, for example—memory require-

ments grow with the number of steps required in the update, and the two step scheme is minimal in

this regard.

Such schemes are also explicit, i.e., the solution may be advanced as

un+1
= 2un

−un−1
+k2δQun (22)

and thus, compared with implicit methods, requiring linear system solutions (potentially very large

in room applications), computational complexity is quite low.

Modified Equations and Accuracy

For time harmonic grid functions un
ξx,ξy

= e j(kωn+hβxξx+hβyξy), the operator δtt becomes a multi-

plicative factor

−4

k2
sin(ωk/2)=−ω2

+

Mi
∑

M=2

2(−1)M k2M−2

(2M)!
ω2M

+O(k2Mi ) (23)

Supposing that the approximation δQ is isotropic to 2Mith order, the scheme tranforms, as a

whole, to

−ω2
+|β|2 +2

Mi
∑

M=2

(−1)M

(2M)!

(

k2M−2ω2M
−h2M−2rM |β|2M

)

=O(k2Mi ,h2Mi ) (24)



Under the further conditions that

rM =λ2M−2 M = 2, . . . , Mi or
∑

(l,m)∈Q

αl,m gl,m,M,0 =λ2M−2 Accuracy (25)

where

λ= k/h (26)

is assumed constant, the above expansion reduces to

−ω2
+|β|2 +2

Mi
∑

M=2

(−1)M k2M−2

(2M)!

(

ω2M
−|β|2M

)

=O(k2Mi ) (27)

Furthermore, it is true that

ω2M
−|β|2M

=

(

ω2
−|β|2

)

PM(ω2, |β|2) (28)

for some multinomial PM(ω2, |β|2), and thus

(

−ω2
+|β|2

)

(

1+O(k2)
)

=O(k2Mi ) (29)

or

−ω2
+|β|2 =O(k2Mi ) (30)

and thus the scheme approximates the 2D wave equation to 2Mith order.

Stability

In order to examine stability, consider again the case of a time harmonic grid function. The

symbol corresponding to the scheme is then

−4

k2
sin2 (ωk/2)= δQ (31)

which is satisfied for real frequencies ω when

max
βx,βy

δQ ≤ 0 λ≤λQ

(

α
)

=
2

minβx,βy

(

h
√

−δQ

) Stability (32)

These serve as stability conditions for the scheme; in particular, λQ

(

α
)

is the maximal Courant

number for a given parameterized set of approximations Q with weights α.

OPTIMIZATION

The constraints above provide a framework for the optimization of schemes over the parameters

α, and λ, the Courant number, which is not independent of α. The constraints (13) and (17) are linear

in α. The constraint (25), however, is dependent on λ, and the range of available λ is dependent on

α, from the stability conditions (32). Thus the space of parameters α to be explored is not simple.

Before defining a cost function, it is worth noting a constraint which is peculiar to audio.



First, note that, from (32), if for a given choice of parameters α, λ is chosen away from its maximal

value of λQ

(

α
)

, there will be a loss of bandwidth—the scheme will not be capable of producing

frequencies above ωmax =
2
k

sin−1
(

λ/λQ

(

α
))

. Thus it may make sense to choose, a priori,

λ=λQ

(

α
)

=
2

minβx,βy

(

h
√

−δQ

) Stability(Strong) (33)

so that, for a given parameter set α, λ is determined.

The choice of a cost function in optimization is a very delicate matter. First, define the normalized

wavenumber variables β̂= hβ. The numerical phase velocity can then be defined as

vφ(β̂)=
ω

|β|
=

2

λ|β̂|
sin−1

(

λ

2

√

−h2δQ

)

(34)

which is dependent only on functions of the variable β̂ and λ, but not k or h explicitly. A mean square

error can then be defined as

E(α)=

∫π

0

∫π

0
w

(

vφ−1
)2

dβ̂xdβ̂y (35)

where w = w(β̂) is a weighting function—a useful choice of such a weighting function is one which

selects wavenumbers β̂ with |β̂| ≤ β̂0, for some β̂0 ≤π.

SIMULATIONS

It is useful to compare numerical phase velocity contour plots, as a function of 0 ≤ β̂x, β̂y ≤ π

under both modified equation methods, specifying an order of accuracy, and also under general op-

timization. For comparison, in Figure 2, such plots are given for simple nine point schemes, where

variations of 0.5 % in numerical phase velocity are indicated by contours. The fourth plot shown,

with a1,0 = 2/3 and a1,1 = 1/3 is the nine point optimized scheme (isotropic to fourth order).

α1,0 =1 α1,1 =0

β̂x

β̂
y

1 2 3

1

2

3

α1,0 =0 α1,1 =1

β̂x

β̂
y

1 2 3

1

2

3

α1,0 =0.5 α1,1 =0.5

β̂x

β̂
y

1 2 3

1

2

3

α1,0 =0.667 α1,1 =0.333

β̂x

β̂
y

1 2 3

1

2

3

FIGURE 2: Phase velocity contour plots, with contours of 0.5%, for various members of the family of schemes with Q =

{(1,0), (1,1)}, with parameters a1,0 and a1,1 as indicated.

One choice one must make is that of the family Q of approximations; this choice, as it scales

directly with computational cost, should be made a priori. As a first attempt at using modified

equation methods, one can examine families Q for which NQ , the number of distinct approximations

to the Laplacian is one more than the number of distinct constraints to be employed, giving a one

parameter optimization over families of schemes of a given order of accuracy. λ is assumed set

according to the strong stability criterion (33). Modified equation schemes, of 4th, 6th and 8th order,

for several choices of familes of grid points are shown in Figure 3. As all constraints refer to behaviour

about spatial DC, as expected, there is an increasingly large flat region, encompassing, in the 8th



order case, more than 2/3 of the wavenumber range of interest (with less that 0.5 % variation in wave

speed.

4th order
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FIGURE 3: Numerical phase velocity contours for modified equation methods of 4th, 6th and 8th order, over a variety of

choices of sets of grid points.

For comparison, one may attempt brute force optimization over these same families of grid points.

Here, the mean square objective function (35) has been used
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FIGURE 4: Numerical phase velocity contours for the choices of sets of grid points as illustrated in Figure 3, under

optimization with the objective function given in (35), over a region of wavenumbers with |β̂| ≤ 0.95π.

CONCLUDING REMARKS

In this paper, parameterized families of wider stencil families for the 2D wave equation have

been examined, and various constraints on the parameters, corresponding to consistency, isotropy,



and accuracy have been introduced, allowing a means of developing optimization methods. The main

benefit of such methods is that, despite the higher operation count, it is possible to obtain very low

numerical dispersion over a very wide range of wavenumbers, allowing operation at a relatively low

sample rate.

In terms of optimization, there are various issues of interest: one is in the specification of am

appropriate objective function. Here, a simple mean square criterion has been proposed, but a maxi-

mum variation (L∞) measure is perhaps more appropriate. More generally, for applications in acous-

tics, the objective function should, ideally be framed in terms of psychoacoustic criteria. More prob-

lematic, however, is the problem itself—due to the interaction between the free scheme parameters

and the Courant number through stability constraints (and, in the case of modified equation meth-

ods, accuracy constraints as well), it is not at all clear whether the optimization problem, regardless

of the objective function chosen, possesses a unique minimum (or even a small number of such min-

ima). Nevertheless, simple optimization methods, such as gradient descent do seem to converge to a

global minimum in all cases examined here.

When boundary conditions are introduced, the termination of such schemes in such a way as to

maintain numerical stability is a major consideration, and will be attacked in future work.

ACKNOWLEDGMENTS

This work was supported by the European Research Council, under grant number StG-2011-

279068-NESS.

REFERENCES

[1] G. Naylor. Odeon - another hybrid room acoustical model. Applied Acoustics, 38:131–143, 1993.

[2] J. Allen and D. Berkley. Image method for efficiently simulating small-room acoustics. Journal

of the Acoustical Society of America, 66(4):943–950, 1979.

[3] D. Botteldooren. Finite-difference time-domain simulation of low-frequency room acoustic prob-

lems. Journal of the Acoustical Society of America, 98(6):3302–3308, 1995.

[4] J. Strikwerda. Finite Difference Schemes and Partial Differential Equations. Wadsworth and

Brooks/Cole Advanced Books and Software, Pacific Grove, California, 1989.

[5] L. Savioja. Real-time 3d finite-difference time-domain simulation of low- and mid-frequency room

acoustics. In Proc. Int. Conf. Digital Audio Effects, Graz Austria, September 2010.

[6] G. R. Shubin and J. B. Bell. A modified equation approach to constructing fourth order methods

for acoustic wave propagation. SIAM Journal of Scientific and Statistical Computing, 8:135–51,

1987.

[7] G. Cohen and P. Joly. Fourth order schemes for the heterogeneous acoustics equation. cname,

80:397–407, 1990.

[8] P. Morse and U. Ingard. Theoretical Acoustics. Princeton University Press, Princeton, New Jersey,

1968.


