On leapfrog-Chebyshev schemes for second-order differential equations

Abstract

In this thesis the efficient time integration of semilinear second-order ordinary differential equations is investigated. Based on the leapfrog (Störmer, Verlet) scheme a new class of explicit two-step schemes is constructed by utilizing Chebyshev polynomials. For deriving rigorous error bounds of these leapfrog-Chebyshev (LFC) schemes a more general class of two-step schemes is introduced. Precise conditions are stated for this general class guaranteeing stability as well as second-order convergence in time. In addition, the influence of the starting value is analyzed in detail. Furthermore, by combining the leapfrog scheme with this general class of schemes a class of multirate two-step methods is constructed. Sufficient conditions for the stability of these schemes are derived as well as error bounds showing the second-order convergence in time. For both the LFC schemes and the multirate schemes if equipped with the LFC schemes it is shown that in specific situations they outperform the leapfrog scheme. Numerical examples are provided to illustrate the theoretical results

    Similar works