374 research outputs found

    Opening the black box:Petri nets and privacy by design

    Get PDF

    12th International Conference on Sustainable Energy Information Technology (SEIT 2022)

    Get PDF
    A way to reduce carbon emissions in cities is through movement by bicycle or on foot. However, it sometimes means to pass through high-pollution zones and consequently breath low quality air. We then propose a green Intelligent Transportation System (ITS) for zero-emission mobility users, providing users with low-pollution routes to avoid the high-pollution zones. This proposal uses ITS to promote the use of alternative transportation to classical motor vehicles to reduce carbon emissions. This is based on Complex Event Processing (CEP) technology to gather and process real-time data, a Decision Support System designed as a Fuzzy Inference System (FIS) to make decisions about recommended transit zones, taking also into account the user experience level and specific weather data, and Colored Petri Nets (CPN) as a tool to compute the routes. This is therefore an all-in-one solution to provide green routes, with the benefits of each one of the technologies used

    The DS-Pnet modeling formalism for cyber-physical system development

    Get PDF
    This work presents the DS-Pnet modeling formalism (Dataflow, Signals and Petri nets), designed for the development of cyber-physical systems, combining the characteristics of Petri nets and dataflows to support the modeling of mixed systems containing both reactive parts and data processing operations. Inheriting the features of the parent IOPT Petri net class, including an external interface composed of input and output signals and events, the addition of dataflow operations brings enhanced modeling capabilities to specify mathematical data transformations and graphically express the dependencies between signals. Data-centric systems, that do not require reactive controllers, are designed using pure dataflow models. Component based model composition enables reusing existing components, create libraries of previously tested components and hierarchically decompose complex systems into smaller sub-systems. A precise execution semantics was defined, considering the relationship between dataflow and Petri net nodes, providing an abstraction to define the interface between reactive controllers and input and output signals, including analog sensors and actuators. The new formalism is supported by the IOPT-Flow Web based tool framework, offering tools to design and edit models, simulate model execution on the Web browser, plus model-checking and software/hardware automatic code generation tools to implement controllers running on embedded devices (C,VHDL and JavaScript). A new communication protocol was created to permit the automatic implementation of distributed cyber-physical systems composed of networks of remote components communicating over the Internet. The editor tool connects directly to remote embedded devices running DS-Pnet models and may import remote components into new models, contributing to simplify the creation of distributed cyber-physical applications, where the communication between distributed components is specified just by drawing arcs. Several application examples were designed to validate the proposed formalism and the associated framework, ranging from hardware solutions, industrial applications to distributed software applications

    Applied novel software development methodology for process engineering application

    Get PDF
    Chemical processes are nonlinear continuous/discrete dynamic systems that are subject to considerable uncertainties and variations during their design and operation. These systems are designed to operate at an economically optimal steady-state. However, minor changes in process parameters’ values might cause deviations and elicit dynamic responses from processes. Controllability—defined as the ability of holding a process within a specified operating regime and the controllability assessment of each given process system—should be taken into account during the system design phase. This emphasises the necessity of effective software tools that could assist process engineers in their controllability evaluation. Although there are few multipurpose tools available for this task, developing software tools for controllability analysis is a tedious and sophisticated undertaking. It involves elaboration from multiple disciplines, and the requirements of controllability assessments are so vast that it is almost impossible to create general software that covers all controllability measures and cases. This thesis aims to systematically tackle the challenge of developing practical and high-quality software tools for controllability problems while reducing the required time and effort, regardless of the size and scale of the controllability problem. Domain-specific language (DSL) methodology is proposed for this purpose. DSLs are programming languages designed to address the programming problems of a specific domain. Therefore, well-designed DSLs are simple, easy to use and capable of solving any problem defined in their domains. Based on DSL methodology, this study proposes a four-element framework to partition the software system into decoupled elements, and discusses the design and implementation steps of each element as well as communication between elements. The superiority of the developed methodology based on DSL is compared with traditional programming techniques for controllability assessment of various case studies. Essentially, the major advantage of the proposed methodology is the performance of the software product. Performance measures used in this study are total time to develop (TD) the software tool and its modifiability. Total time and effort to implement and use the result products presents up to five times improvement. Moreover, the result product’s modifiability is assessed by applying modifications, which also demonstrates up to five times improvement. All measures are tested on continuous stirred-tank reaction (CSTR) and forced-circulation evaporator (FCE) case studies. In conclusion, this study significantly contributes to two fields. The first is DSL, since this thesis studies different types of DSLs and evaluates their applications in the controllability analysis. The second is the controllability evaluation, since this study examines a new methodology for software development in controllability assessment

    Vision 2018

    Get PDF
    https://scholarworks.umt.edu/vision/1018/thumbnail.jp

    A flexible approach to the estimation of water budgets and its connection to the travel time theory.

    Get PDF
    The increasing impacts of climate changes on water related sectors are leading the scientists' attentions to the development of comprehensive models, allowing better descriptions of the water and solute transport processes. "Getting the right answers for the right reasons", in terms of hydrological response, is one of the main goals of most of the recent literature. Semi-distributed hydrological models, based on the partition of basins in hydrological response units (HRUs) to be connected, eventually, to describe a whole catchment, proved to be robust in the reproduction of observed catchment dynamics. 'Embedded reservoirs' are often used for each HRU, to allow a consistent representation of the processes. In this work, a new semi-disitrbuted model for runoff and evapotranspiration is presented: five different reservoirs are inter-connected in order to capture the dynamics of snow, canopy, surface flow, root-zone and groundwater compartments. The knowledge of the mass of water and solute stored and released through different outputs (e.g. discharge, evapotranspiration) allows the analysis of the hydrological travel times and solute transport in catchments. The latter have been studied extensively, with some recent benchmark contributions in the last decade. However, the literature remains obscured by different terminologies and notations, as well as model assumptions are not fully explained. The thesis presents a detailed description of a new theoretical approach that reworks the theory from the point of view of the hydrological storages and fluxes involved. Major aspects of the new theory are the 'age-ranked' definition of the hydrological variables, the explicit treatment of evaporative fluxes and of their influence on the transport, the analysis of the outflows partitioning coefficients and the explicit formulation of the 'age-ranked' equations for solutes. Moreover, the work presents concepts in a new systematic and clarified way, helping the application of the theory. To give substance to the theory, a small catchment in the prealpine area was chosen as an example and the results illustrated. The rainfall-runoff model and the travel time theory were implemented and integrated in the semi-distributed hydrological system JGrass-NewAge. Thanks to the environmental modelling framework OMS3, each part of the hydrological cycle is implemented as a component that can be selected, adopted, and connected at run-time to obtain a user-customized hydrological model. The system is flexible, expandable and applicable in a variety of modelling solutions. In this work, the model code underwent to an extensive revision: new components were added (coupled storages water budget, travel times components); old components were enhanced (Kriging, shortwave, longwave, evapotranspiration, rain-snow separation, SWE and melting components); documentation was standardized and deployed. Since the Thesis regards in wide sense the building of a collaborative system, a discussion of some general purpose tools that were implemented or improved for supporting the present research is also presented. They include the description and the verification of a software component dealing with the long-wave radiation budget and another component dealing with an implementation of some Kriging procedure

    Optimisation of Rail-road Level Crossing Closing Time in a Heterogenous Railway Traffic: Towards Safety Improvement - South African Case Study

    Get PDF
    The gravitation towards mobility-as-a service in railway transportation system can be achieved at low cost and effort using shared railway network. However, the problem with shared networks is the presence of the level crossings where railway and road traffic intersects. Thus, long waiting time is expected at the level crossings due to the increase in traffic volume and heterogeneity. Furthermore, safety and capacity can be severely compromised by long level crossing closing time. The emphasis of this study is to optimise the rail-road level crossing closing time in order to achieve improved safety and capacity in a heterogeneous railway network. It is imperative to note that rail-road level crossing system assumes the socio-technical and safety critical duality which often impedes improvement efforts. Therefore, thorough understanding of the factors with highest influence on the level crossing closing time is required. Henceforth, data analysis has been conducted on eight active rail-road level crossings found on the southern corridor of the Western Cape metro rail. The spatial, temporal and behavioural analysis was conducted to extract features with influence on the level crossing closing time. Convex optimisation with the objective to minimise the level crossing closing time is formulated taking into account identified features. Moreover, the objective function is constrained by the train's traction characteristics along the constituent segments of the rail-road level crossing, speed restriction and headway time. The results show that developed solution guarantees at most 53.2% and 62.46% reduction in the level crossing closing time for the zero and nonzero dwell time, respectively. Moreover, the correctness of the presented solution has been validated based on the time lost at the level crossing and railway traffic capacity consumption. Thus, presented solution has been proven to achieve at most 50% recovery of the time lost per train trip and at least 15% improvement in capacity under normal conditions. Additionally, 27% capacity improvement is achievable at peak times and can increase depending on the severity of the headway constraints. However, convex optimisation of the level crossing closing time still fall short in level crossing with nonzero dwell time due to the approximation of dwell time based on the anticipated rather than actual value

    Isolation and characterization of polychlorinated biphenyl (PCB) degrading bacteria isolated from a PCB contaminated reservoir in Donna, TX

    Get PDF
    The Donna Irrigation System (DIS) located in Donna, Hidalgo County, TX, was confirmed to be contaminated with polychlorinated biphenyls (PCBs) in 1993 and remediation of the site will be attempted in the future. The need to isolate novel PCB degrading bacteria for bioremediation has been an active area of research in recent decades; thus, it was hypothesized that a variety of microorganisms able to degrade PCBs could be isolated from sediments taken from the DIS. Two genes of the PCB degradation pathway, bphA1 and bphC, were detected in 43 bacterial isolates grown from DIS sediments using molecular and culture-based methodology, confirming the PCB degradation potential of these bacteria. Biochemical testing indicated differences in the enzymatic activity, carbohydrate fermentation ability, and carbon source utilization patterns of these isolates and strongly suggests that a variety of species, and possibly genera, of PCB degrading bacteria are present in the sediments of the DIS
    • …
    corecore