2,755 research outputs found

    Time-resolved spectra of polar-polarizable chromophores in solution

    Get PDF
    A recently proposed model for steady-state spectra of polar-polarizable chromophores is extended to describe time-resolved spectra. The model, based on a two-state picture for the solute and on a continuum overdamped description for the (polar) solvent, grasps the essential physics of solvation dynamics, as demonstrated by the comparison with experimental spectra. The solute (hyper)polarizability is responsible for spectroscopic features that cannot be rationalized within the standard picture based on a linear perturbative treatment of the solute-solvent interaction. In particular, the temporal evolution of band-shapes and the appearance of temporary isosbestic points, two common puzzling features of observed spectra, are natural consequences of the molecular hyperpolarizability and of the consequent coupling between solvation and vibrational degrees of freedom.Comment: 14pages, including 7 figure

    Time-resolved spectra of a self-pulsing quantum dot laser

    Get PDF
    Self-sustained pulsations in the output of an InAs quantum dot laser diode in the MHz range are reported for the first time. The characteristics (shape, range and frequency) are presented for the free running laser and when optical feedback in the Littrow configuration is applied. The frequency resolved optical spectra reveal different envelope shifts between the two cases. This might be related to a change of phase-amplitude coupling across the gain maximum in agreement with the expectation for a two level system. The time scale and bifurcation scenario suggest that these are opto-thermal pulsation like those reported in quantum well amplifiers.(1

    Time Resolved GRB Spectroscopy

    Get PDF
    We present the main results of a study of time-resolved spectra of 43 intense GRBs detected by BATSE. We considered the 4-parameter Band model and the Optically Thin Synchrotron Shock model (OTSSM). We find that the large majority of time-resolved spectra of GRBs are in remarkable agreement with the OTSSM. However, about 15 % of initial GRB pulses show an apparent low-energy photon suppression. This phenomenon indicates that complex radiative conditions modifying optically thin emission may occur during the initial phases of some GRBs.Comment: 5 pages, 3 figures, Paper presented at the 5th Huntsville Symposium, Huntsville (Alabama) Oct. 199

    Nonlinear effects in time-resolved spectra of DAVs

    Get PDF
    Numerical simulations of light curves of variable DA white dwarfs (ZZ Ceti stars) predict flux amplitudes with surface distributions different from the spherical harmonics of the pulsation mode in deeper layers. In contrast to the results of the perturbation analysis by Goldreich and Wu this is also true for the fundamental period of the flux variation. As a consequence normalized amplitude spectra depend not only on the mode number l but also on pulsation amplitude and inclination. Another new result is that with increasing amplitude of the pressure variation below the convection zone the flux variation at the surface goes through a maximum and then decreases again

    On the Shape of Pulse Spectra in Gamma-Ray Bursts

    Get PDF
    The discovery (Liang & Kargatis 1996), that the peak energy of time-resolved spectra of gamma-ray burst (GRB) pulses decays exponentially with fluence, is analytically shown to imply that the time-integrated photon number spectrum of a pulse should have a unique shape, given by an underlying E^-1 behavior. We also show that the asymptotic low energy normalization of the time-integrated spectrum is equal to the exponential decay constant. We study analytically how this general behavior is modified in more realistic situations and show that diversity is then introduced in the properties of time-integrated GRB pulse spectra. We argue that further diversity will occur in time-integrated multi-pulse (complex) GRB spectra. The total energy received per cm^2 is approximately the decay constant times the maximum peak energy of the pulse. Our analytical results connect the properties of the time-integrated pulse spectrum with those of the time-resolved spectra, and can thus be used when studying observed GRB pulse spectra. We illustrate with the bright burst GRB 910807 and comment on GRB 910525 and GRB 921207.Comment: 7 pages, 6 postscript figures, accepted by the Astrophysical Journa

    A fast data acquisition system for the study of transient events by high repetition rate time-of-flight mass spectrometry

    Get PDF
    Recent advances in commercially available data acquisition electronics embodying high speed A/D conversion coupled to increased memory storage have now made practical (at least within time intervals of a third of a millisecond or more) the capturing of all of the data generated by a high repetition rate time-of-flight mass spectrometer producing complete spectra every 25 to 35 microseconds. Such a system was assembled and interfaced with a personal computer for control and management of data. The applications are described for recording time-resolved spectra of individual vapor plumes induced from the pulsed-laser heating of material. Each laser pulse triggers the system to generate automatically a 3-dimensional (3-D) presentation of the time-resolved spectra with m/z labeling of the major mass peaks, plus an intensity versus time display of both the laser pulse and the resulting vapor pulse. The software also permits storing of data and its presentation in various additional forms

    Synchrotron Cooling in Energetic Gamma-Ray Bursts Observed by the Fermi Gamma-Ray Burst Monitor

    Get PDF
    We study the time-resolved spectra of eight GRBs observed by Fermi GBM in its first five years of mission, with 1 keV - 1 MeV fluence f>1.0×10−4f>1.0\times10^{-4} erg cm−2^{-2} and signal-to-noise level S/N≥10.0\text{S/N}\geq10.0 above 900 keV. We aim to constrain in detail the spectral properties of GRB prompt emission on a time-resolved basis and to discuss the theoretical implications of the fitting results in the context of various prompt emission models. We perform time-resolved spectral analysis using a variable temporal binning technique according to optimal S/N criteria, resulting in a total of 299 time-resolved spectra. We fit the Band function to all spectra and obtain the distributions for the low-energy power-law index α\alpha, the high-energy power-law index β\beta, the peak energy in the observed νFν\nu F_\nu spectrum EpE_\text{p}, and the difference between the low- and high-energy power-law indices Δs=α−β\Delta s=\alpha-\beta. Using the distributions of Δs\Delta s and β\beta, the electron population index pp is found to be consistent with the "moderately fast" scenario which fast- and slow-cooling scenarios cannot be distinguished. We also apply a physically motivated synchrotron model, which is a triple power-law with constrained power-law indices and a blackbody component, to test for consistency with a synchrotron origin for the prompt emission and obtain the distributions for the two break energies Eb,1E_\text{b,1} and Eb,2E_\text{b,2}, the middle segment power-law index β\beta, and the Planck function temperature kTkT. A synchrotron model is found consistent with the majority of time-resolved spectra for these eight energetic Fermi GBM bursts with good high-energy photon statistics, as long as both the cooling and injection break are included and the leftmost spectral slope is lifted either by inclusion of a thermal component or when an evolving magnetic field is accounted for.Comment: 20 pages, 7 figures, 8 tables, accepted for publication in A&
    • …
    corecore