Abstract

We study the time-resolved spectra of eight GRBs observed by Fermi GBM in its first five years of mission, with 1 keV - 1 MeV fluence f>1.0×104f>1.0\times10^{-4} erg cm2^{-2} and signal-to-noise level S/N10.0\text{S/N}\geq10.0 above 900 keV. We aim to constrain in detail the spectral properties of GRB prompt emission on a time-resolved basis and to discuss the theoretical implications of the fitting results in the context of various prompt emission models. We perform time-resolved spectral analysis using a variable temporal binning technique according to optimal S/N criteria, resulting in a total of 299 time-resolved spectra. We fit the Band function to all spectra and obtain the distributions for the low-energy power-law index α\alpha, the high-energy power-law index β\beta, the peak energy in the observed νFν\nu F_\nu spectrum EpE_\text{p}, and the difference between the low- and high-energy power-law indices Δs=αβ\Delta s=\alpha-\beta. Using the distributions of Δs\Delta s and β\beta, the electron population index pp is found to be consistent with the "moderately fast" scenario which fast- and slow-cooling scenarios cannot be distinguished. We also apply a physically motivated synchrotron model, which is a triple power-law with constrained power-law indices and a blackbody component, to test for consistency with a synchrotron origin for the prompt emission and obtain the distributions for the two break energies Eb,1E_\text{b,1} and Eb,2E_\text{b,2}, the middle segment power-law index β\beta, and the Planck function temperature kTkT. A synchrotron model is found consistent with the majority of time-resolved spectra for these eight energetic Fermi GBM bursts with good high-energy photon statistics, as long as both the cooling and injection break are included and the leftmost spectral slope is lifted either by inclusion of a thermal component or when an evolving magnetic field is accounted for.Comment: 20 pages, 7 figures, 8 tables, accepted for publication in A&

    Similar works